初二数学压轴题

合集下载

八年级数学期中试卷压轴题

八年级数学期中试卷压轴题

一、(15分)已知函数f(x)=2x+1,g(x)=x2-3x+2,求以下问题:(1)求函数f(x)和g(x)的交点坐标;(2)求函数f(x)和g(x)的图像的对称轴;(3)求函数f(x)和g(x)的图像的公共点个数。

二、(20分)已知数列{an}的通项公式为an=3n-1,求以下问题:(1)求数列{an}的前10项;(2)求数列{an}的前n项和Sn;(3)求数列{an}的项数n,使得Sn=100。

三、(20分)已知直角三角形ABC中,∠A=90°,∠B=30°,AB=6cm,求以下问题:(1)求直角三角形ABC的面积;(2)求直角三角形ABC的斜边AC的长度;(3)求直角三角形ABC的高BD的长度。

四、(20分)已知一次函数y=kx+b的图像与x轴、y轴分别相交于点A、B,其中A(-2,0),B(0,4),求以下问题:(1)求一次函数的解析式;(2)求一次函数的图像与直线y=-x的交点坐标;(3)求一次函数的图像与直线y=x+2的交点坐标。

五、(20分)已知等腰三角形ABC中,AB=AC,BC=8cm,AD是BC边上的高,求以下问题:(1)求三角形ABC的底边BC的长度;(2)求三角形ABC的面积;(3)求三角形ABC的周长。

答案:一、(1)令2x+1=x2-3x+2,得x2-5x+1=0,解得x=1或x=4,所以交点坐标为(1,3)和(4,9);(2)函数f(x)的对称轴为x=-1/2,函数g(x)的对称轴为x=3/2;(3)函数f(x)和g(x)的图像有3个公共点。

二、(1)a1=2,a2=5,a3=8,a4=11,a5=14,a6=17,a7=20,a8=23,a9=26,a10=29;(2)Sn=2n^2-n;(3)n=10。

三、(1)S=1/2×AB×BC=1/2×6×8=24cm^2;(2)AC=AB×√3=6×√3=6√3cm;(3)BD=BC×√3/2=8×√3/2=4√3cm。

八年级上册数学压轴题精选

八年级上册数学压轴题精选

八年级上册数学压轴题精选一、整数运算1. 求解下列算式:(1)$(-5) \times (-8) = ?$(2)$7 \div (-3) = ?$二、分数运算1. 求解下列算式:(1)$\frac{2}{3} + \frac{1}{4} = ?$(2)$\frac{5}{6} - \frac{1}{3} = ?$三、代数式化简1. 将下列代数式化简为最简形式:(1)$2x - (3x + 4) =$?(2)$\frac{3}{4}(x-1) - \frac{1}{2}(2x-3) =$?四、方程解求1. 求解下列一元一次方程:(1)$2x + 5 = 13$(2)$\frac{3x}{2} - 1 = 7$五、图形计算1. 计算下列图形的周长和面积:(1)矩形的长为5cm,宽为3cm。

(2)正方形的边长为8cm。

六、比例与相似1. 求解下列比例:(1)$\frac{4}{5} = \frac{12}{x}$ (2)$\frac{2}{3} = \frac{x}{9}$ 七、平面几何1. 判断下列命题的真假:(1)直角三角形的两条直角边的平方和等于斜边的平方。

(2)等腰三角形的两条底边相等。

八、统计与概率1. 求解下列问题:(1)一筐中有红球12个,蓝球18个,随机摸出一个求红球的概率。

(2)甲、乙两个班级的学生人数分别是45人和50人,从两个班级任意抽取一个学生,求乙班学生被抽中的概率。

以上是八年级上册数学压轴题精选。

通过掌握这些题目类型,学生们可以对课本中重要的数学知识点进行巩固和提升。

希望同学们能够通过认真解答这些题目,提高自己的数学水平。

【压轴题】初二数学上期末试卷(含答案)

【压轴题】初二数学上期末试卷(含答案)

【压轴题】初二数学上期末试卷(含答案)一、选择题1.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上( )根木条.A .1B .2C .3D .42.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫ ⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a = 3.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( ) A .1B .2C .3D .8 4.若b a b -=14,则a b 的值为( ) A .5 B .15 C .3 D .135.如果2220m m +-=,那么代数式2442m m m m m +⎛⎫+⋅ ⎪+⎝⎭的值是()A .2-B .1-C .2D .3 6.下列运算中,结果是a 6的是( )A .a 2•a 3B .a 12÷a 2C .(a 3)3D .(﹣a)6 7.如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A.4B.3C.2D.18.如图,AB∥CD,BC∥AD,AB=CD,BE=DF,图中全等的三角形的对数是()A.3B.4C.5D.69.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1 B.x=1 C.x≠0D.x≠110.若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3,则△ABC是()A.等边三角形B.等腰三角形C.直角三角形D.等腰或直角三角形11.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°12.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.A B.B C.C D.D二、填空题13.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:_____,使△AEH≌△CEB.14.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.15.关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是_____. 16.若x 2+kx+25是一个完全平方式,则k 的值是____________. 17.已知m n t y z x z x y x y z==+-+-+-,则()()()y z m z x n x y t -+-+-的值为________.18.如图,030A B ∠=︒,点P 为AOB ∠内一点,8OP =.点M 、N 分别在OA OB 、上,则PMN 周长的最小值为________.19.因式分解:328x x -=______.20.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.三、解答题21.已知:如图,//AD BC ,DB 平分ADC ∠,CE 平分BCD ∠,交AB 于点E ,BD 于点O ,求证:点O 到EB 与ED 的距离相等.22.如图,∠A =∠B ,AE =BE ,点D 在 AC 边上,∠1=∠2,AE 和BD 相交于点O . 求证:△AEC ≌△BED ;23.(1)计算:()108613333π-⎛⎫--÷+ ⎪⎝⎭ (2)因式分解:22312x y -24.为推进垃圾分类,推动绿色发展,某工厂购进甲、乙两种型号的机器人用来进行垃圾分类,甲型机器人比乙型机器人每小时多分20kg ,甲型机器人分类800kg 垃圾所用的时间与乙型机器人分类600kg 垃圾所用的时间相等。

初二数学全等三角形压轴题

初二数学全等三角形压轴题

人教版数学八年级上册第十二章全等三角形压轴题训练1.已知,是等腰直角三角形,,点在轴负半轴上,直角顶点在轴上,点在轴左侧.如图,若的坐标是,点的坐标是,求点的坐标;如图,若点的坐标为,与轴交于点,求线段的长;如图,若轴恰好平分,与轴交于点,过点作轴于点,则、、间有怎样的数量关系?并说明理由.2.如图,在平面直角坐标系中,直线分别交轴、轴于、两点,且,满足,且,是常数.直线平分,交轴于点.若的中点为,连接交于,求证:;如图,过点作,垂足为,猜想与间的数量关系,并证明你的猜想;如图,在轴上有一个动点在点的右侧,连接,并作等腰,其中,连接并延长交轴于点,当点在运动时,的长是否发生改变?若改变,请求出它的变化范围;若不变,求出它的长度.3.如图,点,分别在直线,上,,顶点在点右侧的两边分别交线段于,直线于,,,交直线于点.若平分,求证:;已知的平分线与的平分线交于点请把图形补完整,并证明:.4.解答下列问题:如图,,射线在这个角的内部,点、分别在的边、上,且,于点,于点求证:如图,点、分别在的边、上,点、都在内部的射线上,、分别是、的外角已知,且求证:如图,在中,,点在边上,,点、在线段上,若的面积为,求与的面积之和.5.在平面直角坐标系中,直线与两坐标轴分别交于点与点,以为边作直角三角形,并且.如图,若点在第三象限,请构造全等,求出点的坐标;若点不在第三象限,请直接写出所有满足条件的点的坐标;在的条件下,过点作交轴于点,求证:.6.已知,点在上以的速度由点向点运动,同时点在上由点向点运动.它们运动的时间为.如图,,,若点的运动速度与点的运动速度相等,当时,与是否全等,请说明理由,并判断此时线段和线段的位置关系;如图,将图中的“,”为改“”,其他条件不变.设点的运动速度为,是否存在实数,使得与全等?若存在,求出相应的、的值;若不存在,请说明理由.7.如图,点,将一个的角尺的直角顶点放在点处,角尺的两边分别交轴、轴正半轴于,即,求证:平分;作的平分线交于点,过点作轴于,求的值;把角尺绕点旋转时,的值是否会发生变化?若发生变化请说明理由;若不变请求出这个值.8.画,并画的平分线.图图图将一块足够大的三角尺的直角顶点落在射线的任意一点上,并使三角尺的一条直角边与垂直,垂足为点,另一条直角边与交于点如图证明:;把三角尺绕点旋转,三角尺的两条直角边分别交、于点、如图,与相等吗?请直接写出结论:_____填,,;若点在的反向延长线上,其他条件不变如图,与相等吗?若相等请进行证明,若不相等请说明理由.9.如图,,点是的中点,直线于点,点在直线上,直线点以每秒个单位长度的速度,从点沿路径向终点运动,运动时间设为秒.如图,当时,作直线于点,此时与全等吗请说明理由.如图,当点在上时,作于点,于点.是否存在或与全等的时刻若存在,求出的值若不存在,请说明理由.连接,当时,求的长.10.如图,已知在四边形中,,点、分别是边、上的点,连接、、,.直接写出、、三者之间的数量关系____________________;若,猜想线段、、三者之间有怎样的数量关系?并加以证明;如图,若点、分别是、延长线上的点,且,其它条件不变时,猜想线段、、三者之间有怎样的数量关系?并加以证明.11.如图:在四边形中,,,,,分别是,上的点,且探究图中线段,,之间的数量关系。

【压轴题】初二数学下期末试题带答案

【压轴题】初二数学下期末试题带答案

【压轴题】初二数学下期末试题带答案一、选择题1.当12a <<时,代数式2(2)1a a -+-的值为( ) A .1B .-1C .2a-3D .3-2a2.如图,在四边形ABCD 中,AB ∥CD ,要使得四边形ABCD 是平行四边形,可添加的条件不正确的是 ( )A .AB=CDB .BC ∥AD C .BC=AD D .∠A=∠C3.随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是( ) A .90万元 B .450万元 C .3万元 D .15万元4.对于函数y =2x +1下列结论不正确是( ) A .它的图象必过点(1,3) B .它的图象经过一、二、三象限 C .当x >12时,y >0 D .y 值随x 值的增大而增大5.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数B .平均数C .中位数D .方差6.如图,在△ABC 中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH ⊥BC 于H ,FD =8,则HE 等于( )A .20B .16C .12D .87.函数的自变量取值范围是( ) A .x ≠0B .x >﹣3C .x ≥﹣3且x ≠0D .x >﹣3且x ≠08.如图,长方形纸片ABCD 中,AB =4,BC =6,点E 在AB 边上,将纸片沿CE 折叠,点B 落在点F 处,EF ,CF 分别交AD 于点G ,H ,且EG =GH ,则AE 的长为( )A .23B .1C .32D .29.如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是( )A .-2B .﹣1+2C .﹣1-2D .1-210.无论m 为任何实数,关于x 的一次函数y =x +2m 与y =-x +4的图象的交点一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限11.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( ) A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)12.正方形具有而菱形不一定具有的性质是( )A .对角线互相平分B .每条对角线平分一组对角C .对边相等D .对角线相等二、填空题13.如图,在▱ABCD 中,∠D =120°,∠DAB 的平分线AE 交DC 于点E ,连接BE.若AE =AB ,则∠EBC 的度数为_______.14.如图所示,BE AC ⊥于点D ,且AB BC =,BD ED =,若54ABC ∠=o ,则E ∠=___o .15.在平面直角坐标系xOy 中,一次函数y =kx 和y =﹣x +3的图象如图所示,则关于x 的一元一次不等式kx <﹣x +3的解集是_____.16.函数1y x =-的自变量x 的取值范围是 . 17.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表: 候选人甲 乙 测试成绩(百分制)面试8692笔试9083如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。

初中数学八年级上册压轴题专项练习(解析版)

初中数学八年级上册压轴题专项练习(解析版)

八年级上册数学压轴题专题练习(解析版)一、压轴题1.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点 P在线段 AB上以1cm/s的速度由点 A向点 B运动,同时,点 Q在线段 BD上由点 B向点 D运动.它们运动的时间为t(s).(1)若点 Q的运动速度与点 P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段 PC和线段 PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点 Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.2.在Rt ABC中,∠ACB=90︒,∠A=30︒,BD是ABC的角平分线,DE⊥AB于点E.(1)如图1,连接EC,求证:EBC是等边三角形;(2)如图2,点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM下方作∠BMG=60︒,MG交DE延长线于点G.求证:AD=DG+MD;(3)如图3,点N是线段AD上的点,以BN为一边,在BN的下方作∠BNG=60︒,NG交DE延长线于点G.直接写出ND,DG与AD数量之间的关系.3.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线l1,l2,l3上,∠BAC=90︒,且每两条平行线之间的距离为1,求AB的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B、C向l1作垂线,就能利用全等三角形的知识求出AB的长.(2)小林说:“我们可以改变ABC的形状.如图2,AB=AC,∠BAC=120︒,且每两条平行线之间的距离为1,求AB的长.”(3)小谢说:“我们除了改变ABC的形状,还能改变平行线之间的距离.如图3,等边三角形ABC三个顶点分别落在三条平行线l1,l2,l3上,且l1与l2之间的距离为1,l2与l3之间的距离为2,求AB的长、”请你根据3位同学的提示,分别求出三种情况下AB的长度.4.在ABC中,AB=AC,D是直线AB上一点,E在直线BC上,且DE=DC.(1)如图1,当D在AB上,E在CB延长线上时,求证:∠EDB=∠ACD;(2)如图2,当ABC为等边三角形时,D是BA的延长线上一点,E在BC上时,作EF//AC,求证:BE=AD;(3)在(2)的条件下,∠ABC的平分线BF交CD于点F,连AF,过A点作AH⊥CD于点H,当∠EDC=30︒,CF=6时,求DH的长度.5.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.6.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC的度数;(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.7.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM,FM为折痕,折叠后的C点落在B 1M或B1M的延长线上,那么EMF的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B点与M点重合,EM,FM为折痕,折叠后的C点落在A1M或A1M的延长线上,那么EMF的度数是_______.(2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM,FM为折痕,折叠后的C点落在B1M或B1M的延长线上左侧,且EMF80,求C1MB1的度数;②把一张长方形的纸片按如图④所示的方式折叠,B点与M点重合,EM,FM为折痕,折叠后的C点落在A1M或A1M的延长线右侧,且EMF60,求C1MA1的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB,FB为折痕,设ABC,EBF,A1BC1,求,,之间的数量关系.8.已知ABC和ADE都是等腰三角形,AB AC,AD AE,DAE BAC.(初步感知)(1)特殊情形:如图①,若点D,E分别在边AB,AC上,则DB__________EC.(填>、<或=)(2)发现证明:如图②,将图①中的ADE绕点A旋转,当点D在ABC外部,点E 在ABC内部时,求证:DB EC.(深入研究)(3)如图③,ABC和ADE都是等边三角形,点C,E,D在同一条直线上,则∠CDB的度数为__________;线段CE,BD之间的数量关系为__________.(4)如图④,ABC和ADE都是等腰直角三角形,∠BAC=∠DAE=90︒,点C、D、E在同一直线上,AM为ADE中DE边上的高,则∠CDB的度数为__________;线段AM,BD,CD之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC和ADE都是等腰直角三角形,∠BAC=∠DAE=90︒,将ADE绕点A逆时针旋转,连结BE、CD.当AB=5,AD=2时,在旋转过程中,△ABE与ADC的面积和的最大值为__________.9.直角三角形ABC中,∠ACB=90︒,直线l过点C.(1)当AC=BC时,如图1,分别过点A和B作AD⊥直线l于点D,BE⊥直线l于点E,ACD与△CBE是否全等,并说明理由;(2)当AC=8cm,BC=6cm时,如图2,点B与点F关于直线l对称,连接BF、CF,点M是AC上一点,点N是CF上一点,分别过点M、N作MD⊥直线l于点D,NE⊥直线l于点E,点M从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C,点N从点F出发,以每秒3cm的速度沿F→C→B→C→F路径运动,终点为F,点M,N同时开始运动,各自达到相应的终点时停止运动,设运动时间为t秒,当△CMN为等腰直角三角形时,求t的值.10.已知:ABC中,过B点作BE⊥AD,∠ACB=90︒,AC=BC.(1)如图1,点D在BC的延长线上,连AD,作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC 于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC=3MC,请直接写出DB的值.BC11.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).12.已知ABC,P是平面内任意一点(A、B、C、P中任意三点都不在同一直线上).连接 PB、PC,设∠PBA=s°,∠PCA=t°,∠BPC=x°,∠BAC=y°.(1)如图,当点 P在ABC内时,①若 y=70,s=10,t=20,则 x=;②探究 s、t、x、y之间的数量关系,并证明你得到的结论.(2)当点 P在ABC外时,直接写出 s、t、x、y之间所有可能的数量关系,并画出相应的图形.13.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=60°,则∠1+∠2=;(2)若点P在线段AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由;(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.14.探索发现:11111111 =1-;=-;=-……1⨯222⨯3233⨯434根据你发现的规律,回答下列问题:(1)11=,=;n⨯(n+1)4⨯5111⋅+++1⨯22⨯33⨯4+1n⨯(n+1)(2)利用你发现的规律计算:(3)利用规律解方程:111112x-1 ++++=x(x+1)(x+1)(x+2)(x+2)(x+3)(x+3)(x+4)(x+4)(x+5)x(x+5) 15.数学活动课上,老师出了这样一个题目:“已知:MF⊥NF于F,点A、C分别在NF和MF上,作线段AB和CD(如图1),使∠FAB-∠MCD=90︒.求证:AB//CD”.(1)聪聪同学给出一种证明问题的辅助线:如图2,过A作AG//FM,交CD于G.请你根据聪聪同学提供的辅助线(或自己添加其它辅助线),给出问题的证明.(2)若点E在直线CD下方,且知∠BED=30︒,直接写出∠ABE和∠CDE之间的数量关系.16.现给出一个结论:直角三角形斜边的中线等于斜边的一半;该结论是正确的,用图形语言可以表示为:如图1在∆ABC中,∠C=90︒,若点D为AB的中点,则CD=请结合上述结论解决如下问题:1AB.2已知,点P是射线BA上一动点(不与A,B重合)分别过点A,B向直线CP作垂线,垂足分别为E,F,其中Q为AB的中点(1)如图2,当点P与点Q重合时,AE与BF的位置关系____________;QE与QF的数量关系是__________(2)如图3,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明.(3)如图4,当点P在线段BA的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.17.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=40°,则∠ACE=,∠DCE=,BC、DC、CE之间的数量关系为;(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.(3)当CE∥AB时,若△ABD中最小角为15°,试探究∠ACB的度数(直接写出结果,无需写出求解过程).18.阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2,∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四边形ABCD =S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积.(1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五边形FGHMN的面积.19.(1)如图1,ABC和DCE都是等边三角形,且B,C,D三点在一条直线上,连接AD,BE相交于点P,求证:BE=AD.(2)如图2,在BCD中,若∠BCD<120︒,分别以BC,CD和BD为边在BCD外部作等边ABC,等边△CDE,等边BDF,连接AD、BE、CF恰交于点P.①求证:AD=BE=CF;②如图2,在(2)的条件下,试猜想PB,PC,PD与BE存在怎样的数量关系,并说明理由.20.阅读并填空:如图,ABC是等腰三角形,AB=AC,D是边AC延长线上的一点,E在边AB上且联接DE交BC于O,如果OE OD,那么CD=BE,为什么?解:过点E作EF AC交BC于F所以∠ACB=∠EFB(两直线平行,同位角相等)∠D=∠OEF(________)在OCD与△OFE中⎧∠COD=∠FOE(________)⎪⎨OD=OE⎪∠D=∠OEF⎩所以△OCD≌△OFE,(________)所以CD=FE(________)因为AB=AC(已知)所以∠ACB=∠B(________)所以∠EFB=∠B(等量代换)所以BE=FE(________)所以CD=BE【参考答案】***试卷处理标记,请不要删除一、压轴题⎧t=2⎧t=1⎪1.(1)全等,垂直,理由详见解析;(2)存在,⎨或⎨3x=1x=⎩⎪2⎩【解析】【分析】(1)在t =1的条件下,找出条件判定△ACP和△BPQ全等,再根据全等三角形的性质和直角三角形的两个锐角互余的性质,可证∠CPQ= 90°,即可判断线段 PC和线段 PQ的位置关系;(2)本题主要在动点的条件下,分情况讨论,利用三角形全等时对应边相等的性质进行解答即可.【详解】(1)当t=1时,AP= BQ=1, BP= AC=3,又∠A=∠B= 90°,在△ACP和△BPQ中,AP=BQ{∠A=∠BAC=BP∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP = 90*.∴∠CPQ= 90°,即线段PC与线段PQ垂直;(2)①若△ACP ≌△BPQ ,则AC= BP ,AP= BQ ,⎧3=4-t ⎨t =xt⎩解得⎨⎧t =1;x =1⎩②若△ACP ≌△BQP ,则AC= BQ ,AP= BP ,⎧3=xt ⎨t =4-t⎩⎧t =2⎪解得:⎨3x =⎪⎩2⎧t =2⎧t =1⎪综上所述,存在⎨或⎨3使得△ACP 与△BPQ 全等.x =1x =⎩⎪⎩2【点睛】本题主要考查三角形全等与动点问题,熟练掌握三角形全等的性质与判定定理,是解决本题的关键.2.(1)证明见解析;(2)证明见解析;(3)结论:AD =DG -ND ,证明见解析.【解析】【分析】(1)先根据直角三角形的性质得出∠ABC =60︒,再根据角平分线的性质可得CD =ED ,然后根据三角形的判定定理与性质可得BC =BE ,最后根据等边三角形的判定即可得证;(2)如图(见解析),延长ED 使得DF =MD ,连接MF ,先根据直角三角形的性质、等边三角形的判定得出∆MDF 是等边三角形,再根据等边三角形的性质、角的和差得出∠F =∠MDB ,MF =MD ,∠FMG =∠DMB ,然后根据三角形全等的判定与性质、等量代换即可得证;(3)如图(见解析),参照题(2),先证∆HDN 是等边三角形,再根据等边三角形的性质、角的和差得出∠H =∠NDG ,NH =ND ,∠HNB =∠DNG ,然后根据三角形全等的判定与性质、等量代换即可得证.【详解】(1)∠ACB =90︒,∠A =30︒∴∠ABC =90︒-∠A =60︒BD 是∠ABC 的角平分线,DE ⊥AB∴CD =ED⎧CD=ED在∆BCD和∆BED中,⎨BD=BD⎩∴∆BCD≅∆BED(HL)∴BC=BE∴∆EBC是等边三角形;(2)如图,延长ED使得DF=MD,连接MF∠ACB=90︒,∠A=30︒,BD是∠ABC的角平分线,DE⊥AB∴∠ADE=∠BDE=60︒,AD=BD∴∠MDF=∠ADE=60︒,∠MDB=180︒-∠ADE-∠BDE=60︒∴∆MDF是等边三角形∴MF=DM,∠F=∠DMF=60︒∠BMG=60︒∴∠DMF+∠DMG=∠BMG+∠DMG,即∠FMG=∠DMB⎧∠F=∠MDB=60︒⎪在∆FMG和∆DMB中,⎨MF=MD⎪∠FMG=∠DMB⎩∴∆FMG≅∆DMB(ASA)∴GF=BD,即DF+DG=BD∴AD=DF+DG=MD+DG即AD=DG+MD;(3)结论:AD=DG-ND,证明过程如下:如图,延长BD使得DH=ND,连接NH由(2)可知,∠ADE=60︒,∠HDN=180︒-∠ADE-∠BDE=60︒,AD=BD ∴∆HDN是等边三角形∴NH=ND,∠H=∠HND=60︒∠BNG=60︒∴∠HND+∠BND=∠BNG+∠BND,即∠HNB=∠DNG⎧∠H=∠NDG=60︒⎪在∆HNB和∆DNG中,⎨NH=ND⎪∠HNB=∠DNG⎩∴∆HNB≅∆DNG(ASA)∴HB =DG ,即DH +BD =DG∴ND +AD =DG即AD =DG -ND .【点睛】本题考查了直角三角形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2)和(3),通过作辅助线,构造一个等边三角形是解题关键.3.(1)5;(2)【解析】【分析】(1)分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,证明△ABM ≌△CAN ,得到AM=CN ,AN=BM ,即可得出AB ;(2)分别过点B ,C 向l 1作垂线,交l 1于点P ,Q 两点,在l 1上取M ,N 使∠AMB=∠CNA=120°,证明△AMB ≌△CAN ,得到CN=AM ,再通过△PBM 和△QCN 算出PM 和NQ 的值,得到AP ,最后在△APB 中,利用勾股定理算出AB 的长;(3)在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交l 3于点P ,过A 作l 3的垂线,交l 3于点Q ,证明△BCN ≌△CAM ,得到CN=AM ,在△BPN 和△AQM 中利用勾股定理算出NP 和AM ,从而得到PC ,结合BP 算出BC 的长,即为AB.【详解】解:(1)如图,分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,由题意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA ,在△ABM 和△CAN 中,221221;(3)33⎧∠AMB =∠CNA ⎪⎨∠MAB =∠NCA ,⎪AB =AC ⎩∴△ABM ≌△CAN (AAS ),∴AM=CN=2,AN=BM=1,∴AB=22+12=5;(2)分别过点B,C向l1作垂线,交l1于P,Q两点,在l1上取M,N使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC,在△AMB和△CNA中,⎧∠AMB=∠CNA⎪⎨∠ABM=∠NAC,⎪AB=AC⎩∴△AMB≌△CNA(AAS),∴CN=AM,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=11 BM,NQ=NC,22∵PB=1,CQ=2,设PM=a,NQ=b,∴a2+12=4a2,b2+22=4b2,解得:a=323,b=,332⎛23⎫43=∴CN=AM=22+ ,⎪3⎪3⎝⎭∴AB=AP2+BP2=(AM+PM)2+BP2=221;3(3)如图,在l3上找M和N,使得∠BNC=∠AMC=60°,过B作l3的垂线,交于点P,过A作l3的垂线,交于点Q,∵△ABC是等边三角形,∴BC=AC,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM,在△BCN和△CAM中,⎧∠BNC=∠CMA⎪⎨∠NBC=∠MAC,⎪BC=AC⎩∴△BCN≌△CAM(AAS),∴CN=AM,BN=CM,∵∠PBN=90°-60°=30°,BP=2,∴BN=2NP,在△BPN中,BP2+NP2=BN2,即22+NP2=4NP2,解得:NP=23,3∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM,在△AQM中,AQ2+QM2=AM2,即32+QM2=4QM2,解得:QM=3,∴AM=23=CN,∴PC=CN-NP=AM-NP=在△BPC中,BP2+CP2=BC2,43,3⎛43⎫221即BC=BP2+CP2=22+ ,=⎪3⎪3⎝⎭2∴AB=BC=221.3【点睛】本题考查了全等三角形的判定和性质,平行线之间的距离,等腰三角形的性质,等边三角形的性质以及勾股定理,解题的关键是利用平行线构造全等三角形,再利用全等三角形的性质以及勾股定理求解.4.(1)见解析;(2)见解析;(3)3【解析】【分析】(1)根据等腰三角形的性质和外角的性质即可得到结论;(2)过E作EF∥AC交AB于F,根据已知条件得到△ABC是等边三角形,推出△BEF是等边三角形,得到BE=EF,∠BFE=60°,根据全等三角形的性质即可得到结论;(3)连接AF,证明△ABF≌△CBF,得AF=CF,再证明DH=AH=【详解】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE=DC,∴∠E=∠DCE,∴∠ABC-∠E=∠ACB-∠DCB,即∠EDB=∠ACD;(2)∵△ABC是等边三角形,∴∠B=60°,∴△BEF是等边三角形,∴BE=EF,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD,在△DEF与△CAD中,1CF=3.2⎧∠EDF=∠DCA⎪⎨∠DFE=∠CAD,⎪DE=CD⎩∴△DEF≌△CAD(AAS),∴EF=AD,∴AD=BE;(3)连接AF,如图3所示:∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF平分∠ABC,∴∠ABF=∠CBF,在△ABF和△CBF中,⎧AB=BC⎪⎨∠ABF=∠CBF,⎪BF=BF⎩△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=11AF=CF=3,22∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【点睛】本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.5.(1)证明见解析;(2)①②③;(3)∠A+∠C=180°.【解析】【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;(2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论;(3)先判断出△BDP是等边三角形,得出BD=BP,∠DBP=60°,进而判断出△ABD≌△CBP (SAS),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,⎧AB=AC⎪⎨∠BAD=∠CAE,⎪AD=AE⎩∴△ABD≌△ACE;(2)如图2,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,⎧AB=AC⎪⎨∠BAD=∠CAE,⎪AD=AE⎩∴△ABD≌△ACE,∴BD=CE,①正确,∠ADB=∠AEC,记AD与CE的交点为G,∵∠AGE=∠DGO,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB上取一点F,使OF=OC,∴△OCF是等边三角形,∴CF=OC,∠OFC=∠OCF=60°=∠ACB,∴∠BCF=∠ACO,∵AB=AC,∴△BCF≌△ACO(SAS),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正确,连接AF,要使OC=OE,则有OC=∵BD=CE,∴CF=OF=1 CE,21BD,2∴OF=BF+OD,∴BF<CF,∴∠OBC>∠BCF,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而没办法判断∠OBC大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等边三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.6.(1)60°;(2)EF=AF+FC,证明见解析;(3)AF=EF+2DF,证明见解析.【解析】【分析】(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,又△ABE为等边三角形,∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,证明如下:∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,连接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG为等边三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF.证明如下:同(1)可设∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE为等边三角形,∴∠ABE=∠AFC=60°,∴由8字图可得:∠BAD=∠BEF,在AF上截取AG=EF,连接BG,BF,又AB=BE ,∴△ABG ≌△EBF (SAS ),∴BG =BF ,又AF 垂直平分BC ,∴BF=CF ,∴∠BFA=∠AFC=60°,∴△BFG 为等边三角形,∴BG=BF ,又BC ⊥FG ,∴FG=BF=2DF ,∴AF =AG +GF =BF +EF =2DF +EF .【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.7.90︒,45︒;20︒,30︒;a +γ=2β,a -γ=2β.【解析】【分析】(1)①如图①知∠EMC 1=11∠BMC 1,∠C 1MF =∠C 1MC 得22∠EMF =1(∠BMC 1+∠C 1MC )可求出解.2111∠ABC 1,∠C 1BF =∠C 1BC 得∠EBF =(∠ABC 1+∠C 1BC )可222②由图②知∠EBA 1=求出解.(2)①由图③折叠知∠CMF =∠FMC 1,∠BME =∠EMB 1,可推出(∠BMC -∠EMF )-∠EMF =∠C 1MB 1,即可求出解.②由图④中折叠知∠CMF =∠C 1MF ,∠ABE =∠A 1BE ,可推出290︒-60︒+∠A 1MC 1=90︒,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,a -β=β-γ、a -β=β+γ,即可求得()a +γ=2β、a -γ=2β.【详解】解:(1)①如图①中,11∠EMC 1=∠BMC 1,∠C 1MF =∠C 1MC ,22∴∠EMF =∠EMC 1+∠C 1MF =故答案为90︒.②如图②中,11(∠BMC 1+∠C 1MC )=⨯180︒=90︒,2211∠EBA 1=∠ABC 1,∠C 1BF =∠C 1BC ,22∴∠EBF =∠EBC 1+∠C 1BF =故答案为45︒.(2)①如图③中由折叠可知,11(∠ABC 1+∠C 1BC )=⨯90︒=45︒,22∠CMF =∠FMC 1,∠BME =∠EMB 1,∠C 1MF +∠EMB 1-∠EMF =∠C 1MB 1,∴∠CMF +∠BME -∠EMF =∠C 1MB 1,∴(∠BMC -∠EMF )-∠EMF =∠C 1MB 1,∴180︒-80︒=∠C 1MB 1=20︒;②如图④中根据折叠可知,∠CMF =∠C 1MF ,∠ABE =∠A 1BE ,︒2∠CMF +2∠ABE +∠AMC =90,11︒∴2(∠CMF +∠ABE )+∠AMC 11=90,(∴2(90∴290︒-∠EMF +∠A 1MC 1=90︒,︒)-60︒+∠A 1MC 1=90︒,)︒∴∠AMC =30;11(3)如图⑤-1中,由折叠可知,a -β=β-γ,∴a +γ=2β;如图⑤-2中,由折叠可知,a -β=β+γ,∴a -γ=2β.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.8.(1)=;(2)证明见解析;(3)60°,BD=CE;(4)90°,AM+BD=CM ;(5)7【解析】【分析】(1)由DE ∥BC ,得到DB EC =,结合AB=AC ,得到DB=EC ;AB AC(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB≌△EAC,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE的面积始终保持不变,而在旋转的过程中,△ADC的AC始终保持不变,即可.【详解】[初步感知](1)∵DE∥BC,∴DB EC=,AB AC∵AB=AC,∴DB=EC,故答案为:=,(2)成立.理由:由旋转性质可知∠DAB=∠EAC,在△DAB和△EAC中⎧AD=AE⎪⎨∠DAB=∠EAC,⎪AB=AC⎩∴△DAB≌△EAC(SAS),∴DB=CE;[深入探究](3)如图③,设AB,CD交于O,∵△ABC和△ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,在△DAB和△EAC中⎧AD=AE⎪⎨∠DAB=∠EAC,⎪AB=AC⎩∴△DAB≌△EAC(SAS),∴DB=CE,∠ABD=∠ACE,∵∠BOD=∠AOC,∴∠BDC=∠BAC=60°;(4)∵△DAE 是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB 和△EAC 中⎧AD =AE⎪⎨∠DAB =∠EAC,⎪AB =AC⎩∴△DAB ≌△EAC (SAS ),∴∠ADB=∠AEC=135°,BD=CE ,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE 都是等腰直角三角形,AM 为△ADE 中DE 边上的高,∴AM=EM=MD ,∴AM+BD=CM ;故答案为:90°,AM+BD=CM ;【拓展提升】(5)如图,由旋转可知,在旋转的过程中△ADE 的面积始终保持不变,△ADE 与△ADC 面积的和达到最大,∴△ADC 面积最大,∵在旋转的过程中,AC 始终保持不变,∴要△ADC 面积最大,∴点D 到AC 的距离最大,∴DA ⊥AC ,∴△ADE 与△ADC 面积的和达到的最大为2+故答案为7.【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.9.(1)全等,理由见解析;(2)t=3.5秒或5秒1×AC×AD=5+2=7,2【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)分点F 沿C→B 路径运动和点F 沿B→C 路径运动两种情况,根据等腰三角形的定义列出算式,计算即可;【详解】解:(1)△ACD 与△CBE 全等.理由如下:∵AD ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,⎧∠ADC =∠CEB⎪⎨∠DAC =∠ECB,⎪CA =CB⎩∴△ACD ≌△CBE (AAS );(2)由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ,点N 在BC 上时,△CMN 为等腰直角三角形,当点N 沿C→B 路径运动时,由题意得,8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,综上所述,当t=3.5秒或5秒时,△CMN 为等腰直角三角形;【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.10.(1)见详解,(2)BD =2CF ,证明见详解,(3)【解析】【分析】(1)欲证明BF =AD ,只要证明∆BCF ≅∆ACD 即可;(2)结论:BD =2CF .如图2中,作EH ⊥AC 于H .只要证明∆ACD ≅∆EHA ,推出CD =AH ,EH =AC =BC ,由∆EHF ≅∆BCF ,推出CH 2.3=CF 即可解决问题;(3)利用(2)中结论即可解决问题;【详解】(1)证明:如图1中,BE⊥AD于E,∴∠AEF=∠BCF=90︒,∠AFE=∠CFB,∴∠DAC=∠CBF,BC=AC,∴∆BCF≅∆ACD(AAS),∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∠AHE=∠ACD=∠DAE=90︒,∴∠DAC+∠ADC=90︒,∠DAC+∠EAH=90︒,∴∠ADC=∠EAH,AD=AE,∴∆ACD≅∆EHA,∴CD=AH,EH=AC=BC,CB=CA,∴BD=CH,∠EHF=∠BCF=90︒,∠EFH=∠BFC,EH=BC,∴∆EHF≅∆BCF,∴FH=FC,∴BD=CH=2CF.(3)如图3中,作EH⊥AC于交AC延长线于H.∠AHE=∠ACD=∠DAE=90︒,∴∠DAC+∠ADC=90︒,∠DAC+∠EAH=90︒,∴∠ADC=∠EAH,AD=AE,∴∆ACD≅∆EHA,∴CD=AH,EH=AC=BC,CB=CA,∴BD=CH,∠EHM=∠BCM=90︒,∠EMH=∠BMC,EH=BC,∴∆EHM≅∆BCM,∴MH=MC,∴BD=CH=2CM.AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴DB2a2==.BC3a3【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.11.(1)①60°;②60°;(2)∠BFE =α.【解析】【分析】(1)①先证明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先证明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;(2)证明△AEC≌△CDB得到∠E=∠D,则∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】(1)如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60.(2)如图②中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60.(3)如图③中,∵点O是AC边的垂直平分线与BC的交点,∴OC=OA,∴∠EAC=∠DCB=α,∵AC=BC,AE=CD,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【点睛】本题综合考查了三角形全等以及三角形外角和定理.12.(1)①100;②x=y+s+t;(2)见详解.【解析】【分析】(1)①利用三角形的内角和定理即可解决问题;②结论:x=y+s+t.利用三角形内角和定理即可证明;(2)分6种情形分别求解即可解决问题.【详解】解:(1)①∵∠BAC=70°,∴∠ABC+∠ACB=110°,∵∠PBA=10°,∠PCA=20°,∴∠PBC+∠PCB=80°,∴∠BPC=100°,∴x=100,故答案为:100.②结论:x=y+s+t.理由:∵∠A+∠ABC+∠ACB=∠A+∠PBA+∠PCA+∠PBC+∠PCB=180°,∠PBC+∠PCB+∠BPC=180°,∴∠A+∠PBA+∠PCA=∠BPC,∴x=y+s+t.(2)s、t、x、y之间所有可能的数量关系:如图1:s+x=t+y;如图2:s+y=t+x;如图3:y=x+s+t;如图4:x+y+s+t=360°;如图5:t=s+x+y;如图6:s=t+x+y;【点睛】本题考查三角形的内角和定理,三角形的外角的性质等知识,解题的关键是学会用分类讨论的思想思考问题.13.(1)150°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由详见解析;(4)∠2=90°+∠1-α,理由详见解析【解析】【分析】(1)先用平角的得出,∠CDP=180°-∠1,∠CEP=180°-∠2,最后用四边形的内角和即可;(2)同(1)方法即可;(3)利用平角的定义和三角形的内角和即可得出结论;(4)利用三角形的内角和和外角的性质即可得出结论.【详解】解:(1)∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根据四边形的内角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α=90°+60°=150°,故答案为:150;(2)∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根据四边形的内角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α,故答案为:∠1+∠2=90°+α;(3)∠1=90°+∠2+∠α.理由如下:如图3,设DP与BE的交点为F,∵∠2+∠α=∠DFE,∠DFE+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)∠2=90°+∠1-∠α,理由如下:如图4,设PE 与AC 的交点为G ,∵∠PGD =∠EGC ,∴∠α+180°-∠1=∠C +180°-∠2,∴∠2=90°+∠1-∠α.故答案为∠2=90°+∠1-∠α.【点睛】此题是三角形综合题,主要考查了四边形的内角和,三角形的内角和,三角形的外角的性质,平角的定义,解本题的关键是将∠1,∠2,α转化到一个三角形或四边形中,是一道比较简单的中考常考题.14.(1)【解析】【分析】(1)根据简单的分式可得,相邻两个数的积的倒数等于它们的倒数之差,即可得到和1111n -,-;(2);(3)见解析.45n n +1n +114⨯51n ⨯(n +1)(2)根据(1)规律将乘法写成减法的形式,可以观察出前一项的减数等于后一项的被减数,因此可得它们的和.(3)首先利用(2)的和的结果将左边化简,再利用分式方程的解法求解即可.【详解】111111=-=-,解:(1);n (n +1)n n +14⨯545故答案为1111-,-45n n +111111+-+-+22334+111n -=1-= ;n n +1n +1n +1(2)原式=1-1111-+-+(3)已知等式整理得:x x +1x +1x +2112x -1-=所以,原方程即:,x x +5x (x +5)方程的两边同乘x (x +5),得:x +5﹣x =2x ﹣1,解得:x =3,检验:把x =3代入x (x +5)=24≠0,∴原方程的解为:x =3.【点睛】+112x -1-=x +4x +5x (x +5)本题主要考查学生的归纳总结能力,关键在于根据简单的数的运算寻找规律,是考试的热点.15.(1)见解析;(2)∠ABE -∠CDE =30︒【解析】(1)根据聪聪提供的辅助线作法进行证明,先由平行线的性质得:∠AGC=∠MCD,∠F+∠GAF=90︒,再证明∠MCD=∠BAG,可得结论;(2)根据平行线的性质和三角形的外角性质可得结论.【详解】解:(1)证明:如图2,过A作AG//FM,交CD于G,∴∠AGC=∠MCD,∠F+∠GAF=90︒,FN⊥FM,∴∠F=90︒,∴∠GAF=90︒,∠FAB-∠MCD=90︒,∴∠FAB-∠GAF=∠MCD=∠BAG,∴AB//CD;(2)解:∠ABE-∠CDE=30︒,理由如下:如图3,AB//CD,∴∠BPD=∠ABE,∠BPD=∠CDE+∠BED,∠BED=30︒,∴∠BPD-∠CDE=30︒,∴∠ABE-∠CDE=30︒.。

八上数学几何压轴题30道

八上数学几何压轴题30道

八上数学几何压轴题30道当提到数学几何的压轴题,我们通常指的是那些考察学生对几何知识和解题能力的较难题目。

以下是30道八年级数学几何的压轴题示例:1. 计算一个正方形的对角线长度。

2. 证明三角形内角和为180度。

3. 判断一个四边形是否为平行四边形,并解释你的答案。

4. 计算一个圆的周长和面积。

5. 证明垂直平分线定理。

6. 证明等腰三角形的性质。

7. 计算一个梯形的面积。

8. 证明两条平行线被一条横截线所切割,对应角相等。

9. 计算一个正五边形的内角和外角。

10. 证明直角三角形的斜边长度与直角边长度的关系。

11. 解释相似三角形的性质。

12. 计算一个圆锥的体积。

13. 证明圆的直径与周长的关系。

14. 解释正交投影的原理。

15. 证明圆的切线与半径的垂直关系。

16. 计算一个正多边形的内角和外角。

17. 证明平行线的性质。

18. 解释三视图的绘制方法。

19. 计算一个球的表面积和体积。

20. 证明圆柱的体积公式。

21. 解释平行四边形的性质。

22. 计算一个椎体的体积。

23. 证明同位角与内错角的关系。

24. 解释棱台的性质。

25. 计算一个多面体的表面积和体积。

26. 证明圆锥的侧面积公式。

27. 解释圆的切线定理。

28. 计算一个圆环的面积。

29. 证明立体图形的展开图与表面积的关系。

30. 解释圆锥的性质。

以上是30道八年级数学几何的压轴题示例,这些题目涵盖了几何知识的各个方面,旨在考察学生的几何分析和解决问题的能力。

希望这些题目能够帮助你更好地理解数学几何的知识。

初二数学压轴题

初二数学压轴题

DCBAACB DN图2CB OMA八年级第一学期数学压轴题测试(本卷满分500分,完成时间5小时)1.(14分)已知,在△ABC 中,CA=CB,CA 、CB 的垂直平分线的交点O 在AB 上,M 、N 分别在直线AC 、BC 上,∠MON=∠A=45°(1)如图1,若点M 、N 分别在边AC 、BC 上,求证:CN+MN=AM ;(2)如图2,若点M 在边AC 上,点N 在BC 边的延长线上,试猜想CN 、MN 、AM 之间的数量关系,请写出你的结论(不要求证明).2.(15分)已知,如图,BD 是△ABC 的角平分线,AB=AC, (1)若BC=AB+AD,请你猜想∠A 的度数,并证明;(2)若BC=BA+CD,求∠A 的度数(3)若∠A=100°,求证:BC=BD+DA图3E DCBA图2EDCBA 图1EDCBA3.(18分)如图,△ABC 是等边三角形,D 是三角形外一动点,满足∠ADB=600, (1)当D 点在AC 的垂直平分线上时,求证: DA+DC=DB;(2)当D 点不在AC 的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由; (3)当D 点在如图的位置时,直接写出DA ,DC ,DB 的数量关系,不必证明。

DC B ADCBAD CBA4.(15分) 如图,已知:点D 是△ABC 的边BC 上一动点,且AB =AC ,DA =DE ,∠BAC =∠ADE =α.⑴如图1,当α=60°时,∠BCE = ;(图1) (图2) (图3)⑵如图2,当α=90°时,试判断∠BCE 的度数是否发生改变,若变化,请指出其变化范围;若不变化,请求出其值,并给出证明;⑶如图3,当α=120°时,则∠BCE = ;5.(18分)(1)如图1,等边△ABC 中,点D 为AC 的中点,若∠EDF=120°,点E 与点B 重合,DF 与BC 的延长线交于F 点,则DE 与DF 数量关系为 ;BE+BF 与BC 的等量关系为 .(直接写出结论,不必证明)图1FD CB(E)A图2F EDCBA图3EDF CBA(2)将(1)中∠EDF 绕点D 顺时针旋转一定角度(如图2),DE 交AB 于E 点,DF 交BC 的延长线于F 点,其中“等边△ABC 中,点D 为AC 的中点,若∠EDF=120°”,这一条件不变,则DE 与DF 有怎样的数量关系?BE+BF 与BC 之间有怎样的等量关系?写出你的结论并加以证明.(3)将(1)中∠EDF 绕点D 顺时针旋转一定角度,DE 与AB 的延长线交于E 点,DF 交BC 的延长线于F 点(如图3),其中“等边△ABC 中,点D 为AC 的中点,若∠EDF=120°”,这一条件仍不变,则DE 与DF 数量关系为 ;BE 、BF 、BC 这三者的等量关系是 (不必证明)6.(12分)如图,△ABC 为等边三角形,P 为AB 上一点,PE ⊥BC 于E 交AC 于F ,在BC 的延长线上截取CD=PA ,PD 交AC 于l,.Bn P PA= (1)如图,当n=1时,CD EC = ,=EDFI.(直接写出) (2)如图,当n= 时,∠EPD=600,并求出EDFI 的值,请写出证明的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DCBAACBDN图2CB OMA八年级第一学期数学压轴题测试(本卷满分500分,完成时间5小时)1.(14分)已知,在△ABC 中,CA=C B,C A、CB 的垂直平分线的交点O 在AB 上,M 、N 分别在直线AC、BC 上,∠MO N=∠A=45°(1)如图1,若点M 、N分别在边A C、BC 上,求证:CN+MN =AM;(2)如图2,若点M 在边AC 上,点N 在BC 边的延长线上,试猜想C N、MN 、AM 之间的数量关系,请写出你的结论(不要求证明).2.(15分)已知,如图,BD 是△ABC 的角平分线,AB=AC , (1)若BC=AB+AD ,请你猜想∠A 的度数,并证明;(2)若BC =BA +CD ,求∠A的度数(3)若∠A =100°,求证:BC =BD+DA图3E DCBA图2ECBA 图1DCBA3.(18分)如图,△ABC 是等边三角形,D 是三角形外一动点,满足∠ADB=600, (1)当D 点在AC 的垂直平分线上时,求证: DA +DC=DB;(2)当D 点不在AC 的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由; (3)当D 点在如图的位置时,直接写出DA,DC ,DB 的数量关系,不必证明。

DC B ADCBAD CBA4.(15分) 如图,已知:点D 是△ABC 的边BC 上一动点,且AB=AC ,DA =DE ,∠BAC=∠AD E=α.⑴如图1,当α=60°时,∠B CE= ;(图1) (图2) (图3)⑵如图2,当α=90°时,试判断∠BCE 的度数是否发生改变,若变化,请指出其变化范围;若不变化,请求出其值,并给出证明;⑶如图3,当α=120°时,则∠BCE= ;5.(18分)(1)如图1,等边△ABC 中,点D为AC 的中点,若∠E DF=120°,点E 与点B 重合,DF 与BC 的延长线交于F点,则D E与DF数量关系为 ;BE+BF与BC 的等量关系为 .(直接写出结论,不必证明)图1D CB(E)A图2F EDCBA图3EDF CBA(2)将(1)中∠EDF 绕点D 顺时针旋转一定角度(如图2),DE 交AB 于E 点,DF 交BC 的延长线于F点,其中“等边△A BC 中,点D 为AC 的中点,若∠ED F=120°”,这一条件不变,则D E与DF 有怎样的数量关系?BE+B F与BC之间有怎样的等量关系?写出你的结论并加以证明.(3)将(1)中∠E DF 绕点D顺时针旋转一定角度,DE 与A B的延长线交于E 点,DF 交BC 的延长线于F点(如图3),其中“等边△AB C中,点D 为A C的中点,若∠EDF=120°”,这一条件仍不变,则DE 与DF 数量关系为 ;BE 、BF 、BC 这三者的等量关系是 (不必证明)6.(12分)如图,△A BC 为等边三角形,P 为AB上一点,PE ⊥BC 于E交AC 于F,在B C的延长线上截取CD =PA ,PD 交AC 于l,.Bn P PA= (1)如图,当n =1时,CD EC = ,=EDFI.(直接写出) (2)如图,当n= 时,∠EPD=600,并求出ED FI 的值,请写出证明的过程。

(3)如图,当P在AB 延长线上,其它条件不变,当n =3时,CDEC= 。

(直接写出)DDFD7.(16分) 已知:等腰△A BC中AB =AC,等腰△ADE 中AD =AE ,B 、A 、E 在同一条直线上,C 、A 、D 在同一条直线上,点P 在△ADE 的内部,且P B=PD ,PC =PE .图1图2图3(1) 如图1,若∠BAC =60°,则∠B PC +∠DPE = ; (2) 如图2,若∠BAC =90°,则∠BPC +∠D PE = ; (3) 如图3,若∠BAC =α ,求∠BPC +∠DPE 的值,并写出求解过程.8.(14分) 如图,△ABC 是等边三角形,D 是AC 的中点,F 为边AB 上一动点,AF nBF =,E 为直线BC上一点, 且120EDF∠=︒.(1)如图1,当n =2时,求CECD=_________; (2)如图2,当n =13时,求证:2CD CE =; (3)如图3,过点D 作DM BC ⊥于M , 当_______n =时,C 点为线段EM 的中点.9.(16分)如图,C是线段A B上一点,△AC D和△BCE 都是等腰直角三角形,∠ADC =∠CEB=90°(1)连结DE 、M 、N 分别是AC、B C上一点,且∠MDC=∠CD E,∠N EC=∠CED ,探索D M、DE 、ENE1PDCBABACPDE 2ABCPDE3EE之间的数量关系,并说明理由。

(2)延长AD 、BE交于F 点,连结DE,CG ⊥DE 于G 点,连结CF,CF 与DE相交于O 点,OC=OE,延长GC 到H 点,使得CH=CF,探索BF 、BH 的关系,并说明理由。

10.(15分)如图,已知B(-1,0),C(1,0),A 为y 轴正半轴上一点,点D 为第二象限一动点,E在BD 的延长线上,C D交AB 于F ,且∠BDC =2∠BAO. (1)求证:∠ABD=∠ACD ;(2)求证:AD 平分∠CD E;(3)若在D 点运动的过程中,始终有DC=DA+DB,在此过程中,∠BAC 的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC 的度数.11.(15分)如图,已知A(a,b),A B⊥y 轴于B,且满足a-2 +(b -2)2=0, (1)求A 点坐标;(2)分别以AB,AO 为边作等边三角形△ABC 和△AOD ,试判定线段AC 和DC 的数量关系和位置关系 (3)过A作AE ⊥x 轴于E,F ,G 分别为线段OE,AE 上的两个动点,满足∠FBG =450,试探究错误!的值是否发生变化?如果不变,请说明理由并求其值,如果变化,请说明理由A M C N BED B--12.(18分),如图,在平面直角坐标系中,△A OB 为等腰直角三角形,A(4,4) (1)求B点坐标;(2)若C 为x轴正半轴上一动点,以AC 为直角边作等腰直角△ACD ,∠ACD=90°连O D,求∠AOD 的度数;(3)过点A 作y 轴的垂线交y 轴于E,F 为x轴负半轴上一点,G 在EF 的延长线上,以EG 为直角边作等腰Rt△EGH ,过A作x 轴垂线交E H于点M,连FM ,等式OFFMAM =1是否成立?若成立,请证明:若不成立,说明理由.13.(15分)如图,平面直角坐标系中,点A 、B分别在x、y 轴上,点B 的坐标为(0,1),∠BAO =30°. (1)求AB 的长度;(2)以A B为一边作等边△AB E,作OA 的垂直平分线MN 交AB 的垂线AD 于点D .求证:BD =OE . (3)在(2)的条件下,连结DE 交AB 于F .求证:F 为DE 的中点.图1xy EDOCBA HMQGK图2xy OC BADENM B OxyADEB OxyF A14.( 24分)如图(1)在平面直角坐标系中A (0,4),B(-4,O),C(4,0),连接A B,AC 。

(1)试判断△ABC 形状并说明理由(2)D 为线段AB 上任意一点,连接OD,作OE⊥OD 交A C于E ,求D,E 两点到x 轴距离之和。

(3)如图2,若M 为线段OA 上一动点,BM 交AC 于Q,过A 作A K⊥BQ 交BC与K,过K 作KH ⊥CM 交AC 于H,交BQ 的延长线于G,问:当M 点在线段OA 上运动时,下列结论:①GK AK BG -的值不变;②GKAKBG +的值不变,其中有且只有一个结论正确,请选择并求值证明.15.(15分)已知平面直角坐标系内,A(0,3),B (-4,0)C 为x 轴上正半轴上一点,若P为OB 延长线上一点,P M⊥CA 于M ,且∠CPM =21∠B AC . (1)求C点坐标;(2)若OA 2+OB 2=A B2,过动点P 向AB 延长线作PN⊥A B于N,求证:PM -P N为定值;(3)以BC 为边作等边△BC D,Q为BD 边的中点。

连P Q,且∠PQE=1200.QE 交D C延长线于E ,问:在点P 运动的过程中,CP-CE 是否发生变化?若不变,求其值;若变化,请说明理由。

xCOy O图2图1AAxyC B P BPN M图316.(12分)如图,直线AB 交x 轴正半轴于点A (a ,0),交y 轴正半轴于点B(0, b),且a 、b 满足 4-a + |4-b |=0 (1)求A 、B 两点的坐标;(2)D 为O A的中点,连接B D,过点O 作OE ⊥B D于F ,交A B于E,求证∠BDO=∠ED A;(3)如图,P 为x 轴上A 点右侧任意一点,以B P为边作等腰R t△PBM ,其中PB =P M,直线M A交y 轴于点Q,当点P 在x 轴上运动时,线段OQ 的长是否发生变化?若不变,求其值;若变化,求线段OQ 的取值范围.17.(15分)如图,在直角坐标系中,A 点的坐标为(0,a ),B 点的坐标为(b,0),且a 、b 满足4220a b a b +-+-+=。

(1)求证∠OA B=∠OBA ;(2)点C 为OB 的延长线上一点,连结A C,过B作B D ⊥AC ,连结OD 。

求证:OD 平分∠A DB;(3)点E,是点A 关于x 轴的对称点,点F 是点B 关于y轴的对称点,P为AF 的延长线上一动点,G 为 BA 的延长线上一点,连结PG,且满足BG =PG+PF ,当P 在AF 的延长线上运动的过程中,∠P EG的度数是否会发生变化,若不变,请求出它的度数;若改变,请说明理由。

A BODEFyxyOD EBCQP18.(15分)在平面直角坐标系xoy中,直线6y x=+与x轴交于A,与y轴交于求△ABC的面积.②D为OA延长线上一动点,以BD为直角边做等腰直角三角形BDE,连结E③点E是y轴正半轴上一点,且∠OAE=30°,OF平分∠OAE,点M是射线上一动点,是判断是否存在这样的点M、N,使得OM+NM的值最小,明.19.(15分)如图,直线1l与x轴、y轴分别交于A、B两点,直线2l与直线1l关于x轴对称,已知直线1l的解析式为3y x=+,(1)求直线2l 的解析式(2)过A点在△AB C的外部作一条直线3l ,过点B 作BE ⊥3l 于E,过点C 作CF ⊥3l 于F 分别,请画出图形并求证:BE +CF=EF(3)△ABC沿y 轴向下平移,AB 边交x 轴于点P ,过P点的直线与AC 边的延长线相交于点Q,与y 轴相交与点M,且B P=CQ ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值。

相关文档
最新文档