预应力混凝土连续梁桥

合集下载

预应力混凝土简支梁桥、连续梁桥和刚架桥对比分析

预应力混凝土简支梁桥、连续梁桥和刚架桥对比分析

预应⼒混凝⼟简⽀梁桥、连续梁桥和刚架桥对⽐分析预应⼒混凝⼟简⽀梁桥、连续梁桥和刚架桥的设计构造特点和对⽐分析⼀、预应⼒混凝⼟简⽀梁桥1、构造布置:常⽤跨径:20~50m之间,我国编制了后张法装配式预应⼒混凝⼟简⽀梁桥的标准设计,标准跨径为25m、30m、35m、40m。

主梁梁距:1.5~2.2m之间横梁布置:端横梁、中横梁(布置在跨中及四分点处)2、主要尺⼨:主梁:⾼跨⽐1/15~1/25;肋厚14~16cm;横梁:中横梁3/4h,端横梁与主梁同⾼,宽12~20cm,可挖空;翼板:不⼩于1/12h,⼀般为变厚度。

马蹄:为了满⾜布置预应⼒束筋的要求,应T 梁的下缘做成马蹄形。

(⼀)主梁1、梁⾼:我国后张法装配式预应⼒混凝⼟简⽀梁的标准设计有25,30,35,40m 四种,其梁⾼分别为1.25~1.45,1.65~1.75,2.00,2.30m。

标准设计中⾼跨⽐值约为1/17~1/20,其主梁⾼度主要取决于活载标准,主梁间距可在较⼤范围内变化,通常其⾼跨⽐在1/15~1/25 左右。

主梁⾼度如不受建筑⾼度限制,⾼跨⽐宜取偏⼤值。

增⼤梁⾼,只增加腹板⾼度,混凝⼟数量增加不多,但可以节省钢筋⽤量,往往⽐较经济。

2、肋厚:预应⼒混凝⼟,由于预应⼒和弯起束筋的作⽤,肋中的主拉应⼒较⼩,肋板厚度⼀般都由构造决定。

原则上应满⾜束筋保护层的要求,并⼒求模板简单便于浇筑。

国外对现浇梁的腹板没有预应⼒管道时最⼩厚度为200mm,仅有纵向或竖向管道的腹板需要300mm,既有纵向⼜有竖向管道的腹板需要380mm。

对于⾼度超过2400mm 的梁,这些尺⼨尚应增加,以减少混凝⼟浇筑困难,装配式梁的腹板厚度可适当减少,但不能⼩于165mm。

如为先张法结构,最低值可达125mm。

我国⽬前所采⽤的值偏低,⼀般采⽤160mm,标准设计中为140~160mm,在接近梁的两端的区段内,为满⾜抗剪强度和预应⼒束筋布置锚具的需要,将肋厚逐渐扩展加厚。

预应力混凝土等截面连续梁桥毕业设计

预应力混凝土等截面连续梁桥毕业设计
目标:提高桥梁的承载能力、 耐久性和安全性
方法:优化桥梁的截面形状 和尺寸,提高桥梁的承载能
力和稳定性
方法:采用高性能混凝土和 钢筋,提高桥梁的耐久性和
安全性
方法:优化桥梁的施工工艺 和施工方案,提高桥梁的施
工质量和效率
结构尺寸优化
确定桥梁跨度和跨径比 确定桥梁高度和宽度 确定桥梁截面形状和尺寸 确定桥梁支座类型和位置 确定桥梁预应力筋布置和锚固方式 确定桥梁施工工艺和材料选择
P预A应R力T混6凝土等截面连续梁桥
的工程实例
工程概况
工程名称:预应力 混凝土等截面连续 梁桥
工程地点:某城市
工程规模:全长 xx米,跨径xx米
工程特点:采用预 应力混凝土等截面 连续梁桥结构,具 有承载能力强、抗 震性能好等特点。
设计方案及要点
预应力混凝土等截面连续梁桥的设计方案应考虑桥梁的跨度、高度、荷载等因素。 设计方案应包括桥梁的平面布置、横断面设计、纵断面设计等。 设计方案应考虑桥梁的抗震性能,采用合理的抗震措施。 设计方案应考虑桥梁的耐久性,采用耐久性好的材料和施工工艺。
YOUR LOGO
预应力混凝土等截面 连续梁桥毕业设计
,a click to unlimited possibilities
汇报人:
时间:20XX-XX-XX
目录
01
添加标题
02
03
04
05
06
预应力混凝土 等截面连续梁 桥概述
预应力混凝土 等截面连续梁 桥的设计原理
预应力混凝土 等截面连续梁 桥的施工方法
结构材料优化
钢筋配置:优化钢筋布置, 提高抗弯、抗剪能力
混凝土强度:选择高强度混 凝土,提高承载能力

浅析预应力混凝土连续梁桥的发展及设计流程

浅析预应力混凝土连续梁桥的发展及设计流程

浅析预应力混凝土连续梁桥的发展及设计流程一、研究概况及发展趋势预应力混凝土连续梁桥是预应力桥梁中的一种,它具有整体性能好、结构刚度大、变形小、抗震性能好,特别是主梁变形挠曲线平缓,桥面伸缩缝少,行车舒适等优点。

由于悬臂施工方法的应用,连续梁在预应力混凝土结构中有了飞速的发展。

60年代初期在中等跨径预应力混凝土连续梁中,应用了逐跨架设法与顶推法;60年代中期在德国莱茵河建成的本多夫(Bendorf)桥,采用了悬臂浇筑法。

随着悬臂浇筑施工法和悬臂拼装施工法的不断改进、完善和推广应用,在跨度为40—200米范围内的桥梁中,连续梁桥逐步占据了主要地位。

目前,无论是城市桥梁、高架道路、山谷高架栈桥,还是跨河大桥,预应力混凝土连续梁都发挥了其独特的优势,成为优胜方案。

我国自50年代中期开始修建预应力混凝土梁桥,至今已有40多年的历史,比欧洲起步晚,但近对年来发展迅速,在预应力混凝土桥梁的设计、结构分析、试验研究、预应力材料及工艺设备、施工工艺等方面日新月异,预应力混凝土梁桥的设计技术与施工技术都已达到相当高的水平。

近20年来,我国已建成的具有代表意义的连续梁桥有跨径90m 的哈尔滨松花江大桥、跨径120m的湖南常德沅水大桥、主跨125m 的宜昌乐天溪桥、跨径154m的云南六库怒江大桥等。

下表是我国目前建成的部分主要大跨径预应力混凝土连续梁桥。

我国已建成的部分主要大跨径混凝土连续梁桥序号桥名主桥跨径(m)桥址1 南京长江二桥北汊桥90+165*3+90 江苏2 六库怒江大桥85+154+85 云南3 黄浦江奉浦大桥85+125*3+85 上海4 常德阮水大桥84+120*3+84 湖南5 东明黄河公路大桥75+120*7+75 山东6 风陵渡黄河大桥87*5+87+114*7+87 山西7 沙洋汉江大桥63+111*6+63 湖北8 珠江三桥80+110+80 广东二、生产需求状况虽然我国的预应力混凝土连续梁在不断地发展,然而与国际先进水平仍存在一定差距。

预应力混凝土连续梁桥纵向预应力设计

预应力混凝土连续梁桥纵向预应力设计

预应力混凝土连续梁桥纵向预应力设计一、引言预应力混凝土连续梁桥由于其跨越能力大、结构刚度好、行车舒适性高等优点,在现代桥梁工程中得到了广泛的应用。

而纵向预应力设计是预应力混凝土连续梁桥设计中的关键环节,它直接关系到桥梁的结构性能、安全性和经济性。

二、纵向预应力设计的目的和作用纵向预应力设计的主要目的是通过在混凝土梁中预先施加压应力,来抵消在使用阶段可能出现的拉应力,从而提高梁的承载能力、抗裂性能和耐久性。

其作用主要体现在以下几个方面:1、提高梁的抗弯承载能力:预应力的施加可以使梁在承受荷载时,混凝土处于受压状态,充分发挥混凝土抗压强度高的特点,从而提高梁的抗弯能力。

2、增强梁的抗裂性能:预先施加的压应力可以有效地抑制混凝土裂缝的产生和扩展,提高梁的耐久性。

3、减小梁的挠度:预应力可以减小梁在荷载作用下的变形,提高桥梁的刚度和行车舒适性。

三、纵向预应力筋的布置形式1、直线布置:预应力筋沿梁的轴线直线布置,这种布置形式施工简单,但对梁的抗剪和抗扭性能提升有限。

2、曲线布置:预应力筋沿梁的纵向呈曲线布置,常见的有抛物线形和圆弧形。

曲线布置可以更好地适应梁的弯矩分布,提高预应力的效率,但施工难度相对较大。

四、纵向预应力筋的材料选择常用的纵向预应力筋材料有高强度钢丝、钢绞线和精轧螺纹钢筋。

高强度钢丝具有强度高、柔韧性好的特点,但锚固较复杂。

钢绞线则是目前应用最广泛的预应力筋材料,其强度高、柔韧性好、施工方便。

精轧螺纹钢筋适用于对锚固要求较高的部位,但成本相对较高。

在选择预应力筋材料时,需要综合考虑桥梁的跨度、荷载、施工条件和经济性等因素。

五、纵向预应力筋的数量确定纵向预应力筋的数量应根据桥梁的结构受力要求、使用性能要求和规范规定来确定。

首先,需要根据梁的弯矩和剪力分布,计算出所需的预应力大小。

然后,根据所选预应力筋材料的强度和特性,确定预应力筋的数量。

在计算过程中,还需要考虑预应力损失的影响。

预应力损失包括锚具变形损失、摩擦损失、混凝土收缩徐变损失等。

预应力混凝土连续梁桥、拱桥、斜拉桥、悬索桥等详解

预应力混凝土连续梁桥、拱桥、斜拉桥、悬索桥等详解

3)肋拱桥
1988广东广州流溪桥 (L=90m)
钢筋混凝土箱肋中承式拱,拱矢度1/4.5,全桥采用喷塑装修工艺,建筑宏 伟壮丽,已成为公园的重要景观。
4)箱拱桥
1979四川省宜宾市金沙江大桥 (L=150m)
中国采用缆索吊装施工、跨径最大的钢筋混凝土箱形拱。主拱圈箱高 2.0m,箱宽7.60m,矢跨比1/7,全拱圈横向分5个箱室;纵向分5段预制,缆 索吊装就位后再组合成整体箱。
四川万州长江大桥: 四川万州长江大桥:拱
交界墩翻模施工
圈劲性骨架分段吊装
四川万州长江大 桥:骨架吊装
四川万州长江大桥:骨架合龙
四川万州长江大桥:浇筑箱形拱圈混凝土
四川万州长江大桥:浇筑次序
四川万州长江大桥: 浇注拱上立柱
四川万州长江大桥: 吊装桥面T梁
四川万州长江大桥:竣工后全景
第四节 拱桥实例介绍
7)桁式组合拱桥中国首创的一种桥型,它除保持桁式拱结构用料省、竖向刚度大等特点外,
更具有桁梁的特性和可以采用悬臂法施工、施工阶段和运营阶段的受力趋于一致等优点。
1990四川自贡160米牛佛沱桥
桁式组合拱为三室箱形截面,桁架片按节段分件预制,采用人字扒杆悬拼安装。
8)钢管混凝土拱桥
1990四川旺苍115米东河桥
公路双曲拱桥多是多肋波 截面;对于跨径和荷载较小的 单车道桥可采用单波的形式。
双曲拱桥施工工序多,组合截面的整体性差,易开裂,因此,只 宜在中小跨径桥梁中采用。
Байду номын сангаас
4、箱形拱桥: 箱形拱桥拱圈横截面由几个箱室组成。截面挖空率大,
可达全截面的50%-70%,较实体板拱桥可减少圬工用料与自 重,适用于大跨度拱桥。截面抗扭刚度大,横向整体性和稳 定性好,特别适用于无支架施工。

预应力混凝土连续梁桥与连续刚构

预应力混凝土连续梁桥与连续刚构

l
l
l
ql2/8
32
第五章 预应力混凝土连续梁桥与连续刚构桥
梁高变化规律:斜(直)线、圆弧线或二次抛物线
高跨比h/L:跨中1/30~1/50,支点1/16~1/25
底板、腹板和顶板做成变厚度
支点与跨中高度之比:2.0~3.0
41700/2
5700
3300
5700
3300
引桥 边部梁
根部梁
7350
边中部梁 9000
箱外隔梁
a 总体布置图
广东容奇大桥
桥面铺装 中部梁
9000/2
33
第五章 预应力混凝土连续梁桥与连续刚构桥
87
人行道板
1450/2
桥面铺装 现浇桥道板
1500/2
1300/2
75
40
300
535
预制箱梁
广东顺德容奇大桥
主梁:根部梁、中部梁和边部梁三种;
现浇箱外横隔梁
A
(c)
A
边跨合龙段 支架
临时固结
B
C
B 永久支座
C
中跨合龙段
B
C
D D D
14
第五章 预应力混凝土连续梁桥与连续刚构桥
悬臂浇注法
2700
200
1025
600 375
40t 工字型主梁
200 40 100 400 200
730
240 300
吊带
底铰
外模
2号 1号 0号
1号 2号
单位:cm
底篮
(a)平行桁架式挂篮
22
第五章 预应力混凝土连续梁桥与连续刚构桥
四、移动模架施工法

预应力混凝土连续梁(刚构)桥

预应力混凝土连续梁(刚构)桥

2.立面布置
等高连续梁
梁高选择:与跨度有关。 • 公路桥的高跨比h/L在1/25~1/15之间。当采用顶推法施
工时,考虑顶推法施工时对结构的附加受力要求,高跨 比选1/15~1/12为宜
• 干线铁路桥, 高跨比为1/8~1/16
Kochertal Bridge
德国 | 科查塔桥
Kochertal Bridge
连续钢构体系
2.立面布置
带V形墩或V形支撑的连续梁体系
优点: • 适当增加连续梁的跨越能力、节省材料 • 削减墩顶的负弯矩 • 外观上显得轻巧别致
桥无止,路无尽
2.立面布置
连续钢构体系
特点: ③在构造方面,主梁常采用变截面箱形梁,桥墩多采用矩形和 箱形截面的柱式墩或双薄壁墩;在连续刚构两端设置的伸缩装 置应能适应结构纵向位移的需要,同时,端部需设置控制水平 位移的挡块,以保证结构的水平稳定性。
2.立面布置
连续钢构体系
受力特点: ①随着墩高的增加,连续刚构的墩顶以及跨中梁部弯矩趋近连 续梁者 ②墩的轴向力和墩底弯矩随墩高的增加急剧减少 ③两墩之间的梁部所受到的轴向力随墩高的增加而急剧减少。 因此,连续刚构梁的高跨比等设计参数可参照连续梁桥取值 (适当偏小),对带双薄壁墩的连续刚构体系,其梁部弯矩与 双薄壁的截面尺寸和间距有较大关系
可取1/25~1/16,支点截面与跨中截面高度之比在2.0 ~ 3.0; • 铁路:支点截面可取1/16 ~ 1/12,支点截面与跨中截面 高度之比在1.5 ~ 2.0.边跨与中跨的跨度比在0.5 ~ 0.8 内变化,采用悬臂法施工时宜取较小值。比值过大,会导 致边跨正弯矩分布不合理;而比值过小,梁端支点可能发 生负反力,需要设置构造复杂的拉力支座。

预应力混凝土连续箱梁桥的徐变效应分析

预应力混凝土连续箱梁桥的徐变效应分析

预应力混凝土连续箱梁桥的徐变效应分析预应力混凝土连续箱梁桥的徐变效应分析随着经济的快速发展和城市交通需求的增加,桥梁成为城市交通发展的重要组成部分。

而预应力混凝土连续箱梁桥因其优异的性能和经济性,在现代桥梁工程中得到了广泛的应用。

然而,随着桥梁使用年限的增加,预应力混凝土连续箱梁桥在使用过程中会产生徐变效应。

徐变是指材料在长时间持续加载下产生的变形,其主要是由材料的内部结构和外部环境的影响所引起的。

对于预应力混凝土连续箱梁桥而言,徐变效应可能会导致桥梁的变形、应力分布不合理,从而影响桥梁的安全性和使用寿命。

首先,预应力混凝土连续箱梁桥的徐变效应对桥梁的变形产生了影响。

在长时间使用中,预应力混凝土连续箱梁桥的徐变现象会导致桥梁的整体变形增大,从而影响桥梁的平顺性和舒适性。

徐变效应不仅会导致桥梁本身的变形,还可能引起桥梁与周围结构的不协调,进一步影响整个桥梁的稳定性。

其次,徐变效应还会影响预应力混凝土连续箱梁桥的应力分布。

在预应力混凝土连续箱梁桥中,徐变效应使得材料的刚度降低,从而导致桥梁上的应力不再均匀分布。

这种不均匀分布可能会引起结构上的局部过载,加剧桥梁的疲劳破坏。

此外,桥梁的徐变还可能导致桥面板与横梁之间的界面剥离,进一步加剧桥梁的应力不均。

为了解决预应力混凝土连续箱梁桥的徐变效应问题,可以采取以下措施。

首先,在桥梁的设计阶段需要充分考虑徐变效应,并合理选择材料和预应力的大小,以减小徐变引起的变形和应力不均匀分布的影响。

其次,在施工过程中需要严格控制预应力的施加过程,防止徐变效应对桥梁的影响过大。

最后,在桥梁的使用阶段需要进行定期维护和检测,及时发现和修复徐变效应引起的问题,以保证桥梁的安全运行。

总而言之,预应力混凝土连续箱梁桥的徐变效应是影响桥梁安全与使用寿命的一个重要因素。

在桥梁设计、施工和维护过程中,我们应该充分考虑徐变效应的影响,并采取相应的措施加以解决。

只有在充分了解和控制徐变效应的情况下,我们才能确保预应力混凝土连续箱梁桥的安全可靠地运行综上所述,预应力混凝土连续箱梁桥的徐变效应对桥梁的稳定性和应力分布造成了不利影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

预应力混凝土连续梁桥姓名班级学号联系方式:摘要:随着现代化步伐的加快,我国基础设施建设正以前所未有的规模在全国展开,同时质量问题越来越成为人们关注的焦点。

预应力混凝土连续梁桥是预应力桥梁中的一种,它具有整体性能好、结构刚度大、变形小、抗震性能好,特别是主梁变形挠曲线平缓,桥面伸缩缝少,行车舒适等优点。

上述种种因素使得这种桥型在公路、城市和铁路桥梁工程中得到广泛采用。

在连续梁桥的施工方法中,常用的有满堂支架法、悬臂法、顶推法、先简支后连续等施工方法。

关键词:预应力混凝土连续梁桥结构设计施工方法悬臂法顶推法Prestressed concrete continuous girder bridgeWith the quickening pace of modernization, China's infrastructure construction is on an unprecedented scale in the national expansion, and at the same time, quality problem is becoming more and more become the focus of attention. Prestressed concrete continuous girder bridge is one of the prestressed bridge, it has the overall performance is good, the structure stiffness and deformation is small, the seismic performance is good, especially the main girder deformation deflection line gentle, floor less expansion joints, driving comfort etc. All of these factors make this bridge in highway, city and railway bridge engineering widely adopted. In the continuous girder bridge construction method, commonly used have full framing method, the cantilever method, pushing method, first Jane after a continuous construction method. Keywords: prestressed concrete continuous girder bridge structure design construction method of cantilever method pushing method1.我国预应力混凝土连续梁桥的概况与工程实践1.1概况自60年代中期在德国莱茵河上采用悬臂浇筑法建成Bendorf桥以来,悬臂浇筑施工法和悬臂拼装施工法得到不断改进、完善和推广应用,从而使得预应力混凝土连续梁桥成为许多国家广泛采用的桥型之一。

我国自50年代中期开始修建预应力混凝土梁桥,至今已有40多年的历史,比欧洲起步晚,但近对年来发展迅速,在预应力混凝土桥梁的设计、结构分析、试验研究、预应力材料及工艺设备、施工工艺等方面日新月异,预应力混凝土梁桥的设计技术与施工技术都已达到相当高的水平。

1.2工程实践预应力混凝土连续梁桥是预应力桥梁中的一种,它具有整体性能好、结构刚度大、变形小、抗震性能好,特别是主梁变形挠曲线平缓,桥面伸缩缝少,行车舒适等优点。

加上这种桥型的设计施工均较成熟,施工质量和施工工期能得到控制,成桥后养护工作量小。

预应力混凝土连续梁的适用范围一般在150m以内,上述种种因素使得这种桥型在公路、城市和铁路桥梁工程中得到广泛采用。

目前我国已建成的有代表性的大跨径公路和城市预应力混凝土连续梁桥如表所示。

[1]2.我国预应力混凝土连续梁桥的发展2.1桥梁设计技术2.1.1主要设计规范[2]a.1978年交通部颁布了我国第一部《公路预应力混凝土桥梁设计规范》,该规范按单一系数极限状态设计理论编制,比以往采用的破坏阶段理论规范前进了一步。

b.1985年交通部颁布了《公路桥涵设计规范》,其中《公路钢筋混凝土预应力混凝土桥涵设计规范》(JTJ023-85将单一系数改成多系数,以塑性理论为基础作强度极限计算,以弹塑性或弹性理论为基础作正常使用极限计算。

85规范原则上是参照1978年CEB-FIP的《国际标准规范》,即《Medelcodeforcon-creteStrUctures》编制的。

c.JTK023-85规范允许桥梁构件按部分预应力混凝土(ppc)设计。

·A类构件--在短期荷载作用了截面受拉边缘允许出现拉应力,但拉应力值不超过规范中的规定限值,如有些箱梁的顶板横向预应力是按A类构件设计的。

·B类构件--在短期荷载作用下,截面受拉边缘允许出现裂缝,即拉应力值超过规范中的规定限值,目前在大跨径预应力箱梁桥设计中未见采用。

·PPC构件具有节约钢材、降低造价、能减少由预应力引起的反拱度、改善结构受力性能等优点,已在一般公路桥梁和城市桥梁工程中逐步推广应用。

2.1.2桥梁结构分析专用软件和CAD技术a.自70年代后期以来,我国桥梁结构分析专用软件和CAD技术得到大力开发和应用。

其中包括采用有限元法编制的桥梁通用综合程序以及许多桥梁专用程序,实现设计、计算。

绘图一体化,大大提高了计算精度和速度,特别是用于大量重复计算、局部应力分析、设计方案优化。

大跨径预应力混凝土桥梁的结构分析设计软件开发和推广应用,适应了我国桥梁建设高速发展的需要。

b.计算机技术已被广泛应用于大跨径预应力混凝土连续梁桥的施工控制。

使得成桥后的线型平顺,符合桥梁的纵向设计标高;桥梁结构的受力状态能与设计计算一致。

2.2桥梁施工技术在我国中小跨径的预应力混凝土连续梁桥施工中,除了最古老的支架现浇方法外,还采用了先简支后连续、顶推法、移动模架逐孔浇筑法、移动导梁逐孔拼装法和梁体预制浮吊安装法等施工技术。

平衡悬臂拼装施工法和平衡悬臂浇筑施工法的采用促进了预应力混凝土连续梁桥的发展。

大跨径预应力混凝土连续梁桥大多采用悬臂浇筑法施工。

根据连续梁桥的特点,采用逐段平衡悬臂浇筑,先形成T构,再逐跨合龙,逐跨释放临时固定支座,完成体系转换,最终形成多跨预应力混凝土连续梁桥。

大跨径预应力混凝土连续箱梁广泛采用挂篮进行悬臂浇筑施工。

常用的挂篮形式有偏架式和斜拉式。

随着施工技术的进步,挂篮结构向着轻型化的方向发展,尽可能采用构造合理、受力明确、自重轻、利用系数高、使用安全方便,具有良好技术经济指标的挂篮。

例如,上海黄浦江奉浦大桥等工程采用的菱型挂篮就是其中之一,该挂篮总重仅50t,利用系数为4.02.3材料的运用高强度预应力钢材、高标号混凝土和大吨位预应力锚固体系的研制开发和应用,促进了大跨径预应力混凝土连续梁桥的发展。

在80年代后期,国内开始生产18edMPa的低松弛预应力钢绞线,加上与其配套的大吨位预应力钱具和张拉设备的研制成功.C50与C60混凝土的应用,使得预应力连续梁桥结构轻型化,跨越能力得到很大提高。

在这以前,我国大量采用16000MPaφ5的高强度碳素钢丝和与其配套的钢质锥形锚(即F式锚具)这种锚具的张拉吨位小.使用时的控制张拉力仅565kN,每张拉10kN预应力需要的布柬面积约为0.255cm2/kN;若采用φj15.2~12型锚具.张拉10kN预应力所需的布束面积约为0.096 cm2/kN;采用φj15.2~22型的锚具时,张拉10kN预应力所需的布柬面积约为0.067cm2/kN。

三者的比例为1:0.38:0.26,由此可以看到,采用大吨位预应锚具体系后,使得预应力箱梁布柬范围内的顶板、腹板和底板尺寸,设计时由原来的布柬控制改为受力控制和按构造要求控制,这样,大大减小百箱梁断面的尺寸,减轻了上部结构的自重。

箱梁混凝土及钢绞线的用量能够大大减少,从而使得预应力结构设计更趋合理、经济。

若采用以往的钢质锥形锚具,预应力混凝土连续梁的跨越能力大多在100m左右。

随着1860MPa钢绞线和大吨位预应力锚固体系的应用,建桥施工技术的发展,目前,我国连续梁桥的最大跨径已达165。

连续剧构桥的最大跨径达到270。

,从而使得我国预应力混凝土梁桥的设计、施工技术进入世界先进行列。

[5]3.预应力混凝土连续梁桥的特点[3]众所周知,普通混凝土框结构由于跨度小、柱网密,无法满足多种功能的需要,而预应力可以有效解决以上问题。

预应力混凝土能充分发挥材料的效能,在相同条件下,它比普通钢筋混凝土构件截面小,重量轻、刚度大,抗裂性和耐久性好,能有效地控制结构的挠度(甚至无挠度),节约钢材40%~50%,节约混凝土20%~40%,特别在大跨度结构中更为经济。

在张拉预应力连续梁桥结构中,结构构件在承受外荷载前,预先对外荷载产生拉应力部位的混凝土预加压应力,造成人为的压应力状态,预加压应力可以抵消外荷载所引起的大部分或全部拉应力,这样在外荷载作用下混凝土拉应力不大或处于受压状态,使混凝土结构不开裂,提高结构的刚度和结构的耐久性。

张拉法预应力混凝土施工是在浇筑混凝土前张拉预应力钢筋,将其固定在台座或钢模上,然后浇筑混凝土,等混凝土达到规定强度。

保证预应力钢筋与混凝土有足够粘结力时放松预应力钢筋,借助预应力筋的弹性回缩及与混凝土的粘结,使混凝土产生预压应力。

同时其具有较强的变形恢复能力,抗震性能明显高于普通钢筋混凝土结构,而且便于震后加固。

值得注意的一点是,预应力混凝土由于自重轻,按理含钢量应该少,但由于现在的设计水平问题,此部分并没有减少。

反而很多设计含钢量大了,很大程度造成主体结构成本增加。

4.预应力混凝土连续梁桥的设计4.1预应力混凝土连续梁桥设计的内容[1]荷载。

施工时的荷载条件中,预应力荷载应按扣除第一批预应力损失后的有效应力来确定;其他荷载应根据施工阶段可能的最不利荷载情况来定。

而施工时的支撑条件应考虑施工方案的具体情况来定,模板周转情况影响施工阶段的结构分析模型的支撑条件与荷载条件的选取。

极限设计。

对预应力板各截面进行多种可能的荷载效应组合的受弯强度设计,计算时要考虑预应力产生的次弯矩的影响。

采用混合配筋设置非预应力筋,提高结构在地震作用下的延性和能量吸收,可有效分散受拉区裂缝,改善结构的受力性能。

对无粘编者按预应力砼连续结构作补充设计,选取合适的荷载效应值与材料参数,验算抵抗预应力筋失效时连续倒塌所需的非预应力筋用量。

相关文档
最新文档