反比例函数的性质

合集下载

反比例函数的图像与性质

反比例函数的图像与性质
反比例函数的图像与性质
汇报人:XXX 2024-01-22
目录
• 反比例函数基本概念 • 反比例函数图像特征 • 反比例函数性质分析 • 反比例函数在实际问题中应用举例 • 反比例函数与一次函数、二次函数比较 • 总结回顾与拓展延伸
01
反比例函数基本概念
定义与表达式
反比例函数定义
形如 $y = frac{k}{x}$($k$ 为常数,$k neq 0$)的函数称 为反比例函数。
通过直接观察反比例函数的图像,可以判断其单调性。当比例系数大于0时,函数图像在第一、三象限内单调递 减;当比例系数小于0时,函数图像在第二、四象限内单调递增。
导数法
对反比例函数求导,通过导数的正负判断函数的单调性。当导数大于0时,函数单调递增;当导数小于0时,函 数单调递减。
奇偶性判断方法
奇函数质
综合应用探讨
反比例函数与一次函数的 综合应用
在解决某些实际问题时,可以将反比例函数 与一次函数结合起来,例如分段函数中的一 部分为反比例函数,另一部分为一次函数。 通过比较和分析这两个函数的图像和性质, 可以更好地理解问题的本质和解决方案。
反比例函数与二次函数的 综合应用
在某些复杂的问题中,可能需要同时考虑反 比例函数和二次函数的性质。例如,在经济 学中研究成本、收益与产量之间的关系时, 可能会遇到同时包含反比例函数和二次函数 的模型。通过综合运用这两个函数的性质和
图像对称性
反比例函数的图像关于原点对称,即 如果点(x, y)在图像上,那么点(-x, y)也在图像上。
VS
反比例函数的图像也关于直线y = x 和y = -x对称。这意味着如果点(x, y) 在图像上,那么点(y, x)和(-y, -x)也在 图像上。

第14讲 反比例函数的性质及其图象

第14讲 反比例函数的性质及其图象
, 该函数的图象就不经过此点, 四个选项中只有D不符合.
考点二、反比例函数表达式的确定
确定解析式的方法仍是待定系数法。由于在反比例函 数y=k/x中,只有一个待定系数,因此只需要一对对应值或 图像上的一个点的坐标,即可求出k的值,从而确定其解析 式。
对于反比例函数y=3/x,下列说法正确的是( ) A.图象经过点(1,-3) B.图象在第二、四象限 C.x>0时,y随x的增大而增大 D.x<0时,y随x增大而减小 解析: A.∵反比例函数y=3/x,
在x轴的正半轴上,若点D在
(x<0)
【考点】反比例函数图象
上点的坐标特征;平行四 边形的性质.
完成过关测试:第
题.
完成课后作业:第
题.
故答案为:没有实数根.
小结:此题综合考查了反比例函数的图象与性质、一 元二次方程根的判别式.注意正确判定a的取值范围是 解决问题的关键.
【例题2】(2016·深圳市)如图,四边形ABCO是平行四
边形,OA=2,AB=6,点C在x轴的负半轴上,将▱ABCO
绕点A逆时针旋转得到▱ADEF,AD经过点O,点F恰好落
正比例函数y=6x的图象与反比例函数y=6/x的图象的交点
位于( )
A.第一象限
B.第二象限
C.第三象限
D.第一、三象限
解析:
【例题1】关于x的反比例函数 y a 4 的图象如
x
图,A,P为该图象上的点,且关于原点成中心对
称.△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于
点B.若△PAB的面积大于12,则关于x的方程 a 1 x2 x 1 0 的根的情况是 没有实数根 .
∴xy=3,故图象经过点(1,3),故此选项错误; B.∵k>0,∴图象在第 一、三象限,故此选项错误; C.∵k>0,∴x>0时,y随x增大而减小,故此选项错误; D.∵k>0,∴x<0时,y随x增大而减小,故此选项正确.

反比例函数反比例函数的图象与性质

反比例函数反比例函数的图象与性质
匀速运动
在匀速运动中,速度与时间成反比例 关系。通过给定的速度和时间条件, 可以建立反比例函数求解相关问题。
变速运动
在某些变速运动问题中,速度可能与 位移或时间成反比例关系。根据具体 条件建立反比例函数模型,可以求解 变速运动的相关问题。
浓度问题求解
溶液稀释
在溶液稀释过程中,溶质的质量与溶 液的体积成反比例关系。通过给定的 溶质质量和溶液体积条件,可以建立 反比例函数求解相关问题。
题目6
已知一次函数 y = kx + b (k ≠ 0) 与反比例函数 y = m/x (m ≠ 0) 的图象交于 A、B 两点 ,且点 A 的坐标为 (2, 1),则不等式 kx + b > m/x 的解集为 _______.
历年中考真题回顾
题目7
(2019年中考)已知反比例函数 y = k/x (k > 0) 的图象上有 两点 A(x1, y1),B(x2, y2),且 x1 < 0 < x2,则 y1 _______ y2.(填“>”、“<”或“=”)
与一次函数关系比较
相似之处
两者都是线性函数,具有直线型的图象。
不同之处
一次函数的图象是一条直线,而反比例函数的图象是双曲线。此外,一次函数的斜率是常数,而反比 例函数的斜率则随着x的变化而变化。
与二次函数关系比较
相似之处
两者都是非线性函数,具有曲线型的图象。
不同之处
二次函数的图象是一个抛物线,而反比例函数的图象是双曲线。此外,二次函数的对称 轴是y轴或x轴,而反比例函数的对称中心是原点。
06
练习题及解析
基础知识练习题
03
题目1
已知反比例函数 y = k/x (k ≠ 0) 的图象 经过点 (2, -3),则 k 的值为 _______.

反比例函数的定义图象及性质

反比例函数的定义图象及性质

【本讲教育信息】一. 教学内容:1. 反比例函数的定义.2. 反比例函数的图象和性质.二. 知识要点: 1. 反比例函数(1)一般地,形如y =kx (k 为常数,k ≠0)的函数称为反比例函数,其中x 是自变量,y 是函数.其表达式也可以写成y =kx -1,有时利用变形式子xy =k .(2)确定解析式的方法仍是待定系数法,由于在反比例函数y =kx 中,只有一个待定系数,因此只需一对对应值或图象上一个点的坐标,即可求出k 的值,从而确定解析式. 2. “反比例关系”与“反比例函数”的异同 如果xy =k (k 是常数,k ≠0),那么x 与y 这两个量成反比例关系,这里x 、y 既可代表单独的一个字母,也可代表多项式或单项式,成反比例的关系式,不一定是反比例函数,如y -3=k z +2中,y -3与z +2成反比例,但y 与z 不是反比例函数;又如y =2x 2中,y 与x 2成反比例,但y ,x 不是反比例函数,但反比例函数y =kx (k ≠0)中的两个变量必成反比例关系.3. 反比例函数的性质和图象(1)反比例函数的图象的形状是双曲线,它不是连续的整体图形,而是断开的两个独立的分支,它无限接近两坐标轴但永远也不能到达坐标轴.(2)反比例函数的图象的位置与增减性,当k >0时,反比例函数的图象的两个分支位于一、三象限.在每个象限内y 随x 的增大而减小;当k <0时,反比例函数的两个分支分别位于第二、四象限,在每个象限内y 值随x 的增大而增大.(3 4. 反比例函数y =kx (k ≠0)中的比例系数k 的几何意义过双曲线y =kx上任一点P 作x 轴、y 轴的垂线PM 、PN ,所得的矩形PMON 的面积为S=PM ·PN =︱y ︱·︱x ︱=︱xy ︱,∵y =kx ,∴xy =k ,∴S =︱k ︱.即①过双曲线上任意一点作x 轴、y 轴的垂线,所得的矩形的面积为︱k ︱.②过双曲线上任意一点作x 轴(y 轴)的垂线,由该点、垂足和原点所构成的三角形的面积都是12︱k ︱.三. 重点难点:本节的重点是反比例函数的图象和性质,难点是在学习过程中要全面理解其性质及图象的特征,结合图象来理解,采用数形结合的思想方法.【典型例题】例1. 判断下列函数式,y 与x 是反比例函数关系的有哪些?①y =2x +1;②y =πx ;③y =a x ;④y =4x 2+x -x 2;⑤xy =3;⑥y =13x ;⑦x (y +1)=3;⑧2x ·3y =7.分析:按照反比例函数关系式的特征判断.①中,y 与x +1成反比例,不是y 与x 成反比例.③中没有说明a 的条件.⑦化简后为y =3x-1不符合反比例函数的形式,所以①③⑦不是反比例函数.对于②中,π为常数.④中化简得y =4x .⑤可变形为y =3x.⑥可变形为y =13x .⑧可变形为y =76x .都符合反比例函数的一般形式,所以②④⑤⑥⑧是反比例函数. 解:②④⑤⑥⑧是反比例函数. 评析:(1)判断两种量是否成反比例关系时,通常写出这两种量的关系式.然后化简,再对照反比例函数式的特征进行解答.(2)反比例函数式y =kx (k 为常数,k ≠0)还可以写成y =kx -1或xy =k (k 为常数,k ≠0).例2. 已知y 是x 的反比例函数,且当x =3时,y 的值是-5.(1)求y 与x 的关系式.(2)求当x =-5时,y 的值.分析:y 是x 的反比例函数,即x 与y 满足y =kx 这个关系式,且当x =3时,y 的值是-5,将这两个数值代入即可求出k 的值.解:(1)设y =k x (k ≠0),把x =3,y =-5代入得,-5=k3.解之得,k =-15,所以,解析式为y =-15x.(2)把x =-5代入,得y =-15-5=3.所以,当x =-5时,y 的值是3.评析:待定系数法求反比例函数解析式的步骤是:(1)设出函数解析式的一般形式为y =kx(k ≠0).(2)把对应的x 与y 的值代入,得到一个关于k 的方程.(3)解方程,求出待定系数k 的值.(4)代入解析式即可得到要求的解析式.例3. (1)已知反比例函数y =(a -2)52-a x ,当x >0时,y 随x 的增大而增大,则该函数关系式是__________.(2)已知反比例函数y =1-3mx 的图象上有两点A (x 1,y 1)、B (x 2,y 2),当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是__________.分析:(1)因为反比例函数y =(a -2)52-a x ,当x >0时,y 随x 的增大而增大,所以有⎩⎪⎨⎪⎧a -2<0a 2-5=-1 解得⎩⎪⎨⎪⎧a <2a 2=4 即⎩⎪⎨⎪⎧a <2a =±2 .所以a =-2,当a =-2时,函数关系式为y =-4x.(2)反比例函数的图象有两种情况:当1-3m >0时,如图(1)所示,此时y 1<y 2;当1-3m <0时,如图(2)所示,此时y 1>y 2;故可得1-3m >0,即m <13.(1)(2)解:(1)y =-4x (2)m <13评析:(1)对于y =kx (k 为常数,k ≠0)来说,当k >0时,反比例函数的图象的两个分支位于一、三象限.在每个象限内y 随x 的增大而减小;当k <0时,反比例函数的两个分支分别位于第二、四象限,在每个象限内y 值随x 的增大而增大.所以在此题中,应该有a -2<0.(2)反比例函数y =kx ,当k <0时,在每个象限内,y 随x 的增大而增大,但并不是说反比例函数的整个图象是从左往右上升的,因此一定注意,“在每个象限内”这个条件.例4. (1)(2008年上海)若反比例函数y =k x (k <0)的函数图像过点P (2,m )、Q (1,n ),则m 与n 的大小关系是:m __________n (选择填“>”、“=”、“<”).(2)函数y =-ax +a 与y =-ax(a ≠0)在同一坐标系中的图象可能是( )分析:(1)由k <0知函数图象在二、四象限,且y 随x 的增大而增大,又图象过点P (2,m )、Q (1,n ),2>1,则m >n .(2)由函数图象判断-a 的正负,看是否一致,可以发现函数y =-ax +a 中,当x =1时,y =0,即直线过定点(1,0),所以可排除B 和D .在A 中,根据直线的图象可知-a <0,根据双曲线的图象可知-a <0,它们是一致的.在C中,根据直线的图象可知-a >0,根据双曲线的图象可知-a <0,它们是不一致的,应排除.解:(1)>(2)A例5. 点P 是x 轴正半轴上的一个动点,过点P 作x 轴的垂线PA 交双曲线y =1x 于点A ,连接OA .(1)如图(1)所示,当点P 在x 轴的正方向上运动时,R t △AOP 的面积大小是否变化?若不变,请求出R t △AOP 的面积;若改变,试说明理由.(2)如图(2)所示,在x 轴上的点P 的右侧有一点D ,过点D 作x 轴的垂线DB 交双曲线y =1x 于点B ,连接BO 交AP 于C ,设△AOP 的面积为S 1,梯形BCPD 的面积为S 2,则S 1与S 2的大小关系是S 1__________S 2.(选填“>”“<”或“=”)解:(1)设A 点坐标为(x ,y ),则x >0,y >0.S △AOP =12·OP ·AP =12·x ·y =12×1=12.所以当点P 在x 轴的正方向移动时,R t △AOP 的面积不发生变化.(2)由(1)的结果可知S △AOP =S △BOD ,而梯形BCPD 的面积小于S △BOD ,所以有S △AOP >S 梯形BCPD ,即S 1>S 2.评析:从双曲线y =kx (k ≠0)上任一点向x 轴作垂线.则该点垂足及坐标原点构成的三角形面积都相等,其值为12︱k ︱.【方法总结】1. 反比例函数的图象是双曲线,双曲线所在的象限由比例系数k 来决定,当k >0时,双曲线在第一、三象限;当k <0时,双曲线在第二、四象限.2. 若两个变量的积是一个不为零的常数,则这两个变量成反比例.3. 求函数关系式时,一般用待定系数法.4. 在记忆反比例函数图象的性质时,要与正比例函数的性质相对照,不要混淆.5. 在反比例函数y =kx(k ≠0)的图象上任取一点向x 轴作垂线,则由垂足、原点及该点构成的三角形的面积不变,其值为12︱k ︱.【模拟试题】(答题时间:45分钟)一. 选择题1. 下列函数表达式中,是反比例函数的是( )A .y =x -1B .y =1x -1C .y =x2D .xy =-22. 一个长方形的面积为10,则这个长方形的长与宽之间的函数关系是( )A .正比例函数关系B .反比例函数关系C .一次函数关系D .不能确定3. 下列函数中,图象经过点(1,-1)的反比例函数解析式是( )A .y =1xB .y =-1xC .y =2xD .y =-2x4. 已知(3,-1)是曲线y =kx(k ≠0)上一点,则下列各点中不在该图像上的点是( )A .(13,-9)B .(3,1)C .(-1,3)D .(6,-12)5. 如果两点P 1(1,y 1)和P 2(2,y 2)在反比例函数y =1x 的图象上,那么( )A .y 2<y 1<0B .y 1<y 2<0C .y 2>y 1>0D .y 1>y 2>0*6. 若r 为圆柱底面的半径,h 为圆柱的高.当圆柱的侧面积一定时,则h 与r 之间的函数关系的图象大致是( )BC D7. 已知反比例函数y =2x,下列结论中,不正确的是( )A. 图象必经过点(1,2)B. y 随x 的增大而减小C. 图象在第一、三象限内D. 若x >1,则y <28. 反比例函数y =kx (k >0)的部分图象如图所示,A 、B 是图象上两点,AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,若△AOC 的面积为S 1,△BOD 的面积为S 2,则S 1和S 2的大小关系为( )A. S 1>S 2B. S 1=S 2C. S 1<S 2D. 无法确定二. 填空题1. 反比例函数y =kx 的图像经过点(2,-1),则k 的值为__________.2. 反比例函数y =15x 中,k =__________.3. 如果y =1x2n -5是反比例函数,则n =__________.4. 反比例函数y =kx的图象经过点(2,3),则这个反比例函数的解析式为_______________.5. 已知反比例函数y =kx 的图象分布在第二、四象限,则一次函数y =kx +b 中,y 随x 的增大而________(填“增大”、“减小”、“不变”).*6. 如图,双曲线y =kx 与直线y =mx 相交于A 、B 两点,B 点坐标为(-2,-3),则A点坐标为__________.**7. 双曲线y =8x与直线y =2x 的交点坐标为__________.三. 解答题1. 指出下列式子哪些是反比例函数解析式?并指出x 的取值.(1)y =x 5 (2)y =-23x (3)y =13x 2 (4)y =3x2. 已知反比例函数y = kx 的图象与一次函数y =3x +m 的图象相交于点(1,5).求这两个函数的解析式;3.x 和y 的一些值:(1)写出y 与x 的函数关系式;(2)根据求出的函数关系式完成上表.*4. 已知点P (2,2)在反比例函数y =kx (k ≠0)的图象上,(1)当x =-3时,求y 的值;(2)当1<x <3时,求y 的取值范围.**5. 如图所示,R t △ABO 的顶点A 是双曲线y =kx与直线y =-x +(k +1)在第四象限的交点,AB ⊥x 轴于B ,且S △ABO =32.求这两个函数的表达式;【试题答案】一. 选择题1. D2. B3. B4. B5. D6. B7. B8. B二. 填空题1. -22. 153. 34. y =6x 5. 减小 6. (2,3) 7. (2,4)和(-2,-4)三. 解答题1. (2)和(4)是反比例函数,其取值范围都是x ≠0.2. y =5x,y =3x +23. (1)y =20x(2)如下表所示:4. (1)-43(2)43<y <45. y =-3x ,y =-x -2。

反比例函数的图像与性质

反比例函数的图像与性质

反比例函数的图像与性质一、反比例函数的概念:形如(0)ky k x=≠的函数,叫做反比例函数.其中x 是自变量,y 是函数 ,k 叫做比例系数. 【注】1、自变量x 的取值范围是不等于0的一切实数,y 的取值范围也是不等于0的一切实数.2、在反比例函数ky x=(k≠0)的左边是函数y ,右边是分母为自变量x 的分式,也就是说,分母不能是多项式,只能是x 的一次单项式,如1y x =,312y x =等都是反比例函数,但21y x =+就不是关于x 的反比例函数. 3、反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此可以写成y =kx -1或xy =k 的形式.4、反比例函数中,两个变量成反比例关系. 二、反比例函数的图形与性质与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.时,图象的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小; 时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大.,b )在双曲线的一支上,则(),a b --在双曲线的即过双曲线上任意一点作x 轴、y 轴的垂线,所得矩形的面积为|k |.所以已知反比例函数可求矩形面积,反之,已知矩形面积可求反比例函数.【规律方法小结】正比例函数与反比例函数的区别与联系.【练】1、下列函数中,哪些是反比例函数?(1)31y x =-;(2)22y x =;(3)1y x =;(4)23x y =;(5)3y x =; (6)23y x =-;(7)12y x -=;(8)41y x =+;2、已知函数()231m m y m x +-=-中,y 是x 的反比例函数,求当3x =时,y 的值.反比例函数的图像与性质专项练习解答题1. 若变量y 与x 成正比例变量x 与z 成反比例,则 ( )A.y 与z 成反比例函数关系B.y 与z 成正比例函数关系C.y 与z 2成正比例函数关系D.y 与z 2成反比例函数关系2. 点P (1,3)在反比例函数ky x=(k≠0)的图象上,则k 的值是) A.13 B.3 C. 13- D.-3 3. 在反比例函数1ky x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( ) A .1- B .0 C .1 D .24. 如图,A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC∥x 轴,AC ∥y 轴,△ABC 的面积为S ,则( )A. S=2B. S=4C. 2<S<4D. S>45. 在函数22a y x--=(a 为常数)的图象上有三点()()()112233,,,,,x y x y x y ,且1230x x x <<<,则123,,y y y 的大小关系是 。

反比例函数性质

反比例函数性质

反比例函数性质
一般地,如果两个变量x、y之间的关系可以表示成y=k/x (k为常数,k≠0)的形式,那么称y是x的反比例函数。

因为y=k/x是一个分式,所以自变量X的取值范围是X≠0。

而y=k/x有时也被写成xy=k或y=k·x^(-1)。

反比例函数性质
1.当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.
2.当k>0时.在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
k>0时,函数在x<0上为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。

定义域为x≠0;值域为y≠0。

3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交.反比例函数图像会无限接近于坐标轴但不相交(坐标轴是反比例函数图像的渐近线)
4.∣k∣越大,抛物线开口越大;∣k∣越小,抛物线开口越小。

反比例函数
5. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2 ,且等于|k|.
6.反比例函数的图象是双曲线,有两支,既是轴对称图形,对称轴是y=x或y=-x,又是中心对称图形,对称中心是坐标原点.
7.反比例函数图像中,|k|的值越大,图像越远离坐标轴.。

反比例函数的意义及性质

反比例函数的意义及性质
反比例函数的实际应用
#O5
#2022
在物理学中的应用
电流与电阻的关系
01
在电路中,电流与电阻成反比关系,即当电阻增大时,电流减小;反之,当电阻减小时,电流增大。这一规律在电子设备、电力系统和电路分析等领域有着广泛的应用。
声学中的声压级
02
在声学中,声压级与距离声源的距离成反比关系。这意味着随着距离声源的距离增加,声压级会减小。这一规律在噪声控制、音响设计和声音传播等领域具有实际意义。
反比例函数在现实生活中的应用
物理学中的电阻定律 当导体的长度和截面积一定时,其电阻与电阻率成反比,即 R = k/S,其中 R 是电阻,S 是截面积,k 是电阻率。 经济生活中的供需关系 在一定条件下,商品的需求量与价格成反比,即需求量 = k/价格,其中 k 是常数。 化学中的反应速率 在一定条件下,化学反应的速率与反应物的浓度成反比,即速率 = k/浓度,其中 k 是常数。
生物种群数量变化
感谢您的观看
THANKS FOR
WATCHING
反比例函数的图像
#O2
#2022
反比例函数的图像特点
无限接近x轴和y轴
反比例函数的图像位于x轴和y轴的两侧,随着x的增大或减小,y的值会无限接近于0,但永远不会等于0。
双曲线形状
反比例函数的图像是双曲线,其形状取决于比例系数k的正负。当k>0时,图像位于第一、三象限;当k<0时,图像位于第二、四象限。
渐近线
反比例函数的图像有两条渐近线,分别是x轴和y轴。
反比例函数图像的绘制方法
确定k的值 描点 连线 验证 首先需要确定比例系数k的值,根据k的正负确定图像所在的象限。 在坐标系上选取一些特定的x值,计算对应的y值,并描出对应的点。 使用平滑的曲线将这些点连接起来,形成反比例函数的图像。 通过代入一些已知的x值来验证所绘制的图像是否准确。

反比例函数的图象与性质定

反比例函数的图象与性质定
增。
奇偶性
反比例函数是奇函数,因为对于所 有 x,都有 f(-x) = -f(x)。
无界性
由于反比例函数的值域为 y ≠ 0 和 y ≠ -∞,因此其图象在 x = 0 处无 界。
反比例函数的性质
01
02
03
分母不为零
反比例函数的分母不能为 零,因此其定义域为 x ≠ 0。
无界性
反比例函数的值域为 y ≠ 0 和 y ≠ -∞,因此其图象 在 x = 0 处无界。
当$x<0$时,反比例函数的图象位于 第三象限,与直线$y=kx+b$相交于 一点,这一点也是它们的切点。
与二次函数的关系
二次函数是形如 $y=ax^2+bx+c$的函数,其 中$a, b, c$是常数且$a neq 0$

反比例函数的图象是一个双曲 线,分布在第一和第三象限。
二次函数的图象是一个抛物线 ,可以开口向上或向下。
反比例函数的图象与性质
目 录
• 反比例函数概述 • 反比例函数的图象特点 • 反比例函数的性质分析 • 反比例函数的应用 • 反比例函数与其他函数的关系 • 反比例函数的扩展知识
01 反比例函数概述
反比例函数的定义
反比例函数定义
反比例函数的值域
反比例函数是一种数学函数,其定义 为 f(x) = k/x,其中 k 是常数且 k ≠ 0。
磁场强度与电流
在电磁学中,磁场强度与电流之间的关系可以用反比例函数 描述,通过分析反比例函数的特性,可以研究电磁感应和电 磁波的传播。
与其他数学知识的结合
代数方程
反比例函数可以与其他代数方程 结合,用于解决代数问题,例如 求解代数方程的根或解决代数不 等式问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数定义
一般的,如果两个变量x,y之间的关系可以表示成y=k/x(k为常数,k≠0),其中k叫做反比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数,且y也不能等于0。

k大于0时,图像在一、三象限。

k小于0时,图像在二、四象限.k 的绝对值表示的是x与y的坐标形成的矩形的面积。

反比例函数图像及性质
反比例函数图像:
1.反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或
第二、四象限,它们关于原点对称。

由于反比例函数中自变量x≠0,函数值y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

2.反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每
一象限的每一支曲线会无限接近x轴、y轴,但不会与坐标轴相交(y≠0)。

反比例函数性质:
1.[增减性]当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;
当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为
增函数、在x>0上同为增函数。

定义域为x≠0;值域为y≠0。

3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与
x轴相交,也不可能与y轴相交。

4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与
坐标轴围成的矩形面积为S1,S2则S1=S2=|K|
5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x
(即第一三,二四象限角平分线),对称中心是坐标原点。

6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A B
两点关于原点对称。

7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则
n^2+4k·m≥(不小于)0。

8.反比例函数y=k/x的渐近线:x轴与y轴。

9.反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称。

10.反比例上一点m向x、y分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为
|k|
11.k值相等的反比例函数重合,k值不相等的反比例函数永不相交。

12.|k|越大,反比例函数的图象离坐标轴的距离越远。

13.[对称性]反比例函数图象是中心对称图形,对称中心是原点;反比例函数的图像也
是轴对称图形,它的对称轴是x轴和y轴夹角的角平分线。

反比例函数知识点汇总
若k为常数,则函数y=k/x就是反比例函数,自变量和自变量的函数分别是x和y,又因为反比例函数式本身是一个分数,所以x可以是任意不等于0的实数。

同时,函数式有时候也写成y=k·x^(-1)或者k=xy.
1、反比例函数的表达式
X是自变量,Y是X的函数
y=k/x=k·1/x
xy=k
y=k·x^(-1)(即:y等于x的负一次方,此处X必须为一次方)
y=k\x(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n
2、函数式中自变量取值的范围
①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。

解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数y=k/x=k·1/x
xy=k
y=k·x^(-1)
y=k\x(k为常数(k≠0),x不等于0)
3、反比例函数图象
反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

4、反比例函数中k的几何意义是什么?有哪些应用?
过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值*y的绝对值=(x*y)的绝对值=|k|
研究函数问题要透视函数的本质特征。

反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。

所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。

从而有k的绝对值。

在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。

相关文档
最新文档