大学物理力学课件

合集下载

大学物理力学基础课件

大学物理力学基础课件
当受迫振动的频率接近物体的固有频率时,振幅 会显著增大的现象。
机械波的产生与传播条件
机械波的产生
需要波源和介质,波源提供能量,介质传递能量和动量。
机械波的传播条件
介质中相邻质点之间存在相互作用力,且能够传递能量和动量。
机械波的分类
横波和纵波,根据质点振动的方向与波传播方向的关系来区分。
波的干涉、衍射和多普勒效应
量纲分析
量纲分析是研究物理量之间关系的一种方法,通过比较物理量的量纲可以确定 它们之间的关系。在力学中,常用的量纲有长度、质量、时间和力等。
02
质点与刚体运动学
质点运动描述方法
80%
矢量描述法
通过位置矢量、速度矢量和加速 度矢量来描述质点的运动状态。
100%
直角坐标法
在直角坐标系中,通过质点的坐 标位置(x, y, z)及其随时间的变化 率来描述运动。
物体由于外因(受力、湿度、温度场变化等)而变形时,在物体内各部分之间产生相互作 用的内力,以抵抗这种外因的作用,并试图使物体从变形后的位置恢复到变形前的位置。
应变的定义
物体在受到外力作用下会产生一定的变形,变形的程度称为应变。
应力与应变的关系
在弹性范围内,应力与应变成正比关系,即符合胡克定律。
弹性模量与泊松比
长度收缩和时间膨胀
相对于观察者运动的物体,其 长度会收缩,时间会变慢。
质能关系式及其意义
质能关系式
E=mc^2,其中E是能量,m是质量,c是光 速。这个公式表明质量和能量之间存在等价 关系。
能量守恒和质量亏损
在核反应等过程中,质量可以转化为能量,同时能 量也可以转化为质量。这种转化遵循能量守恒定律 。
80%
自然坐标法

大学物理-力学课件(全)

大学物理-力学课件(全)
详细描述
牛顿第二定律
总结词
描述力对物体转动效应的定律。
详细描述
力的矩与转动定律指出,力矩是力和力臂的乘积,其方向垂直于力和力臂所在的平面。公式表示为M=FL,其中M表示力矩,F表示作用力,L表示力臂。转动定律则说明,对于定轴转动系统,系统的角加速度与作用于转轴上的合力矩成正比,与转动惯量成反比。
力的矩与转动定律
万有引力定律
04
CHAPTER
弹性力学
能够恢复其原始形状和大小的物体。
弹性体定义
线弹性体、非线弹性体、超弹性体等。
弹性体的分类
杨氏模量、泊松比等。
弹性体的物理属性
拉伸、压缩、弯曲、剪切等。
弹性体的变形
弹性体的基本性质
物体内部相邻部分之间的相互作用力。
弹性体的应力与应变
应力定义
正应力和剪应力。
应力的分类
动量的计算方法
动量与动量守恒定律
在没有外力作用的情况下,一个系统内各个物体的动量总和保持不变。这一定律是经典力学中重要的基本定律之一,适用于宏观低速的物体系统。
动量守恒定律
通过分析系统的受力情况和动量变化情况,根据动量守恒定律可以求出系统内各个物体的动量和速度变化情况。在解决实际问题时,通常需要先对系统进行受力分析和动量分析,然后根据动量守恒定律列方程求解。
应用方法
动量与动量守恒定律
02
CHAPTER
运动学
描述物体位置变化的物理量,表示为矢量,由起点指向终点的有向线段。
位移
描述物体运动快慢的物理量,等于位移对时间的导数,表示为矢量。
速度
位移与速度

加速度
描述物体速度变化快慢的物理量,等于速度对时间的导数,表示为矢量。

大学物理力学课件

大学物理力学课件

习1.10 (P48) 一在星际空间飞行的火箭, 一在星际空间飞行的火箭,其非常丰富运动函数为 x = ut –u(1/b-t) ln(1-bt)。其中 是喷出的气流相对于 。其中u是喷出的气流相对于 火箭的速度。 和 均是常量 均是常量。 火箭的速度。u和b均是常量。求 (3) 设u=3.0×10m/s,b=7.5×10s,并设燃料在 × , × ,并设燃料在120s内燃 内燃 烧完。 时的速度。 烧完。求 t = 0和t =120s时的速度。 和 时的速度 (4) 求 t = 0和t =120s时的加速度。 时的加速度。 和 时的加速度 解: bu (3) v = −u ln(1 − bt) a = 1 − bt v = −3×103 ln( − 7.5×10−3 ×120 = 6.91×103 (m / s) 1 ) t =120s 时 3×103 × 7.5×10−3 (4) t =0 时 a = = 22.5(m / s) 1 3×103 × 7.5×10−3 a= = 225 (m / s2 ) t =120s 时 1− 7.5×10−3 ×120
习1.10 (P48) 一在星际空间飞行的火箭, 一在星际空间飞行的火箭,运动函数为 x = ut +u(1/b-t) ln(1-bt)。其中 是喷出的气流相对于 。其中u是喷出的气流相对于 火箭的速度。 和 均是常量 均是常量。 火箭的速度。u和b均是常量。求 (1)火箭速度的表示式; )火箭速度的表示式; (2)火箭加速度的表示式; )火箭加速度的表示式; (3) 设u=3.0×103m/s,b=7.5×10-3s,并设燃料在 × , × ,并设燃料在120s内 内 燃烧完。 时的速度。 燃烧完。求 t = 0和t =120s时的速度。 和 时的速度 (4) 求 t = 0和t =120s时的加速度。 时的加速度。 和 时的加速度 解: 1 dx d[ut + u( b − t ) ln(1 − bt)] (1) v = = −u ln(1 − bt) = dt dt bu dv d [− u ln(1 − bt)] = (2) a = = 1 − bt dt dt (3) t =0 时 v =0

大学物理力学PPT课件

大学物理力学PPT课件


r
位矢:
r x i y j z k
o
模:
| r| x2y2z2
kz
p
x
i
方向余弦:co s x,co s y,cos z
r
r
r
位矢单位:m
二、位移(displacement)
t时刻,
r1 这r1(称t) 为质点的运动方程,
在运动方程中把t消去可得到质点的轨道方程。
tt r2r2( tt)
dx dl 两边对时间t 求导数, 得 2x 2l
dt dt d l u绞车拉动纤绳的速率, 纤绳随时间在缩
dt
短, 故 d l 0 ; d x v 是小船向岸边移动的速率。
dt
dt
l
22
x h
负号表示小船速
v u
u
x
x 度沿x 轴反方向。
小船向岸边移
d2x dv u2h2
a
动的加速度为
解:(1)由题意可得速度矢量为:
vd rd x(t)id y(t)j i 1tj
d t d t d t
2
所以t =3s时质点的速度为: v(3)i1.5j
(2)由运动方程 x(t) t和2 y(t)(1/4)t22
消去t 可得轨迹方程为: y 1 x2 x 3 4
由此可知该质点的运动轨迹为抛物线。
四、加速度(acceleration)
t
例1:通过绞车拉动湖中小船拉向岸边, 如图。如 果绞车以恒定的速率u拉动纤绳, 绞车定滑轮离水面 的高度为h, 求小船向岸边移动的速度和加速度。
解:以绞车定滑轮处为坐标原点, x 轴水平向
右, y 轴竖直向下, 如图所示。

大学物理力学ppt课件

大学物理力学ppt课件

应用实例
天体运动中行星绕太阳的角动量守恒,刚体定点转动的 角动量守恒等。
06
功能原理和机械能守恒定律
功能原理内容解释
功能原理定义
系统所受外力的功等于系统动能的变化量。
公式表示
$W\_{ext}=\Delta E\_k$
物理意义
外力做功导致物体动能改变,是能量转化和 传递的基本规律之一。
机械能定义及分类
大学物理力学ppt课件

CONTENCT

• 力学基本概念 • 运动学基础 • 牛顿运动定律及应用 • 动量定理与动量守恒定律 • 角动量定理与角动量守恒定律 • 功能原理和机械能守恒定律
01
力学基本概念
质点与刚体
质点
具有一定质量,但没有形状和大小的理想化物理模型。质点模型 忽略了物体的形状和大小,只考虑其质量,便于研究物体的运动 规律。
动量定理表述及证明过程
动量定理表述
物体所受合外力的冲量等于物体动量的变化 量。
动量定理证明过程
通过牛顿第二定律和运动学公式推导得出。
动量守恒条件及应用实例
动量守恒条件
系统所受合外力为零或不受外 力作用。
动量守恒应用实例
碰撞问题、爆炸问题等。在这 些问题中,可以通过动量守恒 定律求解物体的速度、位移等 物理量。
、位移等物理量。
注意事项
当存在非保守力(如摩擦力 )做功时,机械能不守恒, 需要考虑能量损失和转化。
THANK YOU
感谢聆听
03
牛顿运动定律及应用
牛顿三定律内容
第一定律
任何物体都要保持匀速直线运 动或静止状态,直到外力迫使 它改变运动状态为止。
第二定律
物体的加速度跟物体所受的合 外力成正比,跟物体的质量成 反比,加速度的方向跟合外力 的方向相同。

大学物理力学(全) ppt课件

大学物理力学(全)  ppt课件

ppt课件
14
例. 已知质点的运动方程为
x(t) R cost
y(t) R sin t
R和 为常量。(1)求其轨道
形和和态自加和然速特 坐 度征 标a。 系( 中写2)出在质直点角速坐度标v系
ppt课件
15
(1) x2 y2 R2
vx

dx dt

R sin t
lim lim
t0 t
t t 0
ppt课件
dt
3
a dv d (v) dv v d
dt dt
dt dt
如果轨道在点A 的内切圆的曲率半径为 ,
an

v
d
dt
n
v

d
dt
n
v2

n
at

dv
dt
一般情况下, 质点的加速度矢量应表示为

dv dt

R
d
dt

R
v


R
矢量
ppt课件
10
(t) (t) (t)
t 0 (0) 0 (0) 0
(t )

(t)
0 0
t
(t)dt
0 t
(t )dt
0
ppt课件
11
例 质点作匀加速圆周运动, 0 const,
ppt课件
21
牛顿第二定律: F ma
Fx
直角坐标系分量形式Fy


Fz

max may maz

m m m
dvx

大学物理学课件(南开大学)力学

大学物理学课件(南开大学)力学
I y F y d m t v 2 s3 i m n 0 v 1 s4 i n F 5 y t
撞击时间为0.01s,板施于球的平均冲力大小和方向:
m2.5g t 0.0 v 1 1 1 m 0 s ,v ,2 / s 2 m 0
Ix0 .06 N; 1s Iy0 .00 N7s
I Ix 2Iy 26.1 41 0 2Ns
*系统动量守恒,但每个质点的动量可能变化。 * 动量守恒可在某一方向上成立。 * 动量守恒定律在微观高速范围仍适用。
a
18
例3.11 一个有1/4圆弧滑槽的大物体质量为M,停在
光滑的水平面上,另一质量为m的小物体自圆弧
顶点由静止下滑。
求:当小物体滑到底时,大物体
mR
M在水平面上移动的距离?
解:选如图坐标系,在m下滑 过程中,M和m组成的系统在 水平方向上合外力为零,因此
M
dm MdM x
在外t 时力刻的总影动响量。Mv沿x方向
t
t dt
在t +dt时刻总动量: d( v m u ) ( M d)v m (d v )
dm dM 由动量守恒定律:
d( v M u ) ( M d)v M ( d v ) M v
略去二阶无穷小量 dMdv ud M M v d 0
以上讨论均在实验室参照系(惯性系)中。
a
9
§2 动量 动量定理及动量守恒
一、2.1动量动(量描动述量质定点理运动状态,矢量)P mv
大小:mv 方向:速度的方向
单位:kgm/s 量纲:MLT-1
二、冲量(力的作用对时间的积累,矢量)I
t2
Fdt
大小:|
t2
Fdt
|
方向:速度变化的方向

《大学物理力学课件》

《大学物理力学课件》
非弹性碰撞
碰撞过程中有能量损失的碰撞,动能不守恒但动量守恒。根据能量损 失程度可分为完全非弹性碰撞和部分非弹性碰撞。
04
流体力学简介
流体静力学原理
01
流体静压力及其分布
流体静压力是指流体在静止状态下受到的压力,其分布遵循帕斯卡定律

02
浮力与阿基米德原理
浮力是流体对浸入其中的物体产生的向上的力,其大小等于物体所排开
简谐振动的定义和特性
简谐振动是物体在一定位置附近做周期性往返运动的现象,具有特定的频率、振幅和相位。
简谐振动的合成
当两个或多个简谐振动作用于同一物体时,它们的合成振动遵循矢量合成原则,结果振动的频率、振幅和相位由 各个分振动的特性共同决定。
阻尼振动、受迫振动和共振现象
阻尼振动
当振动系统受到摩擦、空气阻力等阻尼力的作用时,振动幅度会 逐渐减小,直至最终停止振动。
受迫振动
当振动系统受到周期性外力的作用时,系统会以该外力的频率进 行振动,称为受迫振动。
共振现象
当受迫振动的频率接近或等于系统固有频率时,振幅会显著增大 ,产生共振现象。
机械波产生条件与传播特性
机械波的产生条件
机械波的产生需要波源和介质两个条件,波源提供振动的能量,介质则将这种能量传播出去。
机械波的传播特性
03
弹性力学基础
弹性形变与胡克定律
弹性形变定义
物体在受到外力作用后,形状或体积发 生改变,当外力撤去后,物体能恢复原 状的形变。
VS
劲度系数k
表示弹簧“软硬”程度的物理量,由弹簧 本身的性质决定,与形变量和弹力无关。
弹性势能及能量守恒
弹性势能定义
发生弹性形变的物体具有的势能,其大小与形变量有 关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四. 加 速 度
1. 加速度
a
dv dt
d 2r dt 2
2. 加速度在直角坐标系中的数学表示
a
dv dt
dvx dt
i
dvy dt
j
dvz dt
k axi ay j azk
3. 加速度在自然坐标系中的数学表示
a
a0

ann0
S O′
(2)如果系统所受外力的矢量和并不为零,但合外力 在某个坐标轴上的分矢量为零,此时,系统的总动量 虽不守恒,但在该坐标轴的分动量则是守恒的。
(3)动量守恒定律是物体学最普遍、最基本的定律之 一;动量定理和动量守恒定律只在惯性系中才成立。
例: 质量为2.5g的乒乓球以10m/s的速 率飞来,被板推挡后,又以20m/s的速 率飞出。设两速度在垂直于板面的同一 平面内,且它们与板面法线的夹角分别 为45o和30o,求:(1)乒乓球得到的冲 量;(2)若撞击时间为0.01s,求板施 于球的平均冲力的大小和方向。
d d 2
dt dt 2
单位:rad/s 单位:rad/s2
3. 角量与线量之间的对应关系
ds Rd v R
a R
v ds R d R dt dt

a

dv dt

R
d dt

R
an

v2 R

R2

第二节 质 点 动 力 学
2 2


1 2
mnvn2
n

i 1
1 2
m
ivi2

n

i 1
1 2
m
i
(ri
)2

1
(
n

2 i1
m iri2
) 2

1 2
I 2
➢刚体的转动动能
Ek

1 2
I 2
五. 角动量 角动量守恒定律
m n m 1
rn r1
r2 m 2
o r v
m
1. L质点mr对原m点vO的角大动小量L(或 r动mv量s矩in)定义为
三. 转动定律 转动惯量
对任意的质量元mi:
Fi切向 miai切向
Mi ri Fi切向 rimiai切向
z
Fi切向
O ri mi
Mi ri2mi M ri2mi ( ri2mi )
转动惯量I(或J)的定义:I ri2mi 单位:kg·m2
一. 动量 动量守恒定律
1. 质点的动量定理
由F ma m dv d (mv) dp dt dt dt
✓作用于物体上的合外力的冲量等于物体动量的增量
分量表示式
t2 t1
Fxdt

mv2 x

m v1 x
t2 t1
Fydt

mv2 y

m v1 y
t2 t1
Fzdt

m v2 z
定轴转动:各质元均作圆周运 动,其圆心都在转轴上。
各质元的线速度、加速度 一般不同,但角量(角位 移、角速度、角加速度) 都相同
转动平面
描述刚体整体的运动用角量最方便。
P

X
参考 转轴 方向
一、刚体定轴转动的角速度和角加速度
1. 角速度
d
dt
单位:rad/s
2.角加速度(或 )


3、动量守恒定律

若 Fi外 0 则有
n mivvi2 n mivvi1 0
i 1
i 1
✓ 一个孤立的力学系统(系统不受外力作用)或 合外力为零的系统,系统内各质点间动量可以交换, 但系统的总动量保持不变。即:动量守恒定律
在应用动量守恒定律时应该注意以下几点: (1)有时系统所受的合外力虽不为零,但与系统的内力 相比小得多,这时可以略去外力对系统的作用,认为 系统的动量是守恒的。如碰撞、打击、爆炸等。
v2
30o
45o
n
v1
解:取球为研究对象,由于作用时间很短,忽略重力影响

I
F
dt

mv2

mv1
取坐标系,将上式投影,有:
Ix Fxdt mv2 cos 30 (mv1 cos 45)
y v2
Fxt
O
I y Fydt mv 2 sin 30 mv1 sin 45
s
三. 速 度 1. 平均速度
v r t
P2
vdr v r
2. (瞬时)速度
P1

r dr
v lim
t0 t dt
3. 速度在直角坐标系中的数学表示
v
dr dt
dx dt
i
dy dt
j
dz dt
k
vxi
vy
j
vzk
x2 3(m) 处该力作的功:
Y x2 4y
(1). 质点的运动轨道为抛物线
2.25
x2 4y
4y x6
1
(2). 质点的运动轨道为直线 4y x6
2 O 3 X
解:A
b a
Fxdx Fydy Fzdz
F 2 yi 4 j(N )
Y x2 4y
其中
a

dv dt
,
an

v2

n0
0
O
五. 圆周运动的角量描述(极坐标系中)
v2
B v1
R s A



角位置(或角坐标)
沿逆时针转动,取正值,
沿顺时针转动, 取负值。
角位移
O
X (极轴)
1. 角速度
lim d t0 t dt
2.角加速度(或 )
x2 2ydx y2 4dy
x1
y1
2.25
4y x6
1
A1
3 x2 dx 2 2
2.25
4dy 10.8J
1
2 O 3 X
31
2.25
A2
(x 6)dx 2 2
1
4dy 21.25J
作功与路径有关!
第三节、 刚 体 定 轴 转 动
力矩是矢量,其大小为

M

F
Od r

P
M = F r sinθ
M的方向垂直于r和 F所构成的平面。
满弯足曲右的手方螺向旋 是关 由系 径矢:把r右通手过拇小指于伸18直0°,的其角余θ四转指向弯力曲F的,
方向,这时拇指所指的方向就是力矩的方向。
几个力的合力矩为这几个力的力矩的矢量和; 刚体内各 质点间的内力矩相互抵消,故合内力矩为零。
m 2
O
x
x
解:d m

m
d
x
2
I端
x2 d m
0
0
m
x2
d
x

1 3
ml 2

dx 2 Ox x
I中
l
2 x2 d m
l2
l 2 l2
m
x2
d
x

1 12
ml 2
四. 刚 体 的 转 动 动 能

Ek

1 2
m
1v12
1 2
m
2v
✓作用于物体上的合外力的冲 量等于物体动量的增量
8.
t2
t1

n
Fi外
dt
i 1


n mivit2
i 1

n mi vi t1
i 1
上式表明:作用于系统合外力的冲量等于系统动
量的增量恒力
所作的功
A=Fcos S
30o
45o x n
Fyt
v1



I I xi I y j 0.061i 0.007 j N s
2
2
Fx 6.1N Fy 0.7N F F x F y 6.14N
tan Fy Fx 0.1148 6.54 为平均冲力与x方向的夹角。

m v1z
2. 质点系的动量定理
F 受受设内外有力力三::个F质12F点1F2系1 F2mF113、mFF3231、mF332
F23

F1

F12
F21
23
m1
F13 F31
m F m 对m1:
t2
2

t1 (F1 F12 F13)dt m1v1t2 m1v1t1
力学导论
两个模型:
❖质点 质点运动学、质点动力学 ❖ 刚体 刚体定轴转动
❖ 第一节 质 点 运 动 学
一. 位 矢 (或位置矢量,或矢径)
1. 位矢 r
z
从坐标原点指向P点的有向线段
P(x,y,z) γr
2.
位矢在直角坐标系中的数学表示
r
xi
yj
zk
x
α
β
y
大小(或模):r r x2 y2 z2
F2

F3)dt

(m1v1t2

m2v2t2

m3v3t2
)

(m1v1t1

m2v2t1

m3v3t1 )
一般言之:设有n个质点,则:
相关文档
最新文档