高中数学第二章基本初等函数Ⅰ2.2对数函数2.2.1对数与对数运算第2课时对数的运算学案含解析新人教
第二章 2.2 2.2.1 第2课时 对数的运算

log27
=
−
1 2
×
4
−
1 2
log23
+
3 2
+
1 2
log23
=
−2
+
3 2
=
−对数的运算
M 目标导航 UBIAODAOHANG
Z 知识梳理 HISHI SHULI
题型一 题型二 题型三 题型四
Z重难聚焦 HONGNAN JVJIAO
D典例透析 IANLI TOUXI
(2)原式=2lg 5+2lg 2+lg 5×(1+lg 2)+(lg 2)2
2 49 3
(2)2log32-log3
32 9
+
log38
−
5lo
g53.
解:(1)(方法一)原式 = 1 (5lg 2-2lg 7)− 4 × 3 lg 2+ 1 (2lg 7+lg 5)
2
32
2
=
5 2
lg
2-lg
7-2lg
2+lg
7+
1 2
lg
5
= 1 lg 2+ 1 lg 5= 1 (lg 2+lg 5)
=
lo g18 (5×9) lo g18 (2×18)
=
log185 + log189 log182 + log1818
=
1
������ +
+ ������ log18 2
������ + ������
������ + ������ ������ + ������
学年高中数学第二章基本初等函数Ⅰ2.2对数函数2.2.1第2课时对数运算课件新人教A版必修.ppt

3.logaMn= nlogaM
(n∈R).
二、对数换底公式 logab=llooggccba(a>0,且 a≠1,b>0,c>0,且 c≠1); 特别地:logab·logba= 1 (a>0,且 a≠1,b>0,且 b≠1).
[双基自测]
1.lg 8+3lg 5 的值为( )
A.-3
B.-1
第 2 课时 对数运算
考纲定位
重难突破
1.掌握对数的运算性质. 重点:对数的运算性质.
2.能熟练运用对数的运算性质进行化 难点:换底公式的应用.
简求值.
01 课前 自主梳理 02 课堂 合作探究 03 课后 巩固提升
课时作业
[自主梳理]
一、对数的运算性质
如果 a>0,且 a≠1,M >0,N>0,那么: 1.loga(M·N)= logaM+logaN . 2.logaMN=logaM-logaN .
b=log510=lg15,
∴1a+1b=lg 2+lg 5=1. 答案:1
4.计算下列各式的值.
(1)12lg3429-lg 4+lg 245;
(2)lg 52+23lg 8+lg 5·lg 20+(lg 2)2.
解析:(1)原式=lg472-lg 4+lg7
5=lg4
2×7 7×4
5=lg(
2×
忽略对数的限制条件导致错误
[典例] 若 lg(x-y)+lg(x+2y)=lg 2+lg x+lg y,求xy的值. [错解] 因为 lg(x-y)+lg(x+2y)=lg[(x-y)(x+2y)]=lg(2xy), 所以(x-y)(x+2y)=2xy,即 x2-xy-2y2=0,
高一数学必修一第二章基本初等函数知识点总结

在 R 上是减函数
函数值的 变化情况
a 变化对
图象的影 响
y>1(x > 0), y=1(x=0), 0 < y<1(x < 0)
y> 1(x < 0), y=1(x=0), 0 < y< 1(x > 0)
在第一象限内, a 越大图象越高,越靠近 y 轴; 在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴. 在第二象限内, a 越小图象越低,越靠近 x 轴.
y
f ( x) 中反解出 x
1
f ( y) ;
③将 x f 1( y ) 改写成 y f 1 ( x) ,并注明反函数的定义域.
( 8)反函数的性质
①原函数 y
f (x) 与反函数 y
1
f ( x) 的图象关于直线 y
x 对称.
②函数 y f ( x) 的定义域、值域分别是其反函数 y f 1 (x ) 的值域、定义域. ③若 P(a,b) 在原函数 y f (x ) 的图象上,则 P' (b, a) 在反函数 y f 1(x ) 的图象上.
③根式的性质: (n a )n a ;当 n 为奇数时, n an
a ;当 n 为偶数时, n an | a |
a (a 0)
.
a (a 0)
( 2)分数指数幂的概念
m
①正数的正分数指数幂的意义是: a n n a m (a 0, m, n N , 且 n 1) . 0 的正分数指数幂等于 0.②正数的负分数
设一元二次方程 ax 2 bx c 0( a 0) 的两实根为 x1, x2 ,且 x1 x2 .令 f ( x) ax 2 bx c ,从以下四个方
面来分析此类问题:①开口方向: a ②对称轴位置: x
高中数学第二章基本初等函数Ⅰ2.22.2.1对数与对数运算课件新人教必修

x-lg 4)-3(lg y-lg 4)=
3(lg x-lg y)=3 m. 答案:3 m
5.计算 log3 27+ lg 25+ lg ______.
8 -1 4+ 7log72-27 3=
3 2 3×(-1) 解析:原式= log332+ lg(25×4)+ 2- 3 3 3 3 = +2+2- =4. 2 2 答案:4
3.对数换底公式 logcb (1)logab= (a>0,且 a≠1,c>0,且 c≠1,b>0). logca (2)对数换底公式的重要推论: 1 ①logaN= (N>0,且 N≠1,a>0,且 a≠1); logNa m ②loganb = logab(a>0,且 a≠1,b>0); n
m
类型 1 指数式与对数式的互化(自主研析) [典例 1] (1) 将下列指数式化为对数式:
1x ①2 =5 化为________;②(
3)x=6 化为________;
(2) 将下列对数式化为指数式: 1 ① log10010 = 化 为 ______ ; ②logx64 = - 6 化 为 2 ______.
1 答案: (1)log4 =- 2 (2)x = logπ8 (3)( 3)6 = x 16 (4)πx=6
类型 2 对数运算性质的应用 2 3 lg 3+ lg 9+ lg 27-lg 3 5 5 [典例 2] 化简:(1) ; lg 81-lg 27 (2)lg25+lg 2lg 50+2
[自主解答] (1)根据指数式与对数式的互化规则,可 得①x=log15;②x=log 2 .
(2)根据指数式与对数式的互化规则, 1 可得①1002=10;②x-6=64. 答案:(1)①x=log15 ②x=log 2
高中数学 第二章 基本初等函数(Ⅰ)2.2.1 对数与对数运算教材梳理素材 新人教A版必修1

2.2.1 对数与对数运算疱丁巧解牛知识·巧学·升华 一、对数 1.对数一般地,如果a x=N (a >0,a ≠1),那么x 叫做以a 为底N 的对数,记作x=log a N ,其中a 叫做对数的底数,N 叫做真数.对数式的对数就是原指数式的指数,只是表示形式不同而已,即已知指数式a b=N ,用a 、N 表示b 的运算叫对数运算,记作b=log a N.对数式是指数式的另一种表达形式,对数运算是指数运算的逆运算.常用符号“log ”表示对数,但它仅是一个符号而已.同“+、-、×、”等符号一样,表示一种运算.要从以下几个方面来理解对数的概念.(1)会依据定义把指数式写成对数式.例如:∵32=9,∴2是以3为底9的对数.记作log 39=2; ∵41=4,∴1是以4为底4的对数.记作log 44=1; ∵20=1,∴0是以2为底1的对数.记作log 21=0; ∵318=21,∴-31是以8为底21的对数.记作log 821=-31.(2)log a N=b 中规定底数a >0且a ≠1.这是因为若a <0,则N 为某些值时,b 不存在,如log (-2)21;若a=0,N 不为0时,b 不存在,如log 03,N 为0时,b 可为任意正数,是不唯一的,即log 00有无数个值;若a=1,N 不为1时,b 不存在,如log 12,N 为1时,b 可为任意数,是不唯一的,即log 11有无数个值.总之,就规定了a >0且a ≠1.(3)只有正数才有对数,零和负数没有对数.在解决有关对数问题时,容易忽视对数的真数大于零的问题.因为底数a >0且a ≠1,由指数函数的性质可知,对任意的b ∈R ,a b>0恒成立,并且由于在实数范围内,正数的任何次幂都是正数,所以N >0.(4)指数式、对数式、根式的关系及相应各字母的名称.记忆要诀 指数式进行的是乘方运算,由a 、b 求N ;根式进行的是开方运算,由N 、b 求a ;对数式进行的是对数运算,由a 、N 求b. (5)对数恒等式:①Na alog =N ;②log a a b=b.证明:①∵a b=N ,∴b=log a N.∴a b=Nalog =N ,即Na alog =N.②∵a b =N ,∴b=log a N.∴b=log a N=log a a b,即log a a b=b. 如5log 33=5,6log 44=6,log 335=5,3222log =32等.要熟记对数恒等式的形式,会使用这一公式化简对数式.要点提示 证明对数恒等式,一要注意指数与对数式的互化,二要紧扣对数的定义. (6)两个特殊的对数式:log a a=1;log a 1=0.证明:∵a 1=a ,∴log a a=1.∵a 0=1,∴log a 1=0,即底的对数等于1,1的对数等于0. 2.常用对数当底数a=10时,对数log a N 叫做常用对数,记作lgN.(1)常用对数是指底数为10的对数,它的形式可由log 10N 缩写为lgN ,其中lgN 默认它的底数为10. (2)会求常用对数的值.若真数易转化成以10为底的幂的形式,可直接求值.如lg10,lg100,lg0.001等,∵102=100,∴lg100=2.又∵10-3=0.001,∴lg0.001 =-3.一般情况下,可通过.如lg200 1,lg0.032,lg187.5等.使用计算器时,应先按上真数,然后再按lg2 001≈3.301 2,lg0.032≈-1.494 9,lg187.5≈2.273 0.因为对数表只能查得1≤a <10的对数,所以对于不在该范围内的数,使用对数表求值时,应先用科学记数法把真数表示成a ×10n(1≤a <10,n ∈Z )的形式,运用后面的对数性质化简后,再求值.联想发散 要会使用科学记数法记数.当N >10时,可把N 写成a ×10n的形式,其中n比N 的整数位数少1,如10 001=1.000 1×104;当0<N <1时,可把N 写成a ×10-n,其中n 是从左边第一个不是0的数字算起前面所有0的个数,如0.001 02=1.02×10-3. 3.自然对数在科学技术中,常常使用以无理数e=2.718 28…为底的对数.以e 为底的对数叫做自然对数.log e N 通常记作lnN.①自然对数与常用对数的关系: lnN ≈2.302 6lgN. ②可直接使用计算器求自然对数值.它的使用规则同常用对数一样,也是先按真数值,再按ln 键,即可直接求出常用对数值.如ln34≈3.526 4,也可查表,求自然对数的值. 要点提示 自然对数与常用对数是对数的两个特例,只有它们才既能查表,又能使用计算器求值. 二、对数运算1.积、商、幂的对数运算性质 (1)log a MN=log a M+log a N ,两个正因数积的对数等于同一底数的各因数对数的和.该法则可以推广到若干个正因数积的对数,即log a (N 1·N 2·…·N k )=log a N 1+log a N 2+…+log a N k . (2)log aNM=log a M-log a N. 两个正数商的对数等于同一底数的被除数的对数减去除数的对数.(3)log a M n=nlog a M (n ∈R ).正数幂的对数等于幂指数乘以同一底数幂的底数的对数对数的运算法则既可正用,也可逆用,由积、商的运算法则可知,若逆用该公式,可把对数式转化成同底数的对数的和、差的形式.误区警示 使用对数的运算法则时,要注意各个字母的取值范围,只有各个对数式都存在时,等式才成立.例如:lg (-2)(-3)存在,但lg (-2),lg (-3)不存在,lg (-10)2存在,但lg (-10)不存在等.因此不能得出lg (-2)(-3)=lg (-2)+lg (-3),lg (-10)2=2lg (-10). 2.换底公式(1)换底公式:log a b=abc c log log (a >0,a ≠1,c >0,c ≠1,b >0).证明:设log a b=c ,则a c=b.两边取以c 为底的对数,得clog c a=log c b , 所以c=a b c c log log ,即log a b=abc c log log .换底公式可完成不同底数的对数式之间的转化,该公式既可正用,又可逆用,使用时的关键是选择底数,换底的目的是实现对数式的化简,凡是所求对数式的底数与题设中的对数底数不同的,都可考虑用换底公式求解,使用换底公式推论的前提是底数或真数能化成幂的形式.①换底公式的证明要紧扣对数的定义,证明的依据是 若M >0,N >0,M=N ,则log a M=log a N.②自然对数与常用对数的关系可以通过换底公式建立关系: lnN=e N lg lg ≈4343.0lg N≈2.302 6lgN. ③可把一般对数式转化成常用对数或自然对数,通过计算器或查表求值. ④换底公式可用于对数式的化简、求值或证明. (2)换底公式的三个推论:n a b n log =log a b ,m a b n log =nmlog a b ,log a b ·log b a=1. 推广:log a b ·log b c ·log c d ·…·log e a=1. 问题·思路·探究问题1 对数运算性质的实质是什么?思路:对数运算性质是指数运算性质的拓展引申,它们之间可以互相转化.探究:由于指数运算中遇到次数高的指数进行乘、除、乘方和开方时运算量太大,操作很繁,而对数运算恰恰将指数运算这些弱点克服,可以将乘、除、乘方和开方时运算转化为对数的加、减、乘的运算,从而降低了运算难度,加快了运算速度,简化了计算方法,有力地促进了涉及与高次数运算有关领域如天文、航海、工程、贸易及军事的发展.问题2 式子log a M n=nlog a M 表明真数的指数可以直接拿到对数式前作系数,那请问:底数的指数也可以直接拿到对数式前作系数吗?若不能,有没有类似性质呢?怎么证明呢? 思路:log a M n与nlog a M 与log a nM=n1log a M 的结合使进行对数运算时更加简便快捷,同时也提醒我们在进行对数运算过程中,如果运算性质不能直接运用时,可以通过先化成指数式,变形后再化成对数式的方法达到计算的目的探究:一般不能,比如2=log 416=log 2216而,2log 216=8≠log 2216=2,但有类似的性质,这个性质是 log a nM=n 1log a M. 证明如下:令log a M=x,则M=a x,所以n 1=log a M=n 1x ,而M n a log =x a a n log =a x n a log =x ·n 1,所以M n a log =n1log a M.典题·热题·新题例1 (2006浙江高考,理)已知0<a <1,log a m <log a n <0,则( )A.1<n <mB.1<m <nC.m <n <1D.n <m <1 思路解析:∵0<a<1,∴y=log a x 为减函数,由log a m<log a n<0,可得1<n<m. 答案:A例2 设log 189=a ,18b=5,求log 3645.思路解析:本题是条件求值问题,解题的关键是把结论化成已知的形式,换底是显然的.解:∵18b=5,∴b=log 185. ∴log 3645=aba b a b a -+=-+=++=++=29log 2918log 12log 19log 5log 36log 45log 18181818181818.深化升华 换底公式可完成不同底数的对数式之间的转化,该公式既可正用,又可逆用,使用时的关键是选择底数,换底的目的是实现对数式的化简. 例3 计算:lg25+32lg8+lg5·lg20+lg 22. 思路解析:本题主要考查对数的运算性质. 解:原式=lg25+328lg +lg210·lg (10×2)+lg 22 =lg25+lg4+(lg10-lg2)(lg10+lg2)+lg 22=lg100+lg 210-lg 22+lg 22=2+1=3.深化升华 对于对数的运算性质要熟练掌握,并能够灵活运用,在求值的过程中,要注意公式的正用和逆用. 例4 设3x=4y=36,求yx 12+的值. 思路解析:本题主要考查对数的定义及运算性质.从所求的值来看,解题的关键是设法把x 、y 表示出来,再结合对数的运算性质就可以求出数值. 解:∵3x=4y=36,∴x=log 336,y=log 436.则x1=log 363,y 1=log 364.∴x 2+y1=2log 363+log 364=log 36(32×4)=1. 深化升华 指数式化为对数式后,两对数式的底不同,但真数相等,式子两端取倒数之后,利用对数的换底公式可消除差异.例5 已知a 、b 、c 均为正数,3a =4b =6c,求证:cb a 212=+. 思路解析:本题主要考查对数的定义及其运算性质.从求证的结论看,解题的关键是设法把a 、b 、c 从连等号式中分离出来,为便于找出a ,b ,c 的关系,不妨设3a =4b =6c=k (k >0),则a 、b 、c 就可用这一变量k 表示出来,再结合对数的运算性质就可证得结论.证明:设3a =4b =6c=k ,则k >0.由对数的定义得a=log 3k ,b=log 4k ,c=log 6k , 则左边=kk b a 43log 1log 212+=+=2log k 3+log k 4=log k 9+log k 4=log k 36, 右边=k c 6log 22==2log k 6=log k 36,∴cb a 212=+. 深化升华 证明恒等式常用的方法(1)作差比较法;(2)化简较为复杂的一边等于较简单的一边; (3)化简左、右两边,使它们等于同一式子;(4)先证明另一恒等式,再推出所要求证的恒等式.例6 设a 、b 同号,且a 2+2ab-3b 2=0,求log 3(a 2+ab+b 2)-log 3(a 2-ab+b 2)的值.思路解析:本题考查对数性质的应用.已知只告诉我们关于a 、b 的一个齐次方程,因此不可能求出a 、b 的值,只能求出a 、b 的关系式,从求证的结论看,由对数的运算性质可得真数也是一个齐次式,这样就把条件同结论联系到一起了.解:∵a 、b 同号,∴b ≠0.把方程a 2+2ab-3b 2=0两边同除以b 2,得(b a )2+2(ba)-3=0. ∴(b a +3)(b a -1)=0,得b a =1或ba=-3(舍去).∴a=b. ∴log 3(a 2+ab+b 2)-log 3(a 2-ab+b 2)=log 3(3a 2)-log 3a 2=log 33=1.深化升华 :条件代数式的求值同条件代数式的化简、证明一样,解题的关键是找到题设与结论的联系,可化简结论,用上条件,可化简条件得出结论,也可同时化简条件与结论等.。
高中数学第二章基本初等函数(Ⅰ)2.2.1.3对数的运算(2)练习(含解析)新人教A版必修1

课时23 对数的运算(2)换底公式的应用a b c abc A .1 B .2 C .3 D .5答案 A解析 ∵log a x =1log x a =2,∴log x a =12. 同理log x c =16,log x b =13. ∴log abc x =1log x abc =1log x a +log x b +log x c=1. 2.若log 34·log 48·log 8m =log 416,则m =________.答案 9解析 由换底公式,得lg 4lg 3×lg 8lg 4×lg m lg 8=lg m lg 3=log 416=2,∴lg m =2lg 3=lg 9,∴m =9.3.设3x =4y =36,求2x +1y的值. 解 由已知分别求出x 和y ,∵3x =36,4y=36,∴x =log 336,y =log 436,由换底公式得: x =log 3636log 363=1log 363,y =log 3636log 364=1log 364, ∴1x =log 363,1y=log 364, ∴2x +1y=2log 363+log 364=log 36(32×4)=log 3636=1. 4.计算:(1)log 89×log 2732;(2)log 927;(3)log 21125×log 3132×log 513; (4)(log 43+log 83)(log 32+log 92).解 (1)log 89×log 2732=lg 9lg 8×lg 32lg 27=lg 32lg 23×lg 25lg 33=2lg 33lg 2×5lg 23lg 3=109; (2)log 927=log 327log 39=log 333log 332=3log 332log 33=32; (3)log 21125×log 3132×log 513=log 25-3×log 32-5×log 53-1=-3log 25×(-5log 32)×(-log 53)=-15×lg 5lg 2×lg 2lg 3×lg 3lg 5=-15; (4)原式=⎝⎛⎭⎪⎫lg 3lg 4+lg 3lg 8⎝ ⎛⎭⎪⎫lg 2lg 3+lg 2lg 9 =⎝ ⎛⎭⎪⎫lg 32lg 2+lg 33lg 2⎝ ⎛⎭⎪⎫lg 2lg 3+lg 22lg 3 =12+14+13+16=54.运用换底公式不熟练致误23A.14 B.12C .2D .4 易错分析 本题易在使用对数的运算公式时,尤其换底公式的使用过程中发生错误. 答案 D正解 log 29×log 34=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=2×2=4.一、选择题1.log 29log 23=( )A.12 B .2 C.32 D.92答案 B解析 由换底公式log 39=log 29log 23.∵log 39=2,∴log 29log 23=2.2.已知log 23=a ,log 37=b ,则log 27=() A .a +b B .a -b C .ab D.ab答案 C解析 log 27=log 23×log 37=ab .3.设2a =5b =m ,且1a +1b =2,则m =( ) A.10 B .10 C .20 D .100答案 A解析 ∵2a =5b =m ,∴a =log 2m ,b =log 5m .1a +1b =log m 2+log m 5=log m 10=2,∴m 2=10.又∵m >0,∴m =10,选A.4.1log 1419+1log 1513等于( )A .lg 3B .-lg 3C.1lg 3 D .-1lg 3答案 C解析 原式=log 1914+log 1315=log 1312+log 1315=log 13110=log 310=1lg 3.选C. 5.已知2a =3b =k (k ≠1),且2a +b =ab ,则实数k 的值为( )A .6B .9C .12D .18答案 D解析 a =log 2k ,b =log 3k ,由2a +b =ab 得2log 2k +log 3k =log 2k ·log 3k ,即2lg k lg 2+lg k lg 3=k2lg 2lg 3,得2lg 3+lg 2=lg k ,即k =18.二、填空题6.方程log 3(x -1)=log 9(x +5)的解是________.答案 4解析 由换底公式得log 9(x +5)=12log 3(x +5).∴原方程可化为2log 3(x -1)=log 3(x +5),即log 3(x -1)2=log 3(x +5),∴(x -1)2=x +5.∴x 2-3x -4=0,解得x =4或x =-1.又∵⎩⎪⎨⎪⎧ x -1>0,x +5>0,∴x >1,故x =4.7.若log a b ·log 3a =4,则b 的值为________.答案 81解析 log a b ·log 3a =4,即log 3a ·log a b =4,即log 3b =4,∴34=b ,∴b =81.8.已知2x =72y =A ,且1x +1y =1,则A 的值是________.答案 98解析 ∵2x =72y =A ,∴x =log 2A,2y =log 7A .∴1x +1y =1log 2A +2log 7A=log A 2+2log A 7=log A 2+log A 49=log A 98=1.∴A =98.三、解答题9.计算下列各式的值:(1)lg 2+lg 5-lg 8lg 5-lg 4;(2)lg 5(lg 8+lg 1000)+(lg 23)2+lg 16+lg 0.06. 解 (1)原式=1-3lg 2lg 5-2lg 2=1-3lg 21-3lg 2=1; (2)原式=lg 5(3lg 2+3)+3(lg 2)2-lg 6+lg 6-2=3lg 5×lg 2+3lg 5+3lg 22-2=3lg 2(lg 5+lg 2)+3lg 5-2=3(lg 2+lg 5)-2=3-2=1.10.已知x ,y ,z 为正数,3x =4y =6z,2x =py .(1)求p ;(2)求证:1z -1x =12y. 解 (1)设3x =4y =6z =k (显然k >0,且k ≠1),则x =log 3k ,y =log 4k ,z =log 6k .由2x =py ,得2log 3k =p log 4k =p ·log 3k log 34. ∵log 3k ≠0,∴p =2log 34.(2)证明:1z -1x =1log 6k -1log 3k =log k 6-log k 3=log k 2=12log k 4=12y ,∴1z -1x =12y.►2.2.2 对数函数及其性质。
高中数学第二章基本初等函数(Ⅰ)2.2.1对数与对数运算第一课时对数课件新人教A版必修13
log3 x, x 0, (2)若函数 f(x)= 3x , 1 x 0, 求 f(f(f(-2-
3x 2 , x 1,
2 ))).
(2)解:因为-2- 2 <-1,所以 f(-2- 2 )=- 32 2 2 =- 1 . 9
(4)因为 logx64=-2, 所以 x-2=64,所以 x= 1 .
8
题型二 对数的简单性质 [例2] 求下列各式中的x. (1)log3(x2-1)=0;
解:(1)因为 log3(x2-1)=0,
所以
x 2
x
2
1 1
0, 1,
所以 x=± 2 .
(2)log(x+3)(x2+3x)=1.
又- 1 ∈(-1,0],所以 f(f(-2-
2
))=f(-
1
)=
3
1 9
.
9
9
因为
3
1 9
>0,所以
f(
3
1 9
)=log3
3
1 9
=-
1
.即原式=-
1
.
9
9
学霸经验分享区
(1)指数式与对数式互化时的技能及应注意的问题 ①技能:若是指数式化为对数式,只要将幂作为真数,指数当成对数 值,而底数不变即可;若是对数式化为指数式,则正好相反. ②注意问题:利用对数式与指数式间的互化公式互化时,要注意字母 的位置改变;对数式的书写要规范:底数a要写在符号“log”的右下 角,真数正常表示. (2)对数性质的运用技能 logaa=1及loga1=0是对数计算的两个常用量,可以实现数1,0与对数 logaa及loga1的互化.
高一数学上册 第二章基本初等函数之对数函数知识点总结及练习题(含答案)
高一数学上册第二章基本初等函数之对数函数知识点总结及练习题(含答案)高一数学上册第二章基本初等函数之对数函数知识点总结及练习题(含答案)〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若a某N(a0,且a1),则某叫做以a为底N的对数,记作某logaN,其中a叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:某logaNa某N(a0,a1,N0).(2)几个重要的对数恒等式:loga10,logaa1,logaabb.N;自然对数:lnN,即loge(3)常用对数与自然对数:常用对数:lgN,即log10…).e2.71828(4)对数的运算性质如果a0,a1,M①加法:logaN(其中0,N0,那么MlogaNloga(MN)M②减法:logaMlogaNlogaN③数乘:nlogaMlogaMn(nR)④alogaNNnlogaM(b0,nR)bn⑤logabM⑥换底公式:logaNlogbN(b0,且b1)logba【2.2.2】对数函数及其性质(5)对数函数函数名称定义函数对数函数yloga某(a0且a1)叫做对数函数a1y某10a1y某1yloga某yloga某图象O(1,0)O(1,0)某某定义域值域过定点奇偶性(0,)R图象过定点(1,0),即当某1时,y0.非奇非偶单调性在(0,)上是增函数在(0,)上是减函数loga某0(某1)函数值的变化情况loga某0(某1)loga某0(某1)loga某0(0某1)loga某0(某1)loga某0(0某1)a变化对图象的影响在第一象限内,a越大图象越靠低,越靠近某轴在第一象限内,a越小图象越靠低,越靠近某轴在第四象限内,a越大图象越靠高,越靠近y轴在第四象限内,a越小图象越靠高,越靠近y轴(6)反函数的概念设函数果对于yf(某)的定义域为A,值域为C,从式子yf(某)中解出某,得式子某(y).如y在C中的任何一个值,通过式子某(y),某在A中都有唯一确定的值和它对应,那么式子某(y)表示某是y的函数,函数某(y)叫做函数yf(某)的反函数,记作某f1(y),习惯上改写成yf1(某).(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式③将某yf(某)中反解出某f1(y);f1(y)改写成yf1(某),并注明反函数的定义域.(8)反函数的性质①原函数②函数yf(某)与反函数yf1(某)的图象关于直线y某对称.yf(某)的定义域、值域分别是其反函数yf1(某)的值域、定义域.yf(某)的图象上,则P"(b,a)在反函数yf1(某)的图象上.③若P(a,b)在原函数④一般地,函数yf(某)要有反函数则它必须为单调函数.一、选择题:1.log89的值是log23A.()23B.1C.32D.22.已知某=2+1,则log4(某3-某-6)等于A.()C.0D.32B.54123.已知lg2=a,lg3=b,则lg12等于lg15()A.2ab1abB.a2b1abC.2ab1abD.a2b1ab4.已知2lg(某-2y)=lg某+lgy,则某的值为 yA.1B.4()C.1或4C.(C.ln5D.4或-1()5.函数y=log1(2某1)的定义域为2A.(1,+∞)B.[1,+∞)2B.5e1,1]2D.(-∞,1)()D.log5e()y6.已知f(e某)=某,则f(5)等于A.e57.若f(某)loga某(a0且a1),且f1(2)1,则f(某)的图像是yyyABCD8.设集合A{某|某10},B{某|log2某0|},则AB等于A.{某|某1}C.{某|某1}B.{某|某0}D.{某|某1或某1}2O某O某O某O某()9.函数yln某1,某(1,)的反函数为()某1e某1,某(0,)B.y某e1e某1,某(,0)D.y某e1e某1,某(0,)A.y某e1e某1,某(,0)C.y某e1二、填空题:10.计算:log2.56.25+lg11log23+lne+2=10011.函数y=log4(某-1)2(某<1的反函数为__________.12.函数y=(log1某)2-log1某2+5在2≤某≤4时的值域为______.44三、解答题:13.已知y=loga(2-a某)在区间{0,1}上是某的减函数,求a的取值范围.14.已知函数f(某)=lg[(a2-1)某2+(a+1)某+1],若f(某)的定义域为R,求实数a的取值范围.15.已知f(某)=某2+(lga+2)某+lgb,f(-1)=-2,当某∈R时f(某)≥2某恒成立,求实数a的值,并求此时f(某)的最小值?一、选择题:.15.(lgm)0.9≤(lgm)0.8,16.25y8413,14.y=1-2某(某∈R),217.解析:因为a是底,所以其必须满足a>0且a不等于1a>0所以2-a某为减函数,要是Y=loga(2-a某)为减函数,则Y=loga(Z)为增函数,得a>1又知减函数区间为[0,1],a必须满足2-a某0>02-a某1>0即得a扩展阅读:高一数学上册_第二章基本初等函数之对数函数知识点总结及练习题(含答案)〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若a某N(a0,且a1),则某叫做以a为底N的对数,记作某logaN,其中a叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:某logaNa某N(a0,a1,N0).(2)几个重要的对数恒等式:loga10,logaa1,logbaab.(3)常用对数与自然对数:常用对数:lgN,即log10N;自然对数:lnN,即logeN(其中e2.71828…).(4)对数的运算性质如果a0,a1,M0,N0,那么①加法:logaMlogaNloga(MN)②减法:logaMlogaNlogMaN③数乘:nlogaMlogaMn(nR)log④aaNN⑤lognnabMblogaM(b0,nR)⑥换底公式:logbNaNloglog(b0,且b1)ba【2.2.2】对数函数及其性质(5)对数函数函数名称对数函数定义函数yloga某(a0且a1)叫做对数函数a10a1y某1ylog某1a某yyloga某图象(1,0)OO(1,0)某某定义域(0,)值域R 过定点图象过定点(1,0),即当某1时,y0.奇偶性非奇非偶单调性在(0,)上是增函数在(0,)上是减函数loga某0(某1)loga某0(某1)函数值的变化情况loga某0(某1)loga某0(某1)loga某0(0某1)loga某0(0某1)a变化对在第一象限内,a越大图象越靠低,越靠近某轴在第四象限内,a越大图象越靠高,越靠近y轴在第一象限内,a越小图象越靠低,越靠近某轴在第四象限内,a越小图象越靠高,越靠近y轴④一般地,函数yf(某)要有反函数则它必须为单调函数.图象的影响(6)反函数的概念设函数yf(某)的定义域为A,值域为C,从式子yf(某)中解出某,得式子某(y).如果对于y在C中的任何一个值,通过式子某(y),某在A中都有唯一确定的值和它对应,那么式子某(y)表示某是y的函数,函数某(y)叫做函数yf(某)的反函数,记作某f1(y),习惯上改写成yf1(某).(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式yf(某)中反解出某f1(y);③将某f1(y)改写成yf1(某),并注明反函数的定义域.(8)反函数的性质①原函数②函数yf(某)与反函数yf1(某)的图象关于直线y某对称.yf(某)的定义域、值域分别是其反函数yf1(某)的值域、定义域.yf(某)的图象上,则P(b,a)在反函数yf(某)的图象"1③若P(a,b)在原函数上.一、选择题:1.log89log的值是23A.23B.12.已知某=2+1,则log4(某3-某-6)等于A.3B.5243.已知lg2=a,lg3=b,则lg12lg15等于A.2ab1abB.a2b1abD.a2b1ab4.已知2lg(某-2y)=lg某+lgy,则某y的值为A.1B.45.函数y=log1(2某1)的定义域为2A.(12,+∞)B.[1,+∞)1)6.已知f(e某)=某,则f(5)等于C.32()C.0()C.()C.1或4C.(12,1]()D.2D.122ab1abD.4或-1)D.(-∞,()A.e5B.5eC.ln5D.log5e7.若f(某)loga某(a0且a1),且f1(2)1,则f(某)的图像是()yyyyABCDO某O某某OO某8.设集合A{某|某210},B{某|lo2某g0|}则,AB等于()A.{某|某1}B.{某|某0}C.{某|某1}D.{某|某1或某1}9.函数yln某1某1,某(1,)的反函数为()A.ye某1e某1,某(0,)B.ye某1e某1,某(0,)C.ye某1e某1e某1,某(,0)D.ye某1,某(,0)二、填空题:10.计算:log2.56.25+lg1100+lne+21log23=(11.函数y=log4(某-1)2(某<1的反函数为__________.12.函数y=(log1某)2-log1某2+5在2≤某≤4时的值域为______.44三、解答题:13.已知y=loga(2-a某)在区间{0,1}上是某的减函数,求a的取值范围.14.已知函数f(某)=lg[(a2-1)某2+(a+1)某+1],若f(某)的定义域为R,求实数a的取值范围.15.已知f(某)=某2+(lga+2)某+lgb,f(-1)=-2,当某∈R时f(某)≥2某恒成立,求实数a的值,并求此时f(某)的最小值?一、选择题:.132,14.y=1-2某(某∈R),15.(lgm)0.9≤(lgm)0.8,16.254y817.解析:因为a是底,所以其必须满足a>0且a不等于1a>0所以2-a某为减函数,要是Y=loga(2-a某)为减函数,则Y=loga(Z)为增函数,得a>1又知减函数区间为[0,1],a必须满足2-a某0>02-a某1>0即得a。
高中数学 第二章 基本初等函数(Ⅰ)2.2 对数函数 2.2.1 对数与对数运算 2.2.1.2 对数的运算 新人教A版
【 解 析 】 (1)法 一 : 原 式 = lg(2×7)- 2(lg7- lg3) + lg7 - lg(32×2)
=lg2+lg7-2lg7+2lg3+lg7-2lg3-lg2=0.
法二:原式=lg14-lg732+lg7-lg18 =lg37142××178=lg1=0. (2)原式=2+l2gl3g62-+2l+g32lg2 =42llgg22++2llgg33=12. (3)原式=lg25+(1-lg5)(1+lg5)=lg25+1-lg25=1.
lglg1225+llgg245+llgg58·llgg25+llgg245+lglg1825 =3llgg25+22llgg52+3llgg52llgg25+22llgg25+33llgg52=133llgg253llgg25 =13.
【解析】 原式=log5102+log50.25 =log5(102×0.25)=log525=log552=2. 【答案】 2
课堂探究 互动讲练 类型一 利用对数的运算性质化简与求值
[例 1] 计算:(1)lg14-2lg73+lg7-lg18; (2)2+2lglg02.3+6+lg32lg2; (3)lg25+lg2·lg50.
知识点二 对数换底公式 logab=llooggccba(a>0,a≠1,c>0,c≠1,b>0). 特别地:logab·logba=1(a>0,a≠1,b>0,b≠1).
【化解疑难】
1.换底公式的推导 设 x=logab,化为指数式为 ax=b,两边取=logcb.
|素养提升|
1.运用对数的运算性质应注意 (1)在各对数有意义的前提下才能应用运算性质. (2)根据不同的问题选择公式的正用或逆用. (3)在运算过程中避免出现以下错误: ①logaNn=(logaN)n,②loga(MN)=logaM·logaN,③logaM±logaN =loga(M±N).
课件7:2.2.1 第2课时 对数的运算
提示:
1.应用 logaM+logaN=loga(MN),logaM-logaN=logaMN,及 mlogab=logabm 来
化简求值.
2.3429=(4 7 2)2,
3
8= 22 ,
245=7
5.
3.统一为 lg2 或 lg5 的形式便于求值,能使用 lg5+lg2=1 求值.
[解]
(1)解法一:原式=lg(2×7)-2(lg7-lg3)+lg7-lg(32×2)
【跟踪训练 1】 计算下列各式的值: (1)log2 8+4 3+log2 8-4 3; (2)lg5(lg8+lg1000)+(lg2 3)2+lg16+lg0.06. [解] (1)原式=log2( 8+4 3· 8-4 3)=log24=2. (2)原式=lg5(lg23+lg103)+( 3lg2)2+lg6-1+lg(6×10-2) =lg5(3lg2+3)+3(lg2)2-lg6+(lg6+lg10-2) =(1-lg2)(3lg2+3)+3(lg2)2-2 =3lg2+3-3(lg2)2-3lg2+3(lg2)2-2=1.
第二章 基本初等函数(Ⅰ)
2.2.1 对数与对数运算
第2课时 对数的运算
[问题提出] 1.对数的运算性质有哪些? 2.不同底的对数运算应用什么公式转化为同底的对数运算? 3.换底公式有哪些变形形式?
[基础自学] 1.对数的运算性质 如果 a>0 且 a≠1,M>0,N>0,那么, (1)loga(MN)=___l_og_a_M_+__lo_g_aN___; 推广:loga(N1N2…Nk)=logaN1+logaN2+…+logaNk(k∈N*). (2)logaMN =___l_o_ga_M_-__lo_g_aN____; (3)logaMn=___n_l_og_a_M__ (n∈R).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学第二章基本初等函数Ⅰ2.2对数函数2.2.1对数与对数运算第2课时对数的运算学案含解析新人教版必修1学习目标 1.掌握对数的运算性质,能运用运算性质进行对数的有关计算(重点).2.了解换底公式,能用换底公式将一般对数化为自然对数或常用对数(重点).知识点1 对数的运算性质 若a >0且a ≠1,M >0,N >0,则有: (1)log a (M ·N )=log a M +log a N . (2)log a M N=log a M -log a N . (3)log a M n=n log a M (n ∈R ).【预习评价】 (正确的打“√”,错误的打“×”) (1)积、商的对数可以化为对数的和、差.( ) (2)log a (xy )=log a x ·log a y .( ) (3)log a (-2)3=3log a (-2).( )提示 (1)√ 根据对数的运算性质可知(1)正确;(2)× 根据对数的运算性质可知log a (xy )=log a x +log a y ; (3)× 公式log a M n=n log a M (n ∈R )中的M 应为大于0的数. 知识点2 换底公式log a b =log c blog c a (a >0,且a ≠1;c >0,且c ≠1;b >0).【预习评价】(1)log 35·log 56·log 69=________.(2)若log 34×log 48×log 8m =log 416,则m =________. 解析 (1)原式=lg 5lg 3·lg 6lg 5·lg 9lg 6=lg 9lg 3=2lg 3lg 3=2.(2)原方程可化为lg 4lg 3×lg 8lg 4×lg m lg 8=lg mlg 3=2,即lg m =2lg 3=lg 9,∴m =9.答案 (1)2 (2)9题型一 利用对数的运算性质化简、求值 【例1】 计算下列各式的值: (1)12lg 3249-43lg 8+lg 245; (2)lg 25+23lg 8+lg 5×lg 20+(lg 2)2.解 (1)法一 原式=12(5lg 2-2lg 7)-43×32lg 2+12(2lg 7+lg 5)=52lg 2-lg 7-2lg 2+lg 7+12lg 5 =12lg 2+12lg 5=12(lg 2+lg 5)=12lg 10 =12. 法二 原式=lg 427-lg 4+lg 75=lg 42×757×4=lg(2·5)=lg 10=12.(2)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2=2lg 10+(lg 5+lg 2)2=2+(lg 10)2=2+1=3. 规律方法 利用对数运算性质化简与求值的原则和方法 (1)基本原则:①正用或逆用公式,对真数进行处理,②选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行. (2)两种常用的方法:①“收”,将同底的两对数的和(差)收成积(商)的对数; ②“拆”,将积(商)的对数拆成同底的两对数的和(差). 【训练1】 计算下列各式的值: (1)(lg 5)2+2lg 2-(lg 2)2; (2)lg 3+25lg 9+35lg 27-lg 3lg 81-lg 27.解 (1)原式=(lg 5)2+lg 2(2-lg 2) =(lg 5)2+(1+lg 5)lg 2 =(lg 5)2+lg 2·lg 5+lg 2 =(lg 5+lg 2)·lg 5+lg 2=lg 5+lg 2=1.(2)原式=lg 3+45lg 3+910lg 3-12lg 34lg 3-3lg 3=⎝ ⎛⎭⎪⎫1+45+910-12lg 3(4-3)lg 3=115. 题型二 利用换底公式化简、求值【例2】 (1)(log 43+log 83)(log 32+log 92)=________; (2)已知log 189=a ,18b=5,用a ,b 表示log 3645的值. (1)解析 原式=⎝⎛⎭⎪⎫lg 3lg 4+lg 3lg 8⎝ ⎛⎭⎪⎫lg 2lg 3+lg 2lg 9=⎝ ⎛⎭⎪⎫lg 32lg 2+lg 33lg 2·⎝ ⎛⎭⎪⎫lg 2lg 3+lg 22lg 3=5lg 36lg 2×3lg 22lg 3=54. 答案 54(2)解 法一 ∵log 189=a ,18b=5,∴log 185=b . 于是log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1851+log 182=a +b1+log 18189=a +b 2-a. 法二 ∵log 189=a ,18b=5,∴log 185=b .于是log 3645=log 18(9×5)log 181829=log 189+log 1852log 1818-log 189=a +b2-a . 法三 ∵log 189=a ,18b=5,∴lg 9=a lg 18,lg 5=b lg 18. ∴log 3645=lg 45lg 36=lg (9×5)lg 1829=lg 9+lg 52lg 18-lg 9=a lg 18+b lg 182lg 18-a lg 18=a +b2-a.规律方法 利用换底公式化简与求值的思路【训练2】 (1)已知log 1227=a ,求log 616的值;(2)计算(log 2125+log 425+log 85)(log 52+log 254+log 1258)的值. 解 (1)由log 1227=a ,得3lg 32lg 2+lg 3=a ,∴lg 2=3-a2alg 3.∴log 616=lg 16lg 6=4lg 2lg 2+lg 3=4×3-a 2a 1+3-a 2a =4(3-a )3+a.(2)法一 原式=⎝⎛⎭⎪⎫log 253+log 225log 24+log 25log 28· ⎝⎛⎭⎪⎫log 52+log 54log 525+log 58log 5125=⎝⎛⎭⎪⎫3log 25+2log 252log 22+log 253log 22⎝ ⎛⎭⎪⎫log 52+2log 522log 55+3log 523log 55=⎝⎛⎭⎪⎫3+1+13log 25·(3log 52) =13log 25·log 22log 25=13.法二 原式=⎝ ⎛⎭⎪⎫lg 125lg 2+lg 25lg 4+lg 5lg 8⎝ ⎛⎭⎪⎫lg 2lg 5+lg 4lg 25+lg 8lg 125=⎝ ⎛⎭⎪⎫3lg 5lg 2+2lg 52lg 2+lg 53lg 2⎝ ⎛⎭⎪⎫lg 2lg 5+2lg 22lg 5+3lg 23lg 5=⎝⎛⎭⎪⎫13lg 53lg 2⎝ ⎛⎭⎪⎫3lg 2lg 5=13.法三 原式=(log 2153+log 2252+log 2351)·(log 512+log 5222+log 5323) =⎝ ⎛⎭⎪⎫3log 25+log 25+13log 25(log 52+log 52+log 52) =⎝⎛⎭⎪⎫3+1+13log 25·3log 52=133×3=13.题型三 利用对数式与指数式的互化解题 【例3】 (1)设3a =4b=36,求2a +1b的值;(2)已知2x =3y =5z,且1x +1y +1z=1,求x ,y ,z .解 (1)法一 由3a =4b=36, 得a =log 336,b =log 436,由换底公式得1a =log 363,1b=log 364,∴2a +1b=2log 363+log 364=log 3636=1.法二 由3a =4b=36, 两边取以6为底数的对数,得a log 63=b log 64=log 636=2,∴2a =log 63,1b =12log 64=log 62, ∴2a +1b=log 63+log 62=log 66=1.(2)令2x =3y =5z=k (k >0), ∴x =log 2k ,y =log 3k ,z =log 5k , ∴1x =log k 2,1y =log k 3,1z=log k 5,由1x +1y +1z=1,得log k 2+log k 3+log k 5=log k 30=1,∴k =30,∴x =log 230=1+log 215,y =log 330=1+log 310,z =log 530=1+log 56. 规律方法 利用对数式与指数式互化求值的方法(1)在对数式、指数式的互化运算中,要注意灵活运用定义、性质和运算法则,尤其要注意条件和结论之间的关系,进行正确的相互转化.(2)对于连等式可令其等于k (k >0),然后将指数式用对数式表示,再由换底公式可将指数的倒数化为同底的对数,从而使问题得解.【训练3】 已知3a =5b=M ,且1a +1b=2,则M =________.解析 由3a =5b=M ,得a =log 3M ,b =log 5M ,故1a +1b=log M 3+log M 5=log M 15=2,∴M =15. 答案15课堂达标1.lg 2516-2lg 59+lg 3281等于( )A.lg 2B.lg 3C.lg 4D.lg 5解析 lg 2516-2lg 59+lg 3281=lg ⎝ ⎛⎭⎪⎫2516÷2581×3281=lg 2.故选A. 答案 A2.已知a =log 32,那么log 38-2log 36用a 表示是( ) A.a -2 B.5a -2 C.3a -(1+a )2D.3a -a 2解析 原式=log 323-2log 32-2log 33=log 32-2=a -2. 答案 A3.若log a b ·log 3a =4,则b 的值为________.解析 log a b ·log 3a =lg b lg a ·lg a lg 3=lg b lg 3=4,所以lg b =4lg 3=lg 34,所以b =34=81.答案 814.已知2m =5n=10,则1m +1n=________.解析 因为m =log 210,n =log 510, 所以1m +1n=log 102+log 105=lg 10=1.答案 15.求下列各式的值:(1)lg 14-2lg 73+lg 7-lg 18;(2)2lg 2+lg 32+lg 0.36+2lg 2. 解 (1)法一 原式=lg(2×7)-2(lg 7-lg 3)+lg 7-lg(32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.法二 原式=lg 14-lg ⎝ ⎛⎭⎪⎫732+lg 7-lg 18 =lg14×7⎝ ⎛⎭⎪⎫732×18=lg 1=0. (2)原式=2lg 2+lg 32+lg 36-2+2lg 2=2lg 2+lg 32(lg 2+lg 3)+2lg 2=2lg 2+lg 34lg 2+2lg 3=12.课堂小结1.换底公式可完成不同底数的对数式之间的转化,可正用,逆用;使用的关键是恰当选择底数.换底的目的是利用对数的运算性质进行对数式的化简.2.运用对数的运算性质应注意:(1)在各对数有意义的前提下才能应用运算性质. (2)根据不同的问题选择公式的正用或逆用. (3)在运算过程中避免出现以下错误:①log a N n =(log a N )n,②log a (MN )=log a M ·log a N , ③log a M ±log a N =log a (M ±N ).基础过关1.若lg a ,lg b 是方程2x 2-4x +1=0的两个实根,则ab 的值等于( ) A.2 B.12 C.100D.10解析 ∵lg a ,lg b 是方程2x 2-4x +1=0的两个实根,∴由根与系数的关系得:lg a +lgb =--42=2,∴ab =100.故选C. 答案 C2.化简12log 612-2log 62的结果为( )A.6 2B.12 2C.log 6 3D.12解析 原式=log 612-log 62=log 6122=log 6 3. 答案 C3.已知2a=3b=k (k ≠1),且2a +b =ab ,则实数k 的值为( ) A.6 B.9 C.12D.18解析 ∵2a =3b=k (k ≠1),∴a =log 2k ,b =log 3k ,∴1a =log k 2,1b=log k 3.∵2a +b =ab ,∴2b +1a=2log k 3+log k 2=log k 9+log k 2=log k 18=1,∴k =18.答案 D4.计算10012lg 9-lg 2-log 98·log 433=________.。