重力式沉箱码头稳定性计算书
沉箱码头稳定验算和内力计算

沉箱码头稳定验算和内力计算码头稳定性验算(一)作用效应组合持久组合一:设计高水位(永久作用)+堆货门机(主导可变作用)+波谷压力(非主导可变作用)持久组合二:设计高水位(永久作用)+波谷压力(主导可变作用)+堆货门机(非主导可变作用)短暂组合:设计高水位(永久作用)+波峰压力(主导可变作用)不考虑地震作用去1(二)码头延基床顶面的抗滑稳定性验算根据《重力式码头设计与施工规范》(JTJ290-98)第3.6.1规定应考虑波浪作用,堆货土压力为主导可变时:按(JTJ290-98)中公式(3.6.1-4)计算。
01()()E H E qH P B G E V E qV u BU dE E P G E E P fγγγψγγγγψγγ++≤+++应考虑波浪作用,波浪力为主导可变时:()()f E P E G E P E qV E Bu u V E GdqH E B P H E ψγλγγγψγγγγ+++≤++1o短暂组合情况,按《防波堤设计与施工规范》(JTJ298-98)公式5.2.7计算f P G P Bu u G B p )(0λλλλ-≤式中:o γ——结构重要系数,一般港口取1.0;E γ——土压力分项系数;取1.35 PW γ——剩余水压力分项系数;取1.05 PR γ——系缆力分项系数;1.40ψ——作用效应组合系数,持久组合取0.7;V H E E 、——码头建筑物在计算面以上的填料、固定设备自重等永久作用所产生的总主动土压力的水平分力和竖向分力的标准值;W P ——作用在计算面以上的总剩余水压力标准值; RH P ——系缆力水平分力的标准值;qV qH E E 、——码头面上的可变作用在计算面上产生的总主动土压力的水平分力和竖向分力的标准值;RV P ——系缆力垂直分力的标准值;G γ——结构自重力的分项系数,取1.0;G ——计算面以上的结构自重力标准值;f ——沿计算面的摩擦系数设计值,查表可得0.6,胸墙0.55d γ——结构系数,不考虑波浪作用,取1.0(三)码头延基床顶面抗倾稳定性验算根据JTJ290-98第3.6.3规定应考虑波浪作用,堆货土压力为主导可变时,按JTJ290-98公式3.6.3-4计算:()()PBu u Eqv E EV E G GdPB P EqH E EH E o M M M M M M M ψλγγγγγγγγ+++≤ψ++1应考虑波浪作用,且波浪力为主导可变作用时,按JTJ290-98公式3.6.3-3计算:()()E q VE PBU U EV E G GdEqH E PB P EH E o M M M M M M M ψλγγγγγγγγ+++≤ψ++1短暂组合情况,按《防波堤设计与施工规范》(JTJ298-98)公式5.2.5计算 G G dPBu u PB P M M M λλλλλ1)(0≤+抗倾稳定性见表抗滑稳定性计算表组合项目土压力为主导可变作用时0()E H E qH P B E E P γγγψγ++1()G E V E qV u BU dG E E P fγγγψγγ+++结论qHEψP γB P 结果d γG γGfV EqVEu γBU P结果组合11 1.35432.8820.92 0.7 1.2179 730 1.11 3273.23 0.6 110.7 97.21 1.3 0 1938.4稳定组合项目波压力为主导可变作用()qH E B P H E E P E ψγγγγ++o 短暂组合Bp P λλ0()fE P E G qV E Bu u V E Gdψγλγγγ+++1f P G Bu u G )(λλ-结论qHEψP γB P结果d γG γGfV EqVEu γBU P结果组合2 1 1.35 432.88 20.92 0.7 1.2 179818 1.1 1 3273.23 0.6 110.7 97.21 1.3 0 1917 稳定短暂组合11.3520.92/1.2172 206.4/123110.61.229.821365稳定γEγHE 0γEγHE抗倾稳定性验算计算表组合项目土压力为主导可变作用时()PB P EqH E EH E oM M M γγγγψ++()PBu u Eqv E EV E G G dM M M M ψλγγγγ+++1结论EH MEqHMψP γPB M结果d γG γG MEV MEqvMu λPBu M结果组合11 1.353834 1027.9 0.7 1.32361.6 8713 1.35 1 21118.4 1439.1 271.96 1.3 0 17354.3稳定组合波浪力为主导可变作用时 ()EqH E PB P EH E o M M M γγγγψ++短暂组合)(0PBu u PB P M M λλλ+ ()EqV E PBU U EV E G GdM M M M ψλγγγγ+++1GG dM λλ1结论EH M P γψPB MEqHMPBu M 结果d γ G γG MEV MU γPBu MEqVM结果组合2 11.3538340.72361.6 1027.9 /9217 1.35 121118.4 1439.1 1.30 271.96 17272.7稳定短暂组合 1 1.35 0 1.2 / 2052.30 217 2723 1.25 1 15136.71.2 / 0 12109.4稳定γEγ0γEγ(四)基床承载力验算1.基床顶面应力计算组合持久组合情况一:设计低水位(永久作用)+波谷压力(主导可变作用)+(堆货+前沿堆货+门机情况)(非主导可变作用)短暂组合情况:设计高水位(永久作用)+波峰期波峰压力(主导可变作用) 2.持久组合一基床顶面应力计算:)/(28.43917.2745.1177.24139021.9722.3547m kN V K =+++++=)/(02.30077934429096.2715.10285.152671.22951m m kN M R ?=+++++=)/(1.805112019.10273.175185.40700m m kN M ?=+++=3)(02.528.43911.805102.3077Bm >=-=ξ)(53.102.521.13m e =-=kPa 600)1.1353.161(1.1328.43915.5749.171maxmin =<=?±=λσσ3.短暂组合情况基床顶面情况计算: )/(228182.292311m kN V k =-=)/(7.15136m m kN M R ?=)/(3.22692173.20520m m kN M ?=+=3)(64.5228122697.15136Bm >=-=ξ)(91.064.521.13m e =-=kPa 600)1.1391.061(1.1322817.2469.143maxmin =<=?±=λσσ满足承载能力要求(五)码头整体稳定性验算按照《港口工程地基规范》第5.1.3 条规定,取设计低水位进行验算。
沉箱码头计算书

任务要求:码头设计高水位12米,低水位7.4米,设计船型20000吨,波高小于1米,地面堆货20kpa ,Mh —16—30门座式起重机,地基承载力不足,须抛石基床。
一.拟定码头结构型式和尺寸1. 拟定沉箱尺寸:船舶吨级为20000吨,查规得相应的船型参数:设计船型总长 (m ) 型宽 (m ) 满载吃水 (m ) 18327.610.5即吃水为10.5米。
其自然资料不足,故此码头的前沿水深近似估算为:1.1510.512.1D kT m ==⨯=,设计低水位7.4米,则底高程:7.412.1 4.7m -=-,因此定底高程-5.1m 处。
由于沉箱定高程即为胸墙的底高程,此处胸墙为现浇钢筋混凝土结构,要求满足施工水位高于设计低水位,因此沉箱高度要高于码头前沿水深12.1m 。
综上,选择沉箱尺寸为: 1310.214l b h m m m ⨯⨯=⨯⨯。
下图为沉箱的尺寸图:2.拟定胸墙尺寸:如图,胸墙的顶宽由构造确定,一般不小于0.8m,对于停靠小型河船舶的码头不小于0.5m。
此处设计胸墙的顶宽为 1.0m。
设其底宽为5.5m,检验其滑动和倾覆稳定性要否满足要求:(由于此处现浇胸墙部分钢筋直接由沉箱顶部插入,可认为其抗滑稳定性满足要求,只需验算其抗倾稳定性)设计高水位时胸墙有效重力小于设计低水位时,对于胸墙的整体抗倾不利,故考虑设计高水位时的抗倾稳定。
沉箱为现浇钢筋混凝土,其重度在水上为323.5/kN m ,水下为313.5/kN m ,则在设计高水位时沉箱的自重为:()][()5.511 1.511 1.5 1.5 5.5123.5 3.11 1.5 5.51 3.113.52 4.6 4.[{]62}G -=⨯+⨯⨯⨯-⨯+⨯+⨯+-⨯⨯⨯()则 227.83G kN =。
自重G 对O 点求矩:G 77.10.533.4967 5.510.47922/3 5.51/3=733.56M kN m =⨯+⨯-⨯⨯+()() 。
沉箱重力式码头课程教学设计计算书

目录第一章设计资料------------------------------------- 3第二章码头标准断面设计------------------------ 5第三章沉箱设计------------------------------------- 11第四章作用标准值分类及计算----------------- 15第五章码头标准断面各项稳定性验算------- 44第一章设计资料(一)自然条件1.潮位:极端高水位:+6.5m;设计高水位:+5.3m;极端低水位:-1.1m;设计低水位:+1.2m;施工水位:+2.5m。
2.波浪:拟建码头所在水域有掩护,码头前波高小于1米(不考虑波浪力作用)。
3.气象条件:码头所在地区常风主要为北向,其次为东南向;强风向(7级以上大风)主要为北~北北西向,其次为南南东~东南向。
4.地震资料:本地的地震设计烈度为7度。
5.地形地质条件:码头位置处海底地势平缓,底坡平均为1/200,海底标高为-4.0~-5.0m 。
根据勘探资料,码头所在地的地址资料见图1。
图一 地质资料(二)码头前沿设计高程:对于有掩护码头的顶标高,按照两种标准计算:基本标准:码头顶标高=设计高水位+超高值(1.0~1.5m )=5.30+(1.0~1.5)=6.30~6.80m 复核标准:码头顶标高=极端高水位+超高值(0~0.5m )=6.50+(0~0.5)=6.50~7.00m(三) 码头结构安全等级及用途:码头结构安全等级为二级,件杂货码头。
(四) 材料指标:拟建码头所需部分材料及其重度、内摩擦角的标准值可按表1选用。
表1(五)使用荷载:1.堆货荷载:前沿q1=20kpa;前方堆场q2=30kpa。
2.门机荷载:按《港口工程荷载规范》附录C荷载代号Mh-10 -25 设计。
3.铁路荷载:港口通过机车类型为干线机车,按《港口工程荷载规范》表7.0.3-2中的铁路竖向线荷载标准值设计。
重力式码头算例

1、某重力式方块码头,初步拟定的断面尺寸见图,设计计算资料如下 (1)回填1层,水上γ=18KN/m3,水下γ=9KN/m3,φ=30°; 回填2层,水上γ=19KN/m3,水下γ=11KN/m3,φ=45°。
(2)计算水位:5.0m ;不考虑剩余水压力。
朗金主动土压力公式:20=tan 452nan K φ⎛⎫- ⎪⎝⎭,库伦主动土压力公式22cos =cos nan K φ⎡⎢⎢⎣绘制土压力分布图,计算土压力强度、总土压力及土压力产生的倾覆力矩。
答1、土压力计算q=20kpa5.002、土压力计算(1)土压力系数计算回填一层按朗金公式计算土压力:n 0δ=,02020301=tan 45=tan 45=223n an K φ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭回填二层按库伦公式计算土压力:0n 15δ=,22cos ==0.194nan K φ⎡⎢⎢⎣(2)土压力强度计算:11183183H a e KP =⨯⨯=0211 1.50.194tan15 3.09H a e KP =⨯⨯⨯=03(18311 1.511 2.12)0.194tan1517.58H a e KP =⨯+⨯+⨯⨯⨯=04(18311 1.511 2.1211 1.38)0.194tan1520.43H a e KP =⨯+⨯+⨯+⨯⨯⨯=5120 6.673H a e KP =⨯=06200.194tan15 3.75H a e KP =⨯⨯=(3)水平土压力分块合力及对前趾的倾覆力矩永久作用:11183272aH E KN =⨯⨯= 1186108EH M KN m =⨯=• 213.09 1.5 2.322aH E KN =⨯⨯= 2 2.3249.28EH M KN m =⨯=• 3 3.09 2.12 6.55aH E KN =⨯= 3 6.55 2.4415.98EH M KN m =⨯=•412.12(17.583.09)15.362aH E KN=⨯⨯-=4115.36( 2.12 1.38)32.053EH M KN m =⨯⨯+=•517.58 1.3824.26aH E KN =⨯= 5124.26 1.3816.742EH M KN m =⨯⨯=•611.38(20.4317.58) 1.972aH E KN=⨯⨯-=611.97 1.380.903EH M KN m =⨯⨯=•77.46Hn E KN ∑= 182.95EHn M KN m ∑=•可变作用:7 6.67320aH E KN =⨯= 720 6.513EH M KN m =⨯=•813.75 2.12 3.982aH E KN=⨯⨯=813.98(1.38 2.12)8.303EH M KN m =⨯+⨯=•9 3.75 1.38 5.18aH E KN =⨯= 915.18 1.38 3.572EH M KN m =⨯⨯=•29.16Hn E KN ∑= 24.87EHn M KN m ∑=•(4)竖向土压力合力及其对后趾的稳定力矩 永久作用:01()tan (77.4627)tan1513.52Vn Hn aH E E E KNδ∑=∑-⨯=-⨯=3.713.52 3.750.03EVn vn M E KN m ∑=∑⨯=⨯=•可变作用:07()tan (29.1620)tan15 2.45qVn Hn aH E E E KNδ∑=∑-⨯=-⨯=3.7 2.45 3.79.07qEVn qvn M E KN m ∑=∑⨯=⨯=•2、某重力式方块码头,初步拟定的断面尺寸见图,设计计算资料如下 (1)重度:混凝土,水上γ=24KN/m3,水下γ=14KN/m3; (2)堆货:q=20KN/m 2。
沉箱码头计算书

任务要求:码头设计高水位12米,低水位7.4米,设计船型20000吨,波高小于1米,地面堆货20kpa ,Mh —16—30门座式起重机,地基承载力不足,须抛石基床。
一.拟定码头结构型式和尺寸1. 拟定沉箱尺寸:船舶吨级为20000吨,查规范得相应的船型参数:即吃水为10.5米。
其自然资料不足,故此码头的前沿水深近似估算为:1.1510.512.1D kT m ==⨯=,设计低水位7.4米,则底高程:7.412.1 4.7m -=-,因此定底高程-5.1m 处。
由于沉箱定高程即为胸墙的底高程,此处胸墙为现浇钢筋混凝土结构,要求满足施工水位高于设计低水位,因此沉箱高度要高于码头前沿水深12.1m 。
综上,选择沉箱尺寸为: 1310.214l b h m m m ⨯⨯=⨯⨯。
下图为沉箱的尺寸图:2.拟定胸墙尺寸:如图,胸墙的顶宽由构造确定,一般不小于0.8m ,对于停靠小型内河船舶的码头不小于0.5m 。
此处设计胸墙的顶宽为1.0m 。
设其底宽为5.5m ,检验其滑动和倾覆稳定性要求是否满足要求:(由于此处现浇胸墙部分钢筋直接由沉箱顶部插入,可认为其抗滑稳定性满足要求,只需验算其抗倾稳定性)设计高水位时胸墙有效重力小于设计低水位时,对于胸墙的整体抗倾不利,故考虑设计高水位时的抗倾稳定。
沉箱为现浇钢筋混凝土,其重度在水上为323.5/kN m ,水下为313.5/kN m ,则在设计高水位时沉箱的自重为:()][()5.511 1.511 1.5 1.5 5.5123.5 3.11 1.5 5.51 3.113.52 4.6 4.[{]62}G -=⨯+⨯⨯⨯-⨯+⨯+⨯+-⨯⨯⨯()则 227.83G kN =。
自重G 对O 点求矩:G 77.10.533.4967 5.510.47922/3 5.51/3=733.56M kN m =⨯+⨯-⨯⨯+()() 。
考虑到有门机在前沿工作平台工作时,胸墙的水平土压力最大,此处门机荷载折算为线性荷载为:25010178.5714q kPa ⨯==。
重力式码头计算报告书

重力式码头计算报告书工程编号: 计算: 校核: 审定:工程条件1.1 设计采用的技术规a.《重力式码头设计与施工规》(JTS 167-2-2009)b.《港口工程荷载规》(JTS 144-1-2010)c.《水运工程混凝土结构设计规》(JTS 151-2011)d.《水运工程抗震设计规》(JTS 146-2012)1.2 工程基本信息码头顶面高程(m):0.00码头前沿泥面高程(m):-6.00结构前水底坡度:1:0.00墙后泥面与水平面夹角(°):0.00不考虑剩余水压力设计高水位(m):-.5设计低水位(m):-7各区域角点坐标点编号点坐标X(m) 点高程(m)1 0 0各区域参数梯形挡土墙截面参数结构截面尺寸参数(m):b0(m)=0.80, b1(m)=0.00, b2(m)=1.00, b3(m)=3.50, b4(m)=0.80h1(m)=7.00, h2(m)=1.00墙后填料参数:墙后土层参数土层类型水上重度(kN/m^3)水下重度(kN/m^3)摩擦角(°)水下摩擦角(°)外摩擦角(°)墙后填土17 20 45 45 15基床水上重度(kN/m^3)17,基床水下重度(kN/m^3)20,摩擦系数.6,基床承载力设计值(kPa)600 1.3 土层物理参数土层名称饱和重度(m) 粘聚力(kPa)摩擦角(°)砂砾石20 0 36地基承载力计算按照《港口工程地基规》(JTS 147-1-2010)中5.3.8条条分法计算沉降计算参数沉降计算经验修正系数:0.70容许沉降设计值(mm):20.00开挖土平均重度(kN/m^3):19.00原始泥面线控制点1坐标X(m):0.00 控制点1坐标Y(m):0.00控制点2坐标X(m):50.00 控制点2坐标Y(m):0.001.4 地基参数1.5 地面均载(荷载向下为正)1.6 系缆力系缆力参数系船柱参数1.7组合信息荷载名称持久组合计算结果2.1荷载计算结果2.1.1,设计低水位自重结构上的计算集中力(竖向力向下为正,水平力向右为正)结构上受到的倾覆滑动力(FH向左为正,FV向下为正,MH向前倾覆为正,MV稳定为正)2.1.2,设计高水位自重结构上的计算集中力(竖向力向下为正,水平力向右为正)结构上受到的倾覆滑动力(FH向左为正,FV向下为正,MH向前倾覆为正,MV稳定为正)2.1.3,土压力(设计低水位)结构上竖向均布力(竖向力向下为正)结构上水平均布力(水平力向右为正)结构上受到的倾覆滑动力(FH向左为正,FV向下为正,MH向前倾覆为正,MV稳定为正)2.1.4,土压力(设计高水位)结构上竖向均布力(竖向力向下为正)结构上水平均布力(水平力向右为正)结构上受到的倾覆滑动力(FH向左为正,FV向下为正,MH向前倾覆为正,MV稳定为正)2.1.5,(设计低水位)地面荷载1结构上竖向均布力(竖向力向下为正)结构上水平均布力(水平力向右为正)结构上受到的倾覆滑动力(FH向左为正,FV向下为正,MH向前倾覆为正,MV稳定为正)2.1.6,(设计高水位)地面荷载1结构上竖向均布力(竖向力向下为正)结构上水平均布力(水平力向右为正)结构上受到的倾覆滑动力(FH向左为正,FV向下为正,MH向前倾覆为正,MV稳定为正)2.2抗倾、抗滑验算2.2.1,持久组合抗滑验算抗倾验算2.3基床承载力验算2.3.1,持久组合抗滑验算2.4地基承载力验算2.4.1,持久组合2.5地基沉降。
码头沉箱结构整体稳定性验算

五、整体稳定性验算按照《港口工程地基规范》第5.1.3条规定,取极端低水位进行验算。
计算采用费伦纽斯提出的圆弧滑动法。
土层资料见表5-4-48。
表5-4-48 土层资料土质平均顶面标高 (m) 平均厚度(m)容重3(/)kN m γ粘聚力 (/)C kN m 内摩擦角()ϕ° 淤泥质粉质粘土 -8.00 2.35 18.0 4 14 粉砂 -10.35 4.00 18.0 0 33 砾砂 -14.35 3.47 18.0 0 32 粉质粘土 -17.82 3.47 19.0 10 24 卵石 -21.29 3.47 18.0 0 45 淤泥质粉质粘土 -22.09 0.80 39.0 20 18 砂质粘土 -25.74 3.65 19.0 38 21 最危险滑动面圆心位置的确定: 最危险滑动面圆心位置是任意的,因此求得的K 值并不代表建筑物的最小稳定系数。
需计算一系列的圆心位置和半径。
因此,初选圆心位置,以最小半径R(对重力式码头而言就是圆弧通过岸壁后趾的总半径),求出1O 对应稳定安全系数1K 。
然后通过1O 作水平线,沿此直线在1O 的左右逐次取圆心2O 、3O 、4O等,直到做出一圆心n O ,其左右的安全系数均比它大为此。
通过n O 作垂线,沿此直线在n O 的上下逐次取圆心,及其对应稳定安全系数,直到做出一圆心m O 其上下的安全系数均比它大,与m O 相应的安全系数即为所求最小安全系数min K 。
(如图5-4-13)根据大量计算分析,发现最危险的滑弧中心、荷载和滑动面及水底下的深度之间存在着一定的关系(如图5-4-14),据此作出表5-4-49。
图5-4-13 码头圆弧滑动示意图h —码头高度根据以上经验公式初定圆心位置1O ,其坐标为表中参数X、Y 分别乘以后h 的值,将O 点定为坐标原点(如图5-4-13)0,13.69, 5.16,0,0.38ht h h m t m h hΔΔ=====查表5-4-49得:0.248,0.311x y ==因此,初选圆心位置( 3.40,4.26)−,以最小半径R=21.26m(对重力式码头而言就是圆弧通过岸壁后趾的总半径)画出圆弧,圆弧中包括建筑和一部分土的体积,用垂线将圆弧分成8个条体。
第二章重力式码头

一般适用于地基较好,当地有大量石料,缺少钢材和冰况 严重的情况。
(二) 沉箱码头
1、矩形沉箱 制作简单,浮游稳定性好,施工经验成熟
对称式
非对称式
前壁 前趾
纵隔墙
侧壁
后壁
沉箱的组成
后趾 横隔墙
南沙港集装箱码头 沉箱结构
开孔矩形沉箱
秦皇岛港煤码头
圆格形 扁格形
广州港新沙圆格形钢板桩码头
盐田港3.5和5万吨级码头剖面图
该种码头型式的主要特点: (1)格体及内部填料作为一非刚性结构,格底应力具有良好的重分布特性,地基应力均匀、连续,
对地基要求不高。
(2)格体采用预拼装整体吊运工艺,施工机械工程度高,格体拼装对预拼场地的要求不高,不需占 用已有岸线。
其他情况下的验算表达式类似抗滑稳定性验算。
(二)承载力验算 1.基床承载力验算
0max
m mianxVBK
(16e) B
1/3
当 1/3 时
max
2VK
3
,
min0
2、地基承载力验算
m axBB11 m 2da1xd1
m inBB 112 mdi1n d1
1/3
(三)整体滑动稳定性及地基沉降计算 详见《港口工程地基规范》及《土力学》 采用圆弧滑动法(瑞典条分法、毕肖普法等)等 地基沉降可采用分层总合法
立板:挡土并构成码头直立墙壁 趾板:增加抗倾稳定性,使基底反力分布均匀 内底板:所受外力传至基床 尾板:减小基床宽度,基底反力均匀 肋板:将立板和底板连成整体并支撑立板和
底板,扶壁顶端宜嵌入胸墙10cm;
扶壁码头结构图
扶壁码头优、缺点:介于块体结构和沉箱结构两者之间,主要缺点是结构整体性差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
码头结构整体稳定性计算书
设计:
校对:
审核:
1、设计条件
1)设计船型
设计代表船型见下表。
2)结构安全等级
结构安全等级为二级。
3)自然条件
(1)设计水位
设计高水位(高潮位累计频率10%): 1.76m
设计低水位(低潮位累计频率90%):+0.0m
极端高水位(重现期50年一遇):+2.66m
极端低水位(重现期50年一遇):-1.71m
施工水位: 1.40m
(2)波浪
海西湾内波高H1%=2.67m。
(3)地质资料
码头基床底面全部座落在全风化花岗岩层,风化岩承载力容许值为f=340kPa。
(4)码头面荷载
a.门座起重机靠海侧轨道至码头前沿20kPa,其余30kPa。
b. 起重机荷载:
码头设40吨门座起重机。
轮数48,轮压垂直方向(非工作状态)200kN,(工作状态)250kN,水平轮压35kN,基距12m,轮距840-980-840-840-840-980-840-840-840 -980-840。
(5)材料重度
2、作用分类及计算
2.1 结构自重力计算
(1)极端高水位情况:计算图示见下图。
极端高水位作用分布图。