高分子材料的基本物理性能

合集下载

高分子物理实验报告

高分子物理实验报告

高分子物理实验报告高分子物理实验报告引言:高分子物理是研究高分子材料的结构、性质和行为的学科。

本实验旨在通过实验方法,对高分子材料的一些基本性质进行探究,以加深对高分子物理的理解。

实验一:高分子材料的熔融流动性材料:聚乙烯(PE)、聚丙烯(PP)方法:将PE和PP分别切成小块,放入两个不同的容器中,通过加热使其熔化,观察其流动性。

结果:PE在加热后迅速熔化,并呈现出较大的流动性,而PP则需要较高的温度才能熔化,且流动性较小。

结论:高分子材料的熔融流动性与其分子结构有关,分子链间的相互作用力越强,熔融温度越高,流动性越小。

实验二:高分子材料的拉伸性能材料:聚酯(PET)、聚氯乙烯(PVC)方法:将PET和PVC分别切成薄片状,用拉力试验机进行拉伸测试,记录其拉伸强度和断裂伸长率。

结果:PET具有较高的拉伸强度和断裂伸长率,而PVC的拉伸强度较低,断裂伸长率也较小。

结论:高分子材料的拉伸性能与其分子链的排列方式、分子量以及交联程度等因素有关,分子链越有序,交联程度越高,拉伸强度越大,断裂伸长率越小。

实验三:高分子材料的热稳定性材料:聚苯乙烯(PS)、聚碳酸酯(PC)方法:将PS和PC分别切成小块,放入热风箱中进行热稳定性测试,记录其质量损失。

结果:PS在高温下易分解,质量损失较大,而PC在相同条件下质量损失较小。

结论:高分子材料的热稳定性与其分子链的稳定性有关,分子链越稳定,热稳定性越好,质量损失越小。

实验四:高分子材料的玻璃化转变温度材料:聚甲基丙烯酸甲酯(PMMA)、聚乙烯醇(PVA)方法:将PMMA和PVA分别切成小块,通过差示扫描量热法(DSC)测试其玻璃化转变温度。

结果:PMMA的玻璃化转变温度较高,而PVA的玻璃化转变温度较低。

结论:高分子材料的玻璃化转变温度与其分子链的自由度有关,分子链越自由,玻璃化转变温度越低。

结论:通过以上实验,我们可以看到不同高分子材料在熔融流动性、拉伸性能、热稳定性和玻璃化转变温度等方面表现出不同的特性。

高分子材料的物理性能

高分子材料的物理性能

整理课件
16
非极性聚合物:极性杂质常常是介电损耗的主要 原因。非极性聚合物的tgδ一般小于10-4;
极性聚合物:tgδ在10-1~5×10-3之间。
整理课件
17
三、介电强度 ——电击穿:当电场强度超过某一临界值时,电介
质就丧失其绝缘性能,这称为电击穿。 ——击穿电压:发生电击穿的电压。 ——击穿电场强度:击穿电压与击穿处介质厚度之
左右)。 ⊕结晶聚合物的热导率稍高,非晶聚合物的热导率
随分子量增大而增大。 ⊕低分子的增塑剂的加入:会使热导率下降。
整理课件
3
⊕温度:聚合物热导率随温度的变化有所波动,但 波动范围一般不超过10%。
⊕取向:引起热导率的各向异性,沿取向方向热导 率增大,横向减小→聚氯乙烯伸长300%时,轴 向的热导率比横向的要大一倍多。
于环境(光、热、氧、潮湿、应力、化学侵蚀等) 的影响,性能(强度、弹性、硬度、颜色等)逐 渐变坏的现象称为老化。 一、光氧化 ※分子链断裂决定因素:光的波长与聚合物的键能。 ※各种键的离解能:167-586kJ/mol ※紫外线的能量:250-580kJ/mol。
整理课件
40
※可见光的范围:聚合物一般不被离解,但呈激发 状态→氧存在下→易发生光氧化过程。
比,简称介电强度。 ——热击穿:在强电场下,因温度上升导致聚合物
的热破坏而引起的击穿;其击穿电压要比固有击 穿电压小。
整理课件
18
——纯电击穿(固有击穿):当电场强度增加到临 界值时,撞击分子发生电离,使聚合物击穿,称 为纯电击穿或固有击穿;此击穿过程极为迅速, 击穿电压与温度无关。
——聚合物介电强度:可达1000 MV/m。 ——决定因素:上限是由共价键电离能所决定的。

高分子物理----高分子的力学性能

高分子物理----高分子的力学性能

一般刻痕试样的冲击强度小于这一数值为脆性断裂,大
于这一数值时为韧性断裂。但这一指标并不是绝对的,
例如玻璃纤维增强的聚酯塑料,甚至在脆性破坏时也有
很高的冲击强度。
7.1 玻璃态与结晶态聚合物的力学性质
2. 高聚物的理论强度 从分子结构的角度来看,高聚物的断裂要破坏分子 内的化学键,分子间的范德华力与氢键。
7.2 高弹态聚合物的力学性质
加入增塑剂虽然可以降低Tg,但有利条件,因此选
用增塑法来降低Tg必须考虑结晶速度增大和结晶形成的 可能性。
7.2 高弹态聚合物的力学性质
(2)共聚法
共聚法也能降低聚合物的Tg,如:PS的主链上带有体 积庞大的苯基,聚丙烯腈有强极性腈基存在,Tg都在室温 以上,只能作为塑料和纤维使用,如果用丁二烯分别与苯 乙烯和丙烯腈共聚可得丁苯橡胶和丁腈橡胶,使Tg下降。 例如:丁苯30,Tg=-53℃,丁腈26,Tg=-42℃。
7.1 玻璃态与结晶态聚合物的力学性质
(3)当温度升高到Tg以下几十度范围内,如曲线③,过
了屈服点后,应力先降后升,应变增大很多,直到C点断裂,
C点的应力称为断裂应力,对应的应变称为断裂伸长率ε 。
7.1 玻璃态与结晶态聚合物的力学性质
(4)当温度升至Tg以上,试样进入高弹态,在应力不大
时,就可发生高弹形变,如曲线④,无屈服点,而呈现一段
应力称为屈服应力或屈服强度。
7.1 玻璃态与结晶态聚合物的力学性质
屈服点之后,应力有所下降,在较小的负荷下即可产生形 变,称为应变软化。之后应力几乎不变的情况下应变有很大 程度的增加,最后应力又随应变迅速增加,直到材料断裂。
7.1 玻璃态与结晶态聚合物的力学性质
四、几类高聚物的拉伸行为 1. 玻璃态高聚物的拉伸

高分子材料(力学性能) ppt课件

高分子材料(力学性能)  ppt课件

三、粘弹性
§5.1 力学性能
三、粘弹性
§5.1 力学性能
2、动态粘弹性 (滞后)
• 滞后:一定温度下,受交变的应力,形变随时
间的变化跟不上力随时间的变化
应力周期性变化:σ=σ 0 Sin ω t 应变:ε =ε 0 Sin(ω t +δ )
落后一相位角
结果:产生滞后圈--能耗
(机械能(弹性能)--热能) ----力学损耗
如何§解5.决1 ?力学性能
1、特征
➢涂料涂装时流挂问题如何 解决?
1) 粘度大;分子量越大,粘度越大;分布越宽,粘度越大;
2) 流动机理:分子重心相对位移,是由链段的相继跃迁实 现的
3) 伴有高弹形变---具有粘弹性
现象:出口膨大、爬杆效应、融体破裂
一、高聚物的流动性 ???
§5.1 力学性能
4)是一假塑性流体:
运动单元高度取向(m 不为零)
1、拉伸过程 (非晶、结晶高聚物)
C 断裂:
脆性断裂:没有屈服,断裂面光滑;
§5.1 力学性能
四 屈服、强度与断裂
韧性断裂:出现屈服后的断裂,断裂面粗糙。
T < Tb 时: σB <σY ---脆性断裂
1、拉伸过程 (非晶、结晶高聚物)
2) 结晶高聚物的应力~应变曲线
1、拉伸过程 (非晶、结晶高聚物) §5.1 力学性能
四 屈服、强度与断裂
注意: • 使用时υ趋于很小---长期强度,其远远小于所测值 ,
例:PVC: σB(1000h)=1/2σB (测) • Tb、Tg测定时,是在一定时间尺度下,
( υ比较小,时间长) 实际受力时(特别是在冲击力时)往往υ很高, 例:PVC 的Tb= - 50度,T使> - 30 ~ -15度

高分子材料的分子结构与物理性质

高分子材料的分子结构与物理性质

高分子材料的分子结构与物理性质高分子材料作为一种重要的工业原料,在各个行业都有广泛的应用。

它可以用于制造塑料、橡胶、纤维等产品,具有很好的物理性能和机械性能,同时还能够通过改变分子结构来改变其特性。

本文将从高分子材料的分子结构和物理性质两个方面进行讨论。

一、高分子材料的分子结构高分子是由单体分子通过聚合反应组成的。

他们通常由大量的重复单元组成,有一条或多条聚合主链,辅助链和横向连接等支链。

高分子的分子结构对其物理性质有着重要的影响。

1.聚合度和分子量聚合度和分子量是高分子材料分子结构最基本也是最重要的参数。

聚合度通常指的是单个聚合物中单体数量的总和,分子量则是聚合物中所有单体分子的相对分子质量。

分子量越大,聚合物的物理性质越好,强度越高,同时也容易受到热量的影响。

2.分子结构高分子材料的分子结构通常包括线性、支化和交联三种形式。

线性分子结构的高分子只有一条主链,分子量较小,物理性能一般。

支化分子结构的高聚物具有分子链的分支结构,分子量较大,物理性能好,但热稳定性较差。

交联分子结构的高分子具有大量交联点,具有非常强的物理性能和热稳定性,但是也往往是刚性的。

3.结晶度结晶度是聚合物分子结构的另一个重要参数,这个参数直接决定了材料的物理性质。

结晶度高的高聚物材料具有优异的刚性和强度,但是也比较易于碎裂,结晶度并不高的高聚物材料则更具有一定的难燃性和柔韧性。

二、高分子材料的物理性质高分子材料的物理性质涵盖了它的各个领域,包括机械性能、热性能、电性能、光学性能和界面性能等方面。

下面我们将逐一介绍。

1.机械性能高分子材料的机械性能是评价其物理性质的关键指标之一。

高聚物材料的受力性能和耐磨性都较好,但是吸水性和腐蚀性较强。

与金属材料相比,高分子材料的刚性和强度略微逊色,但是也有不同领域的应用。

2.热性能高分子材料的热性能是由其聚合度和分子结构所决定的。

不同的聚合物材料具有不同的熔点和滑动温度,其热形变温度和热稳定性也会影响其应用范围和适用场景。

高分子聚合物基本性能

高分子聚合物基本性能

高分子聚合物基本性能
高分子聚合物是一类由长链分子构成的化合物,具有许多特殊的物理和化学性质。

下面将介绍高分子聚合物的一些基本性能。

1. 强度和刚度
高分子聚合物的强度和刚度可以根据其分子结构和化学组成来衡量。

通常,高分子的分子量越高,其强度和刚度也越高。

此外,分子的排列和结晶性质也会对强度和刚度产生影响。

一些常见的高分子材料,如聚丙烯和聚乙烯,具有较高的强度和刚度,适用于结构性应用。

2. 耐热性和耐寒性
高分子聚合物的耐热性和耐寒性是衡量其在不同温度条件下性能稳定性的重要指标。

一些高分子聚合物材料在高温下可能会软化或熔化,而在低温下可能会变脆。

根据具体应用的需求,可以选择适合高温或低温环境的高分子材料。

3. 耐化学性
高分子聚合物通常具有较好的耐化学性,能够抵抗酸、碱、溶
剂等化学物质的侵蚀。

不同的高分子聚合物对于不同化学物质的耐
受性不同,因此在特定的环境中需选择适宜的高分子材料。

4. 电绝缘性和介电性能
由于高分子聚合物大多为非金属材料,它们具有良好的电绝缘
性能和介电性能。

这使得高分子聚合物广泛应用于电子和电气领域,例如制造绝缘材料和电子器件。

5. 可塑性和加工性
高分子聚合物具有良好的可塑性和加工性,能够通过热塑性或
热固性加工方式制成各种形状和尺寸。

这使得高分子聚合物成为理
想的塑料材料,广泛应用于注塑成型、挤出成型、吹塑等加工工艺。

以上是高分子聚合物的一些基本性能。

在选择和应用高分子材料时,需要根据具体需求和环境条件,综合考虑这些性能指标,以确保材料的可靠性和适用性。

高分子材料分析及测试期末复习及答案

高分子材料分析及测试期末复习及答案

期末复习作业一、名词解释1.透湿量透湿量即指水蒸气透过量。

薄膜两侧的水蒸气压差和薄膜厚度一定,温度一定的条件下1㎡聚合物材料在24小时所透过的蒸汽量(用θ表示)v2.吸水性吸水性是指材料吸收水分的能力。

通常以试样原质量与试样失水后的质量之差和原质量之比的百分比表示;也可以用单位面积的试样吸收水分的量表示;还可以用吸收的水分量来表示。

3.表观密度对于粉状、片状颗粒状、纤维状等模塑料的表观密度是指单位体积中的质量(用η表示)a对于泡沫塑料的表观密度是指单位体积的泡沫塑料在规定温度和相对湿度时的重量,故又称体积密度或视密度(用ρ表示)a4、拉伸强度在拉伸试验中,保持这种受力状态至最终,就是测量拉伸力直至材料断裂为止,所承受的最大拉伸应力称为拉伸强度(极限拉伸应力,用σ表示)t5、弯曲强度试样在弯曲过程中在达到规定挠度值时或之前承受的最大弯曲应力(用σ表示)f6、压缩强度指在压缩试验中试样所承受的最大压缩应力。

它可能是也可能不是试样破裂的瞬间所承受的压缩应力(用σ表示)e7、屈服点应力—应变曲线上应力不随应变增加的初始点。

8、细长比指试样的高度与试样横截面积的最小回转半径之比(用λ表示)9、断裂伸长率断裂时伸长的长度与原始长度之比的百分数(用ε表示)t10、弯曲弹性模量表示)比例极限应力与应变比值(用Ef11、压缩模量指在应力—应变曲线的线性围压缩应力与压缩应变的比值。

由于直线与横坐标的交点一般不通过原点,因此可用直线上两点的应力差与对应的应变差之比表示(用E表示)e12、弹性模量在负荷—伸长曲线的初始直线部分,材料所承受的应力与产生相应的应变之比(用E表示)13、压缩变形指试样在压缩负荷左右下高度的改变量(用∆h表示)14、压缩应变指试样的压缩变形除以试样的原始高度(用ε表示)15、断纹剪切强度指沿垂直于板面的方向剪断的剪切强度。

16、剪切应力试验过程中任一时刻试样在单位面积上所承受的剪切负荷。

17、压缩应力指在压缩试验过程中的任何时刻,单位试样的原始横截面积上所承受的压缩负荷(用σ表示)18、拉伸应力为试样在外作用力下在计量标距围,单位初始横截面上所承受的拉伸力(用σ表示)19、热性能高聚物的热性能是其与热或温度有关的性能的总称。

(完整版)高分子物理详细重点总结

(完整版)高分子物理详细重点总结

名词解释:1. 时间依赖性:在一定的温度和外力作用下,高聚物分子从一种平衡态过渡到另一种平衡态需要一定的时间2. 松弛时间τ :橡皮由ΔX(t)恢复到ΔX(0)的 1/e 时所需的时间3. 松弛时间谱:松弛过程与高聚物的相对分子质量有关,而高聚物存在一定的分子量分布,因此其松弛时间不是一个定值,而呈现一定的分布。

4. 时温等效原理:升高温度或者延长观察时间(外力作用时间)对于聚合物的分子运动是等效的,对于观察同一个松弛过程也是等效的。

5. 模量:材料受力时,应力与应变的比值6. 玻璃化温度:为模量下降最大处的温度。

7. 自由体积:任何分子的转变都需要有一个自由活动的空间 ,高分子链活动的空间8. 自由体积分数(f):自由体积与总体积之比。

9. 自由体积理论:当自由体积分数为 2.5%时,它不能够再容纳链段的运动,链段运动的冻结导致玻璃化转变发生。

10. 物理老化:聚合物的某些性质随时间而变化的现象11. 化学老化:聚合物由于光、热等作用下发生的老化12. 外增塑:添加某些低分子组分使聚合物 T g 下降的现象13. 次级转变或多重转变: Tg 以下,链段运动被冻结,存在需要能量小的小尺寸运动单元的运动14. 结晶速率:物品结晶过程进行到一半所需要时间的倒数15. 结晶成核剂:能促进结晶的杂质在结晶过程中起到晶核的作用16. 熔融:物质从结晶态转变为液态的过程17. 熔限:结晶聚合物的熔融过程,呈现一个较宽的熔融温度范围18. 熔融熵S m :熔融前后分子混乱程度的变化19. 橡胶: 施加外力时发生大的形变,外力除去后可以恢复的弹性材料20. 应变: 材料受到外力作用而所处的条件使其不能产生惯性移动时 ,它的几何形状和尺寸将发生变化21. 附加应力:可以抵抗外力的力22. 泊松比:拉伸实验中材料横向应变与纵向应变比值的负数23. 热塑性弹性体:兼有橡胶和塑料两者的特性,在常温下显示高弹,高温下又能塑化成型24. 力学松弛:聚合物的各种性能表现出对时间的依赖性25. 蠕变:在一定的温度下和较小恒应力的持续作用下,材料应变随时间的增加而增大的现象26. 应力松驰:在恒定温度和形变保持不变条件下,聚合物内部应力随时间的增加而逐渐衰减的现象27. 滞后:聚合物在交变应力作用下形变落后于应力变化的现象28. 力学损耗或者内耗:单位体积橡胶经过一个拉伸 ~ 回缩循环后所消耗的功29. 储存模量 E’:同相位的应力与应变的比值30. 损耗模量 E”:相差 90 度相位的应力振幅与应变振幅的比值31. Boltzmann 叠加原理:聚合物的力学松弛行为是其整个历史上各松弛过程的线性加和32. 应变软化:随应变增大,应力不再增加反而有所下降33. 银纹屈服:聚合物受到张应力作用后,由于应力集中产生分子链局部取向和塑性变形,在材料表面或内部垂直于应力方向上形成的长 100 、宽 10 、厚为 1 微米左右的微细凹槽或裂纹的现象34. 裂纹:由于分子链断裂而在材料内部形成的空隙,不具有强度,也不能恢复。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子材料的主要物理性能高分子材料与小分子物质相比具有多方面的独特性能,其性能的复杂性源自于其结构的特殊性和复杂性。

联系材料微观结构和宏观性质的桥梁是材料内部分子运动的状态。

一种结构确定的材料,当分子运动形式确定,其性能也就确定;当改变外部环境使分子运动状态变化,其物理性能也将随之改变。

这种从一种分子运动模式到另一种模式的改变,按照热力学的观点称作转变;按照动力学的观点称作松弛。

例如天然橡胶在常温下是良好的弹性体,而在低温时(<-100℃)失去弹性变成玻璃态(转变)。

在短时间内拉伸,形变可以恢复;而在长时间外力作用下,就会产生永久的残余形变(松弛)。

聚甲基丙烯酸甲酯(PMMA )在常温下是模量高、硬而脆的固体,当温度高于玻璃化温度(~100℃)后,大分子链运动能力增强而变得如橡胶般柔软;温度进一步升高,分子链重心能发生位移,则变成具有良好可塑性的流体。

本着“结构⇔分子运动⇔物理性能”这样一条思维线路,本章有选择地介绍高分子材料的热性能、力学性能、高弹性和粘弹性、溶液性质、流变性质、电学性能等。

同时通过介绍结构与性能的关系,帮助我们根据使用环境和要求,有目的地选择、使用、改进和设计高分子材料,设计和改进加工工艺和设备,扩大高分子材料使用范围。

第一节 高分子材料的分子运动、力学状态转变及热性能 一、高分子运动的特点与低分子材料相比,高分子材料的分子热运动主要有以下特点: (一)运动单元和模式的多重性高分子的结构是多层次、多类型的复杂结构,决定着其分子运动单元和运动模式也是多层次、多类型的,相应的转变和松弛也具有多重性。

从运动单元来说,可以分为链节运动、链段运动、侧基运动、支链运动、晶区运动以及整个分子链运动等。

从运动方式来说,有键长、键角的变化,有侧基、支链、链节的旋转和摇摆运动,有链段绕主链单键的旋转运动,有链段的跃迁和大分子的蠕动等。

在各种运动单元和模式中,链段的运动最为重要,高分子材料的许多特性均与链段的运动有直接关系。

链段运动状态是判断材料处于玻璃态或高弹态的关键结构因素;链段运动既可以引起大分子构象变化,也可以引起分子整链重心位移,使材料发生塑性形变和流动。

(二)分子运动的时间依赖性在外场作用下,高分子材料从一种平衡状态通过分子运动而转变到另一种平衡状态是需要时间的,这种时间演变过程称作松弛过程,所需时间称松弛时间。

例如将一根橡胶条一端固定,另一端施以拉力使其发生一定量变形。

保持该形变量不变,但可以测出橡胶条内的应力随拉伸时间仍在变化。

相当长时间后,内应力才趋于稳定,橡胶条达到新的平衡。

设材料在初始平衡态的某物理量(例如形变量、体积、模量、介电系数等)的值为x 0,在外场作用下,到t 时刻该物理量变为x (t ),许多情况下x (t )与x 0满足如下关系:()τ/0t ex t x -= (4-1)公式(4-1)实质上描述了一种松弛过程,式中τ称松弛时间。

当t =τ时,()e x x /0=τ,可见松弛时间相当于x 0变化到x 0/e 时所需要的时间。

低分子物质对外场的响应往往是瞬时完成的,因此松弛时间很短,而高分子材料的松弛时间可能很长。

高分子的这种松弛特性来源于其结构特性,由于分子链的分子量巨大,几何构型具有明显不对称性,分子间相互作用很强,本体粘度很大,因此其松弛过程进行得较慢。

不同运动单元的松弛时间不同。

运动单元越大,运动中所受阻力越大,松弛时间越长。

比如键长、键角的变化与小分子运动相仿,其松弛时间与小分子相当,约10-8-10-10s ;链段运动的松弛时间较长,可达到分钟的数量级;分子整链的松弛时间更长,可长达几分、几小时,甚至几天、几个月。

由于高分子材料结构具有多重性,因此其总的运动模式具有一个广阔的松弛时间谱。

了解材料的松弛时间谱十分重要,因为材料的不同性质是在不同的松弛过程(它们具有不同的松弛时间)中表现出来的。

在实际测试或使用材料时,只有那些松弛时间与外场作用时间数量级相当的分子运动模式(或性质)最早和最明显地被测试或表现出来。

例如要研究链段的运动,实验进行的速度应当掌握在分钟数量级,太快或太慢的实验都不能测到链段的运动。

如果要研究分子整链的运动(如材料的流动),实验时间必须长得多。

换句话说,高分子材料的松弛特性使得其物理和力学性能与观察和测量的速度(或时间)相关。

(三)分子运动的温度依赖性温度是分子运动激烈程度的描述,高分子材料的分子运动也强烈地依赖于温度的高低。

一般规律是温度升高,各运动单元热运动能力增强,同时由于热膨胀,分子间距增加,材料内部自由体积增加,有利于分子运动,使松弛时间缩短。

松弛时间与温度的关系可用Eyring 公式表示:RT E o e /∆=ττ (4-2)式中τ0是常数,△E 是运动活化能,R 是气体常数,T 是绝对温度。

由(4-2)式可见,温度升高,τ变小,松弛过程加快。

由于高分子材料的分子运动既与温度有关,也与时间有关,因此,观察同一个松弛现象,升高温度和延长外场作用时间得到的效果是等同的,在后面章节中将详细介绍这个十分重要的“时—温等效原理”。

这一性质也决定了我们在研究测量高分子材料物理性能时,或者规定好测量温度,或者规定好测量时间或速度,否则不易得到正确可靠的结果。

二、高分子材料的力学状态及转变不同类型高分子材料的力学状态不同,下面按非晶态(无定型)聚合物、结晶聚合物、体型聚合物分别介绍。

(一) 非晶态线型聚合物的力学状态及转变对尺寸确定的非晶态线型聚合物试样施加一定的外力,并以一定的速度升温,测定试样发生的形变随温度的变化,得到材料的温度-形变曲线,又称热机曲线,如图4-1所示。

整条曲线按温度高低可分为五个区,特点如下:A 区:该区温度低,分子热运动能力小,链段运动处于冻结状态,只有侧基、链节、短支链等小运动单元的局部振动发生,因此材料弹性模量高(~1010N/m 2),形变小(~0.1%-1%),外力撤去后,形变立即消失、恢复原状。

材料无论在内部结构还是力学性质方面都类似于低分子玻璃,这种状态称玻璃态。

B 区:该区称玻璃化转变区,是一个对温度变化十分敏感的区域。

在此区间内,随温度升高,链段活动能力增加,链段可以通过绕主链上的单键内旋转而改变分子链构象,使形变迅速增加,模量下降3~4个数量级。

该区域对应的转变温度称玻璃化转变温度,记为g T 。

C 区:温度进一步升高,链段具有充分的运动能力。

在外力作用下,一方面通过链段运动使分子链呈现局部伸展的构象,材料可以发生大形变(~100%-1000%);另一方面此时的热能还不足以使分子整链运动,分子链相互缠结形成网络,链段又有回复卷曲的趋势。

这两种作用相互平衡,使温度-形变曲线出现一个平台区。

处于该区间的高分子材料,模量低,仅为106N 〃m -2左右,形变大,外力去除后,形变可以恢复。

这种力学状态称高弹态。

D 区:这也是一个对温度十分敏感的转变区,称粘流转变区。

由于温度升高,链段的热运动进一步加剧。

链段沿外力方向的协同运动,不仅使分子链形态发生改变,而且导致分子链解缠结,分子重心发生相对位移,宏观上表现为出现塑性形变和粘性流动。

形变迅速增加,弹性模量下降到104 N 〃m -2以下。

该区间对应的转变温度称粘流温度,记为f T 。

E 区:温度高于f T 后,大分子链重心发生相对位移的运动占绝对优势,形变继续发展,高分子材料呈熔体(液体)状,这种状态称粘流态。

高分子制品的加工成型多在该区域内进行。

由上可见,在不同外部条件下,非晶态线型聚合物可以存在三种不同的力学状态—玻璃态、高弹态、粘流态,三态之间有两种状态转变过程—玻璃化转变、粘流转变。

与转变过程对应的两个转变温度——玻璃化转变温度g T 、粘流温度f T 是两个十分重要的物理量。

从分子运动的观点看,玻璃化转变温度g T 对应着链段的运动状态,温度小于g T 时链段运动被冻结,大于gT时链段开始运动。

粘流温度f T 对应着分子整链的运动状态,温度小于f T 时分子链重心不发生相对位移,大于f T 时分子链解缠结,出现整链滑移。

不同高分子材料具有不同的转变温度,在常温下处于不同的力学状态。

如橡胶的g T 较低,一般是零下几十度,如天然橡胶g T = -73℃,顺丁橡胶g T = -108℃。

常温下橡胶处于高弹态,表现出高弹性,g T 规定为其最低使用温度,即耐寒温度。

塑料的g T 较高,如聚氯乙烯g T =87℃,聚苯乙烯g T =100℃,常温下处于硬而脆的玻璃态,g T 为其最高使用温度,也即耐热温度。

另须指出,从热力学相态角度看,玻璃态、高弹态和粘流态均属液相,非晶态线型聚合物处于这三态时,分子排列均是无序的。

三态之间的差别主要是变形能力不同,即模量不同。

从分子热运动角度来看,三态的差别只不过是分子运动能力不同而已,因此从玻璃态到高弹态到粘流态的转变均不是热力学相变。

(二) 结晶聚合物的力学状态及转变结晶聚合物的力学状态与结晶度和聚合物分子量大小有关。

低结晶度聚合物中结晶区小,非晶区大,非晶部分有玻璃化转变温度g T 决定其力学状态,结晶部分则有熔点m T 决定其力学状态。

当温度高于g T 而低于m T 时(g T < T <m T ),虽然非晶区的链段开始运动,但由于晶区没熔融,微晶限制了整链的运动,材料仍处于高弹态。

只有当温度高于m T ,晶区熔融,且分子整链相对移动(T >f T ),材料才进入粘流态。

高结晶度聚合物中(结晶度>40%)结晶相形成连续相,低温时处于类玻璃态,材料可作为塑料、纤维使用。

温度升高,玻璃化转变不明显,而晶区熔融为主要的状态转变。

晶区熔融后或者直接进入粘流态(若材料分子量低,f T <m T );或先变为高弹态,继续升温超过粘流温度时再变为粘流态(若材料分子量高,f T >m T ),。

(三) 体型聚合物的力学状态体型聚合物由于分子链间存在交联化学键,限制了整链运动,因此其特点是不溶、不熔。

尽管如此,在合适条件下,链段仍能运动,根据链段运动与否可判断其处于玻璃态或是高弹态。

当交联度较小时,网链较长,网链构象的变化仍可按高斯链处理。

此时材料仍有玻璃化转变温度g T 。

根据环境温度高或低于g T ,可判断材料处于高弹态或玻璃态。

当交联度大时,链段运动困难,玻璃化转变难以发生,材料始终处于玻璃态。

通常热固性树脂,如酚醛树脂、环氧树脂等,其交联度(固化程度)高,它们是一类强度高、硬而脆的塑料。

硫化橡胶作弹性体用,要求其处于高弹态,交联度必需恰当控制。

三、高分子材料的玻璃化转变 (一)玻璃化转变现象玻璃化转变是高分子材料力学状态变化中的普遍现象,玻璃化转变温度g T 是高分子材料最重要的特征温度。

玻璃化转变的实质是链段运动被“冻结”或“解冻”的状态变化。

相关文档
最新文档