反比例函数的性质

合集下载

实际生活中的反比例函数

实际生活中的反比例函数

实际生活中的反比例函数
实际生活中的反比例函数
主要内容:
(一)反比例函数的性质:
反比例函数(k 是常数,)
当时,图象的两个分支分别位于第一、三象限。

在每一个象限内,y 的值随x 值的增大而减小。

当时,图象的两个分支分别位于第二、四象限。

在每一个象限内,y 的值随x 值的增大而增大。

(二)能利用反比例函数及其性质解决实际问题,解释一些生活中的现象,体会数学的价值。

比如:使劲踩气球时,气球为什幺会爆炸?
因为在温度不变的情况下,气球内气体的压强p(Pa)与它的体积V
(m3)的乘积是一个常数k。

即pV=k(k 为常数,k>0)
在温度不变的情况下,气球内气体的压强p 是气球体积V 的反比例函数,即。

根据反比例函数的性质
当k>0 时,p 随V 的减小而增大。

如果用力踩气球,气球的体积会变小,压强会变大。

当压强大到一定程度时,气球便会爆炸。

【典型例题】
例1. 某一电路中,保持电压U 不变,电流I(安培)与电阻R(欧姆)之。

反比例函数的图像及性质

反比例函数的图像及性质

解题技巧归纳
判断函数类型
通过观察函数表达式,判断其是否为反比例 函数。
利用对称性
利用反比例函数图像的对称性,可以简化一 些复杂问题的求解过程。
分析图像特征
根据 $k$ 的正负判断双曲线所在的象限, 并理解其增减性。
结合其他知识点
在解题过程中,可能需要结合一次函数、二 次函数等其他知识点进行综合分析。
表达式
反比例函数的一般表达式为y=k/x( k≠0),其中k是比例系数,x是自变 量,y是因变量。
自变量取值范围
由于分母不能为0,因此反比例函数 的自变量x不能为0,即x的取值范围 是x≠0。
反比例函数的定义域是除去使分母为0 的点以外的所有实数。
函数值变化规律
当x>0时,随着x的增大,y的值逐渐减小,但永远不会等于0;当x<0时 ,随着x的减小,y的值逐渐增大,也永远不会等于0。
综合应用探讨
解决问题类型
反比例函数和一次函数在解决实际问题时具有广泛的应用。例如,反比例函数可用于描述速度、密度等物理量之间的 关系;一次函数则可用于描述线性增长或下降的问题,如直线运动、均匀变化等。
建模方法
在建立反比例函数和一次函数的模型时,需要根据问题的实际背景和条件,确定函数的表达式和参数。通过比较和分 析不同函数的图像和性质,可以选择最合适的函数模型来描述问题的本质和规律。
反比例函数的图像及性质
汇报人:XXX 2024-01-22
contents
目录
• 反比例函数基本概念 • 反比例函数图像特征 • 反比例函数性质分析 • 反比例函数应用举例 • 反比例函数与一次函数比较 • 总结回顾与拓展延伸
01
反比例函数基本概念
定义与表达式

反比例函数图象的特征及性质

反比例函数图象的特征及性质

反比例函数图象的特征及性质: 反比例函数x k y =(k ≠0)的图象是由两个分支组成的曲线。

当0>k时,图象在一、三象限,在每一象限内,y 随x 的增大而减小;当0<k 时,图象在二、四象限,在每一象限内 ,y 随x 的增大而增大。

反比例函数xk y =(k ≠0)的图象关于直角坐标系的原点成中心对称。

例1.(补充)已知反比例函数32)1(--=m x m y 的图象在第二、四象限,求m 值,并指出在每个象限内y 随x 的变化情况?1.已知反比例函数x ky -=3,分别根据下列条件求出字母k 的取值范围(1)函数图象位于第一、三象限(2)在第二象限内,y 随x 的增大而增大2.函数y =-ax +a 与x ay -=(a ≠0)在同一坐标系中的图象可能是( )1.若函数x m y )12(-=与xm y -=3的图象交于第一、三象限,则m 的取值范围是 2.反比例函数xy 2-=,当x =-2时,y = ;当x <-2时;y 的取值范围是 ; 当x >-2时;y 的取值范围是 3. 已知反比例函数y a x a =--()226,当x >0时,y 随x 的增大而增大,求函数关系式例2.(补充)如图,过反比例函数xy =(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD的面积分别是S 1、S 2,比较它们的大小,可得( )(A )S 1>S 2 (B )S 1=S 2(C )S 1<S 2 (D )大小关系不能确定3.在平面直角坐标系内,过反比例函数xk y =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为4.5.。

反比例函数性质

反比例函数性质

反比例函数性质
一般地,如果两个变量x、y之间的关系可以表示成y=k/x (k为常数,k≠0)的形式,那么称y是x的反比例函数。

因为y=k/x是一个分式,所以自变量X的取值范围是X≠0。

而y=k/x有时也被写成xy=k或y=k·x^(-1)。

反比例函数性质
1.当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.
2.当k>0时.在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
k>0时,函数在x<0上为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。

定义域为x≠0;值域为y≠0。

3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交.反比例函数图像会无限接近于坐标轴但不相交(坐标轴是反比例函数图像的渐近线)
4.∣k∣越大,抛物线开口越大;∣k∣越小,抛物线开口越小。

反比例函数
5. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2 ,且等于|k|.
6.反比例函数的图象是双曲线,有两支,既是轴对称图形,对称轴是y=x或y=-x,又是中心对称图形,对称中心是坐标原点.
7.反比例函数图像中,|k|的值越大,图像越远离坐标轴.。

反比例函数反比例函数的图象与性质

反比例函数反比例函数的图象与性质
反比例函数反比例函数的图 象与性质
2023-11-06
contents
目录
• 反比例函数概述 • 反比例函数的图象 • 反比例函数的性质 • 反比例函数的应用 • 反比例函数的扩展知识
01
反比例函数概述
反比例函数的定义
反比例函数定义
一般地,形如y=k/x(k为常数,k≠0)的函数称为反比例函数 。
反比例函数的积分特性
反比例函数在区间(-∞,0)和(0,+∞) 上的积分等于常数k。
VS
反比例函数在区间(-∞,x)和(x,+∞)上 的积分等于常数k乘以x。
04
反比例函数的应用
用反比例函数解决实际问题
电力分布
在电力分布问题中,常常 需要使用反比例函数来计 算电力的分布情况,以便 合理规划电力设施。
反比例函数的定义域和值域
定义域为{x|x≠0},值域为{y|y≠0}。
反比例函数的单调性
在区间(-∞,0)和(0,∞)上单调递减。
反比例函数的基本形式
反比例函数的基本形式
01
一般地,形如y=k/x(k为常数,k≠0)的函数称为反比例函数。Biblioteka 反比例函数的解析式02
反比例函数通常被表示为y = k / x的形式,其中k是常数且不
热传导
在热传导中,可以使用反比例函数 来描述热量在介质中的传导规律。
在几何中的应用
圆的面积
在计算圆的面积时,可以使用 反比例函数来描述圆的面积与
半径之间的关系。
球的体积
在计算球的体积时,可以使用 反比例函数来描述球的体积与
半径之间的关系。
光线反射
在光线反射问题中,可以使用 反比例函数来描述光线反射的

反比例函数图像和性质ppt课件

反比例函数图像和性质ppt课件

反比例函数的定义域和值域
定义域
反比例函数的定义域是 x ≠ 0 的所有实数,即 x 可以取任何实数值,除了 0。
值域
反比例函数的值域是除了 y = 0 以外的所有实数,即 y 可以取任何实数值,但 永远不会等于 0。
02
反比例函数的性质
反比例函数的单调性
总结词
反比例函数在其定义域内并非单 调,但在各自象限内具有单调性。
表达式形式
反比例函数的一般形式为 y = k/x (k ≠ 0),其中 x 和 y 是自变量和 因变量,k 是常数。
反比例函数图像的绘制
图像绘制方法
反比例函数的图像通常在二维坐标系 中绘制,通过选择不同的 k 值,可 以绘制出不同的反比例函数图像。
图像特性
反比例函数的图像位于 x 轴和 y 轴的 有限区域,呈现出双曲线的形状,随 着 x 的增大或减小,y 的值会无限接 近于 0 但永远不会等于 0。
积分是数学中计算面积和体积的方法,分为定积分和不定积分。
反比例函数的不定积分
反比例函数y=1/x的不定积分为ln|x|+C(C为常数),这表明反比例函数可以通过对ln|x|进行不定积分得 到。
反比例函数与复数的关系
复数的概念
复数是实数和虚数的组合,形式为a+bi(a,b为实数)。
反比例函数在复数域的表现
投资回报
投资回报与投资风险成反比,即投资风险越大,投资回报越小;反之亦然。
反比例函数在日常生活中的应用
药物剂量
在药物治疗过程中,药物剂量与药效 成反比关系,即当药物剂量增加时, 药效可能会减弱。
体育训练
在体育训练中,训练强度与训练效果 成反比关系,即当训练强度增加时, 训练效果可能会减弱。

反比例函数的图象与性质定

反比例函数的图象与性质定
增。
奇偶性
反比例函数是奇函数,因为对于所 有 x,都有 f(-x) = -f(x)。
无界性
由于反比例函数的值域为 y ≠ 0 和 y ≠ -∞,因此其图象在 x = 0 处无 界。
反比例函数的性质
01
02
03
分母不为零
反比例函数的分母不能为 零,因此其定义域为 x ≠ 0。
无界性
反比例函数的值域为 y ≠ 0 和 y ≠ -∞,因此其图象 在 x = 0 处无界。
当$x<0$时,反比例函数的图象位于 第三象限,与直线$y=kx+b$相交于 一点,这一点也是它们的切点。
与二次函数的关系
二次函数是形如 $y=ax^2+bx+c$的函数,其 中$a, b, c$是常数且$a neq 0$

反比例函数的图象是一个双曲 线,分布在第一和第三象限。
二次函数的图象是一个抛物线 ,可以开口向上或向下。
反比例函数的图象与性质
目 录
• 反比例函数概述 • 反比例函数的图象特点 • 反比例函数的性质分析 • 反比例函数的应用 • 反比例函数与其他函数的关系 • 反比例函数的扩展知识
01 反比例函数概述
反比例函数的定义
反比例函数定义
反比例函数的值域
反比例函数是一种数学函数,其定义 为 f(x) = k/x,其中 k 是常数且 k ≠ 0。
磁场强度与电流
在电磁学中,磁场强度与电流之间的关系可以用反比例函数 描述,通过分析反比例函数的特性,可以研究电磁感应和电 磁波的传播。
与其他数学知识的结合
代数方程
反比例函数可以与其他代数方程 结合,用于解决代数问题,例如 求解代数方程的根或解决代数不 等式问题。

反比例函数图像与性质

反比例函数图像与性质
三、典型例题
例1函数y= (x>0)的图象大致是( )
解析:函数y= 的图象是双曲线,当k<0时双曲线两分支分别在第二、四象限内,而已知中(x>0)表明横坐标为正,故双曲线位于第四象限.
答案:D.
例2函数y=kx+1与函数y= 在同一坐标系中的大致图象是( )
解:可用排除法,假设y= 中k>0,双曲线过第一、三象限,则直线y=kx+1也应过第一、第三象限且与y轴交于正半轴,故排除B、D.同理可排除C,故答案为A.
A.y1<0<y3B.y3<0<y1;C.y2<y1<y3D.y3<y1<y2
5.已知一次函数y=x+m与反比例函数y= (m≠-1)的图象在第一象限内的交点为P(x0,3).
(1)求x0的值;
(2)求一次函数和反比例函数的解析式.
6.如图所示,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y= (m≠0)的图象在第一象限交于C点, CD垂直于x轴,垂足为D.若OA=OB=OD=1,
7.已知反比例函数 图象与直线 和 的图象过同一点.
(1)求这个反比例函数的解析式;
(2)当 >0时,这个反比例函数值 随 的增大如何变化?
8.如图,已知A(-4,2)、B(n,-4)是一次函数 的图象与反比例函数 的图象的两个交点.
(1)求此反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.
(1)自变量的取值范围是除0以外的一切实数
(2)当k>0时,它的两个分支分别在第一象限和第三象限内无限伸展;在每一象限内,y随x值的增大而减小。当k<0时,它的两个分支分别在第二象限和第四象限内无限伸展;在每一象限内,y随x值的增大而增大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数定义
一般的,如果两个变量x,y之间的关系可以表示成y=k/x(k为常数,k≠0),其中k叫做反比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数,且y也不能等于0。

k大于0时,图像在一、三象限。

k小于0时,图像在二、四象限.k 的绝对值表示的是x与y的坐标形成的矩形的面积。

反比例函数图像及性质
反比例函数图像:
1.反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或
第二、四象限,它们关于原点对称。

由于反比例函数中自变量x≠0,函数值y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

2.反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每
一象限的每一支曲线会无限接近x轴、y轴,但不会与坐标轴相交(y≠0)。

反比例函数性质:
1.[增减性]当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大
而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为
增函数、在x>0上同为增函数。

定义域为x≠0;值域为y≠0。

3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与
x轴相交,也不可能与y轴相交。

4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与
坐标轴围成的矩形面积为S1,S2则S1=S2=|K|
5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x
(即第一三,二四象限角平分线),对称中心是坐标原点。

6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A B
两点关于原点对称。

7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则
n^2+4k·m≥(不小于)0。

8.反比例函数y=k/x的渐近线:x轴与y轴。

9.反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称。

10.反比例上一点m向x、y分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为
|k|
11.k值相等的反比例函数重合,k值不相等的反比例函数永不相交。

12.|k|越大,反比例函数的图象离坐标轴的距离越远。

13.[对称性]反比例函数图象是中心对称图形,对称中心是原点;反比例函数的图像也
是轴对称图形,它的对称轴是x轴和y轴夹角的角平分线。

反比例函数知识点汇总
若k为常数,则函数y=k/x就是反比例函数,自变量和自变量的函数分别是x和y,又因为反比例函数式本身是一个分数,所以x可以是任意不等于0的实数。

同时,函数式有时候也写成y=k·x^(-1)或者k=xy.
1、反比例函数的表达式
X是自变量,Y是X的函数
y=k/x=k·1/x
xy=k
y=k·x^(-1)(即:y等于x的负一次方,此处X必须为一次方)
y=k\x(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n
2、函数式中自变量取值的范围
①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。

解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数y=k/x=k·1/x
xy=k
y=k·x^(-1)
y=k\x(k为常数(k≠0),x不等于0)
3、反比例函数图象
反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

4、反比例函数中k的几何意义是什么?有哪些应用?
过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值*y的绝对值=(x*y)的绝对值=|k|
研究函数问题要透视函数的本质特征。

反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。

所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。

从而有k的绝对值。

在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。

(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档