基本初等函数图像及性质大全(初中-高中)

合集下载

(完整版)六大基本初等函数图像及其性质

(完整版)六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(其中C 为常数);α1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

1(3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。

b.1.当1>a 时,a 值越大,xa y =的图像越靠近y 轴;b.2.当10<<a 时,a 值越大,x a y =的图像越远离y 轴。

4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=⋅(2)nm n m aa a -=÷(3)()()mn nm n m aa a ==(4) ()nnnba ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,⎩⎨⎧<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m nm(2))1,,,0(11*>∈>==-n Z n m a a aanmnm nm yxf x xxx g ⎪⎫⎛=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);α1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ⎪⎭⎫⎝⎛=1)(的函数图像关于y 轴对称。

b.2. 4.a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) nm n m a a a +=⋅(2)nm n m aa a -=÷b.y(1)()a a nn= ; (2)当n 为奇数时,a a nn=当n 为偶数时,⎩⎨⎧<-≥==)0(0)(a a a a a a nnc.分数指数幂;(2))1,,,0(11*>∈>==-n Z n m a a aanmnm nm 四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。

九种基本初等函数图像及性质

九种基本初等函数图像及性质

九种基本初等函数图像及性质基本初等函数包括一次函数、平方函数、立方函数、根号函数、指数函数、对数函数、正弦函数、余弦函数和正切函数等9种函数。

下面简单介绍它们的图像及性质。

一次函数的图像是一条直线,表达函数的形式为:y=ax+b(a≠0),其中a表示斜率,b表示函数的截距,函数的性质是其增减性由斜率a决定。

平方函数的图像为一条凹凸不平的抛物线,表达函数的形式为:y=ax2+bx+c,其中a、b、c为实数,a≠0,此函数的性质是其单调性由a的正负决定,是增函数当a>0时,是减函数当a<0时。

立方函数的图像是一条弯曲的曲线,表达函数的形式为:y=ax3+bx2+cx+d,其中a、b、c、d为实数,a≠0,函数的性质是其单调性由a的正负决定,是增函数当a>0时,是减函数当a<0时。

根号函数的图像是一条弯曲的曲线,表达函数的形式为:y=a√x+b,其中a、b为实数,a>0,此函数的性质是常数变动,函数的解析式在a变动时它的单调性也由正负变化。

指数函数的图像是一条右倾的曲线,表达函数的形式为:y=axb,其中a、b为实数,a>0、b≠0,函数的性质是其单调性由a、b的正负决定,是增函数当a>0且b>0时,是减函数当a>0且b<0时。

对数函数的图像是一个右倾的曲线,表达函数的形式为:y=alogx + b,其中a、b为实数,a>0,此函数的性质是变数变动,函数的解析式在x变动时它的单调性也由正负变化。

正弦函数的图像是一个周期性的曲线,表达函数的形式为:y=Asin(ωx+φ),其中A、ω、φ为实数,A>0,此函数的性质是其单调性由A的正负决定,是增函数当A>0时,是减函数当A<0时。

余弦函数的图像同正弦函数,表达函数的形式为:y=Acos(ωx+φ),其中A、ω、φ为实数,A>0,此函数的性质同正弦函数一样。

正切函数的图像为一个弯曲的曲线,表达函数的形式为:y=tanx,其中x代表,函数的性质是函数的单调性变化于π/2,函数的解析式在x变动到π。

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2x y =3x y =21xy =1-=x y定义域 R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xyOxy =2x y =3x y =1-=xy 21xy =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(其中C 为常数);α1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

1(3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。

b.1.当1>a 时,a 值越大,xa y =的图像越靠近y 轴;b.2.当10<<a 时,a 值越大,x a y =的图像越远离y 轴。

4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=⋅(2)nm n m aa a -=÷(3)()()mn nm n m aa a ==(4) ()nnnba ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,⎩⎨⎧<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m nm(2))1,,,0(11*>∈>==-n Z n m a a aanmnm nm yxf x xxx g ⎪⎫⎛=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。

(完整版)六大基本初等函数图像与性质

(完整版)六大基本初等函数图像与性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C(其中C 为常数);α1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

1(3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。

b.1.当1>a 时,a 值越大,xa y =的图像越靠近y 轴;b.2.当10<<a 时,a 值越大,x a y =的图像越远离y 轴。

4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=⋅(2)nm n m aa a -=÷(3)()()mn nm n m aa a ==(4) ()nnnba ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,⎩⎨⎧<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m nm(2))1,,,0(11*>∈>==-n Z n m a a aanmnm nm yxf x xxx g ⎪⎫⎛=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。

基本初等函数图像及性质

基本初等函数图像及性质

基本初等函数图像及性质六大基本初等函数图像及其性质一、常数函数(也称常值函数)y=C(其中C为常数);常数函数(y=C)是平行于x轴的直线,定义域为R,值域为{C},非奇非偶,单调性为不变,公共点为(0,C)。

二、幂函数y=x^α,x是自变量,α是常数;1.幂函数的图像:当α为正整数时,函数的图像都经过原点,并且在原点处与x轴相切。

当α为奇数时,图像关于原点对称;当α为偶数时,图像关于y轴对称。

2.幂函数的性质:函数。

定义域。

值域。

奇偶性。

单调性。

公共点y=x^2.R。

[0,+∞)。

偶。

增。

(0,0)y=x。

R。

R。

非奇非偶。

增。

(0,0)y=x^3.R。

R。

奇。

增。

(0,0)y=x^-1.{x|x≠0}。

{y|y≠0}。

奇。

(-∞,0)减。

(-1,0)∪(0,1)三、指数函数y=a^x(a>1且a≠1),定义域为R,为无界函数。

1.指数函数的图像:当a>1时,图像是单调增的曲线,经过点(0,1);当0<a<1时,图像是单调减的曲线,也经过点(0,1)。

2.指数函数的性质:函数。

定义域。

值域。

奇偶性。

单调性。

公共点y=a^x(a>1)。

R。

(0,+∞)。

非奇非偶。

增。

(0,1)y=a^x(0<a<1)。

R。

(0,1)。

非奇非偶。

减。

(0,1)本文介绍了指数函数和对数函数的基本概念和性质。

首先,介绍了指数函数的图像和比较大小的方法。

当底数互为倒数时,两个指数函数的图像关于y轴对称。

当底数大于1时,指数函数的值随着底数的增大而增大;当底数小于1时,指数函数的值随着底数的增大而减小。

其次,介绍了指数的运算法则,包括整数指数幂的运算性质和分数指数幂的运算性质。

其中,整数指数幂的运算性质包括指数相加、相减和相乘的规律;分数指数幂的运算性质包括分数指数幂的乘方和除法的规律。

接着,介绍了对数函数的概念和性质。

对数函数是指底数为常数且大于1的指数函数的反函数。

常用对数是以10为底的对数,自然对数是以无理数e为底的对数。

(完整)六大基本初等函数图像及其性质

(完整)六大基本初等函数图像及其性质

标准实用文案大全六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)≠C 0=C 平行于x 轴的直线y 轴本身定义域R 定义域R二、幂函数αx y=,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数xy =2xy =3xy =21x y =1-=xy 定义域R R R [0,+[0,+∞∞) {x|x {x|x≠≠0} 值域R [0,+[0,+∞∞) R [0,+[0,+∞∞) {y|y {y|y≠≠0} 奇偶性奇偶奇非奇非偶奇单调性增[0,+[0,+∞∞) ) 增增增增(0,+(0,+∞∞) ) 减减(-(-∞∞,0] ,0] 减减(-(-∞∞,0) ,0) 减减公共点(1,11,1))xyOxy =2x y =3x y =1-=x y 21x y =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α,他们的图形都经过原点,并当α>1>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm 时,时,n n 为偶数时函数的定义域为(为偶数时函数的定义域为(0, +0, +0, +∞),∞),∞),n n 为奇数时函数的定义域为(为奇数时函数的定义域为(--∞,+,+∞),函数的图形均经过原点和(∞),函数的图形均经过原点和(∞),函数的图形均经过原点和(1 ,11 ,11 ,1););4)如果m>n 图形于x 轴相切,如果m<n,m<n,图形于图形于y 轴相切,且m 为偶数时,还跟y 轴对称;轴对称;m m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,)当α为负有理数时,n n 为偶数时,函数的定义域为大于零的一切实数;为偶数时,函数的定义域为大于零的一切实数;n n 为奇数时,定义域为去除x=0以外的一切实数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

、一次函数与二次函数
(1)二次函数解析式的三种形式
①一般式:f ( x) ax2 bx c(a 0) ②顶点式:f (x) a( x h) 2 k (a 0)
③两根式:f (x) a(x x1)( x x2)(a 0)
(2)求二次函数解析式的方法
①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求f ( x) 更方便.
(3)二次函数图象的性质
过定点:所有的幂函数在 (0, ) 都有定义,并且图象都通过点 (1,1).
①. 二次函数 f ( x) ax 2 bx
c(a 0) 的图象是一条抛物线, 对称轴方程为 x
b
, 顶点坐标 2a
是(
b
, 4 ac b 2 )
2a 4a
②当 a 0 时,抛物线开口向上,
函数在 (
2b a ] 上递减,在 [
b , 2a ,
) 上递增,当
b 2a
时, f min ( x)
4ac b 2 ;当
a
4a
0时,抛物线开口向下,
函数在 (
b 2a
] 上递增,在 [ b 2a
上递减,当 x
b
时, f max (x)
2 a
max
4ac b 2 4a
、幂函数
1) 幂函数的定义
一般地,函数 y x 叫做幂函数,其中 x 为自变量, 是常数.
2) 幂函数的图象
三、指数函数
(1)根式的概念:如果x n a,a R,x R,n 1,且n N ,那么x 叫做a的n 次方根.
(2)分数指数幂的概念
m
①正数的正分数指数幂
等于0.
的意义是:a n n a m(a0,m, n N,且n1).0 的正分数指数幂
②正数的负分数指数幂的意义是:
mm
1
a n (1)n
n (1a)m (a0,m,n N ,且n 1).0的负
a a
分数指数幂没有意义.
(3)运算性质
① a r a s a r s( a 0,r, s R)②(r s rs a ) a ( a0,r,s R)
③ (ab)r a r b r (a 0,b 0,r R)
四、对数函数
x
x log a N a x N(a 0,a 1,N 0) .
2)几个重要的对数恒等式: log a 1 0,log a a 1,log a a b b .
1)对数的定义:
①若 a N
(a 0,

a 1)
,则x 叫做以 a 为底 N 的对数,记作 x log a N ,
其中 a 叫做底数, N 叫做真数.
②负数和零没有对数.
③ 对数式与指数式的互化: 3)常用对数与自然对数
常用对数: lg N ,即 log 10 N ;自然对数:
4)对数的运算性质 如果 a 0, a 1, M
lnN ,即log e N (其中 e 2.71828⋯).
0, N 0,那么
①加法: log a M log a N log a (MN ) ②减法: log a M log a N log a
③数乘: nlog a M log a M n (n R) ④a
log a N
⑤log a b M n n log a M(b 0,n R) a b a
⑥换底公式: log a N
log
b N
(b 0,且 b 1) log b a
五、反函数
(1)反函数的概念
设函数y f (x)的定义域为A,值域为C,从式子y f(x)中解出x,得式子x (y) .如果对于y 在C中的任何一个值,通过式子x (y) ,x在A中都有唯一确定的值和它对应,那么式子x (y) 表示x 是y 的函数,函数x ( y)叫做函数y f (x)的反函数,记作x f 1(y),
习惯上改写成y f 1(x) .
(2)反函数的求法
①确定反函数的定义域,即原函数的值域;
②从原函数式y f(x) 中反解出x f 1(y);
③将x f 1(y)改写成y f 1(x) ,并注明反函数的定义域.
(3)反函数的性质
1
①原函数y f (x)与反函数y f (x)的图象关于直线y x对称.
②函数y f (x ) 的定义域、值域分别是其反函数y f 1 (x) 的值域、定义域.
③若P(a,b) 在原函数y f ( x)的图象上,则P'(b,a)在反函数y f 1(x) 的图象上.
④一般地,函数y f (x) 要有反函数则它必须为单调函数.
六、三角函数的图像和性质
一)正弦与余函数的图像与性质
2.
七、反三角函数的图像与性质
1.。

相关文档
最新文档