对数运算与对数函数

对数运算与对数函数
对数运算与对数函数

对数运算与对数函数

已知底数和指数求幂的运算称为指数运算.如求23=?那么当已知底数和幂,求指数的 运算则称为对数运算.指数运算与对数运算互为逆运算.

【对数运算的相关问题】

1.定义. 若a b =N(a>0且a ≠1,N >0),则称b 是以a 为底N 的对数.记作b=log a N ,其中a 叫做底

数,N 叫做真数.

2指数式与对数式的互化

如图1.10—1所示.

②互换规则:底数不变,指数 与对数互换,幂与真数互换. 3.对数恒等式:①

. ②

.

证明:①设log a N=b (1),则a b =N (2),将(1)代入(2)得. ②设a b =N(3),则b=log a N(4),将(3)代入(4)得.此结论说明任何一个实数b 都

可以用一个对数表示.

说明:为什么零与负数无对数?为什么要求指数、对数的底数 a >0且a ≠1?

由a b =N ,N >0说明b=log a N 中的真数必须大于0.∴ 零与负数无对数. 又∵ 由1b

=1知b 的取值是无法确定的,再如在实数范围内是无意义的.故底数a >0且a ≠1.

例1.化简下列各式:(1). (2)

.

解: (1)原式=31

×=3×6=18. (2)原式=.

4.对数运算性质 如果 (1).

(2)=

.

(3)

5.换底公式及推论 ①换底公式:.

②推论1:

.

a b =N b=log a N ? 指数式← →对数式 底数

指数 对数 幂 真数 ①.指数式与对数式 的互化. 图1.10—1

③推论2:.

例2.已知f(x)是R上以2为周期的奇函数,当x∈[0,1]时f(x)=2x,求f(log0.523)的值. 解:∵f(x)是R上以2为周期的奇函数,

∴f(log0.523)=f()=f(-log223)=-f(log223-4)= -f(),

又∵当x∈[0,1]时f(x)=2x,∴f(log0.523)= .

例3.求值.

(1).

(2)lg52++lg5lg20+lg22.

解:(1)法1.原式=lo()=lo2= lo()3=3.

法2.原式=

(2)原式=2lg5+2lg2+lg5(2lg2+lg5)+lg22=2(lg2+lg5)+(lg2+lg5)2=3.

例4.(1)已知log189=a,18b=5. 求log3645.

(2)若26a=33b=62c..求证:3ab-2ac=bc.

(3)若.求的值.

解:(1)法1.由log189=a,得a=log18

又由18b=5,得b=log185, ∴log3645=

法2. log189=a,得,

再由b=log185=

∴log3645=

(2)设26a=33b=62c.=k>0,则6a=log2k,∴6log k2,

同理,3log k 3,2log k 6,∴

(3)由

说明:(1)第一题的解法2更具有一般性.其一般方法是将底数、真数、幂都分解成质因数幂的

形式,以其中一个质因数3为底,求出以另两个质因数2和5为真数的对数,再将所求式都换成以3为底的对数,化简即可.对于此题我们也可以都转换为以2或5为底,同样可行.读者不妨试试.

(2)在利用对数的运算性质进行变形时,要注意从左到右会使真数的取值范围缩小,而

从右到左则会使真数的取值范围扩大.因此,在变形时要注意保持其等价性, 如上述(3).

想一想①:

1.设a 、b 同号,且a 2-2ab -9b 2=0,求lg(a 2+ab -6b 2)-lg(a 2+4ab+15b 2)的值.

2.化简(1) (lg2)3+(lg5)3+3lg2?lg5. (2)(log 25+log 4)(log 52+log 25).

3.若a ,b ,c 是不为1的正数,a x =b y =c z 且 1x +1y +1

z

=0. 求证: abc=1.

【对数函数的图像及性质】

1.定义:形如y=log a x(a>0且a≠1)的函数叫做对数函数.其中x 是自变量,函数的定义域是{x|x >0,x ∈R},值域为R.

请问,下列函数中哪些是对数函数:(1)y=log 2(x+1);(2)y=2log 3x ; (3)y=log 4x+1;; (4)y=log 4x 2; (5)y=log x x .; (6)y=log (2a -1)x(a>

)

答案:只有(6)是对数函数.

2.对数函数与指数函数的关系:它们互为反函数,其图像关于直线y=x 对称.

3.图像与性质列表

a>1 0

图像

定义域 x ∈(0,+∞) 值 域 y ∈(-∞,+∞) 性 质

(1)过定点(1,0)

(2)对称性,既不是中心对称图形,也不是轴对称图形.

(3)单调性 (0,+∞)是增函数. (0,+∞)是减函数.

说明:

1.函数y=log a x 与函数y=lo

的图像关于x 轴对称,且a 的值越大图像越靠近x 轴(越陡).

2.在同一直角坐标系中若给出了多条对数函数的图像,确定其底数大小时,可作直线y=1, 其底数大小从左向右依次增大.

y x

y

o

1

x

o 1

例5.求证:函数f(x)=log a x(0

证明:设任意的x 1,x 2∈(0,+∞),且x 1

,由00,即f(x 1)>f(x 2).

由定义知函数f(x)=log a x(0

例6.对于函数f(x)=lo (x 2-2ax+3),解答下述问题:

(1)若函数的定义域为R ,求实数a 的取值范围; (2)若函数的值域为R ,求实数a 的取值范围;

(3)若函数在[-1,+∞)内有意义,求实数a 的取值范围; (4)若函数的定义域为(-∞,1)(3,+∞),求实数a 的值;

解:(1)由已知x 2-2ax+3>0对任意的x ∈R 恒成立,令u(x)= x 2-2ax+3,则函数y=f(x)的图像恒

在x 轴的上方,∴ < 0,.

(2)若函数y=f(x)的值域为R ,则u(x)= x 2-2ax+3必须取遍所有的正数,

由于u(x)=x 2-2ax+3轴至少有一个交点. ∴≥0,(3)由函数在内有意义, ∴ u (x)=x 2-2ax+3>0对任意的 x ∈恒成立,即u (x)=x 2-的图像在上恒在x 轴的上方. 如图1.11—2.∴

.

(4)若函数的定义域为,即不等式x 2-2ax+3>0的解为 ∴

u(x)= x 2-2ax+3的两个零点为1和3,由韦达定理知a=2.

想一想②:

1.函数y=log a (x+2)+3必过定点 .

2.若函数f(x)=ln(a x -a -x )(a>1),当x ∈(1,+∞)时,f(x)>0恒成立,求实数a 的取值范围.

4.对数函数单调性的应用

①比较大小

例7.(1)比较大小:①log 316与4log 52; ②lo

与lo

; ③0.42,log 20.6,20.75.

(2)已知f(x)=1+log x 3,g(x)=2log x 2,(x 0且x ≠1),比较f(x)与g(x)的大小. 解:(1)① ∵ log 316>log 39=2,而4log 52=log 524=log 5164log 52. ②∵ lo > lo

,lo

< lo

=1, ∴ lo

> lo

. 或 由lo

=log 23>log 22=1,lo =log 32

> lo

.

③∵ 0<0.42=0.16<1,log 20.6<0,而20.75>1. ∴ log 20.6<0.42<20.75.

y

x o

-1 · 图1.10—2

y

x

o

-1 ·

(2)∵f(x)-g(x)=1+log x3-2log x2=log x.①当0g(x).

②当1时,>1,∴f(x)>g(x).

综上所述知,当0时,f(x)>g(x).

当1

②求函数的值域或最值

例8.(1)已知2lo.求函数y=的最值.

(2)求函数f(x)=lo g2(x-1)+g2(p-x)的值域.

解:(1)由2lo,.

又∵y=(log2x-1)(log2x-2)=log22x-3log2x+2,

∴y min=(x=);y max=2(x=8).

(2)此函数的定义域由给定.由于函数的定义域不能为空集,

(1)当1,即时,上单调递减,

∴,值域为.

(2)当1<,即p>3时,值域为.

(3)当,即p<-1时,不满足p>1.

综上所述知,当时,值域为;

当p>3时,值域为.

③讨论函数的单调性

例9.(1)若函数f(x)=log a(2-ax)在区间[0,1]上单减,则a∈( ).

A.(1,2).

B.(0,1).

C.(0,2).

D.[2,+∞).

(2)求函数y=log2(x2-x-2)的单减区间.

解:(1)令f(x)=log a u,u=2-ax>0,∵函数f(x)=log a(2-ax)在区间[0,1]上单减,且a>0, ∴u=2-ax是x的减函数,则f(x)=log a u是u的增函数,∴ a>1.

又∵f(x)=log a(2-ax)在区间[0,1]有意义,∴故应选A.

(2)令y=log2u,u= x2-x-2>0,∵y=log2u是u的增函数,∴当u= x2-x-2>0单减时,

函数y=log2(x2-x-2)的单减. 故函数y=log2(x2-x-2)的单减区间为(-∞,-1).

④解不等式

例10.(1)若log a<1,则实数a的取值范围是.

(2)设a>0且a≠1,解不等式

解:(1)原不等式可化为log a1时,

当0

(2)令log a x=t,则得当0

4-t2<1-2t , t2-2t-3>0, (t+1)(t-3)>0, t<-1,或t>3,

从而log a x<-1或log a x>3,解得x>或x

当a>1时,则有4-t2>1-2t, t2-2t-3<0,(t+1)(t-3)<0, -1

从而 -1

综上所述知,当01时,x∈(). 想一想③:

1.若log a >1,求实数a 的取值范围.

2.函数f(x)=log 0.5|x 2+2x -3|的单增区间是( ).

3.解不等式log (x+1)(x 2-x -2)>1.

【与图像、方程有关的综合问题】

例11.(1)若定义在R 上的偶函数f(x)满足:f(x)=f(x+2),且当x ∈[0,1]时,f(x)=x.则函数

y=f(x)-log 3|x|的零点个数为( ).

A.4.

B.3.

C.2.

D.1. (2)若方程x+log 2x=5与x+2x =5的根分别为,则=( ). (3)对于函数f(x)=log 2(x -1),当x 1,x 2均大于1时,你能得出[f(x 1)+f(x 2)].

解:(1)∵ 当x ∈[0,1]时,f(x)=x ,又y=f(x)是定义在R 上 的偶函数,且周期为2,故可得函数y=f(x)的图像, 如图1.10—3所示.由于函数y=f(x)-log 3|x|的零点即为 函数y=f(x)与y=log 3|x|图像交点的横坐标,结合图 像易知两图像有四个不同的交点.故应选A.

(2)由x+log 2x=5得log 2x=5-x.再由x+2x =5得2x

=5-x.

在同一直角坐标系中同时作出函数y=log 2x 、y=2x

、 y=5-x 的图像,如图1.10—4.其中为函数y=log 2x

与y=5-x 的图像交点的横坐标;为函数y=2x

与y=5-x

的图像交点的横坐标.由于函数y=log 2x 与y=2x

、的图像都关于直线y=x 对称,易求得 =5. (3)作出函数的图像,如图1.10—5所示.

对于任意的x 1、x 2由梯形中位线的性质,结合图像易

想一想④:

1.方程log 2(x+4)=3x 的根的个数为( ).

2.不等式log 2(-x)<x+1的解集为( ).

3.类比上例(3),对于f(x)=3x 你能得出怎样的结论.

习题1.10

1.若log 2[

]= log 3[

]= log 5[

]=0,则x 、y 、z 的大小关系是

( ).

A.z

B.x

C.y

D.z

,2]. B.[ 2-2

,2). C.( 2-2

,2]. D.( 2-2

,2).

3.已知函数y =lo (ax 2+2x +1)的值域为R ,则实数a 的取值范围( ). A.a>1.

B.0≤a<1.

C.0

D.0≤a ≤1.

x

y o

图1.10—4

5

5

x

y

o 1 2 3 -2 -3 -1

图1.10—3

x

y o

x 1

x 2

2)()(21x f x f +2

21x x +

f(x 2f(x 1)

)

2

(21

x x

f +

4.函数y=(lo x)2-lo x2+5在2≤x≤4

时的值域为.

5.已知lg2=a,lg3=b,将

用a ,b表示为.

6.已知函数f(x)=log2(x2-2)的定义域为[a,b],值域为[1,log214],求ab的值.

7.已知f(x)=x2+(lga+2)x+lgb,f(-1)=-2,当x∈R时f(x)≥2x恒成立,求实数a的值,并求此时f(x)的最小值?

8.设00且a≠1,试比较|log a(1-x)|与|log a(1+x)|的大小.

9.已知函数f(x)=log a(a-a x)(a>1).求函数的定义域和值域.

10.在对数函数y=log2x的图像上(如图1.10—6),有A、B、C

三点,它们的横坐标依次为a、a+1、a+2,其中a≥1,

求△ABC面积的最大值.

11.设a,b,c分别是方程2x= 的实数根,则有( ).

A.a

B.c

C.b

D.c

12.设a=log54,b=(log53)2,c=log45. 则( ).

A.a

B.b

13.函数f(x)=ln(x-)的图像只可能是( ).

14.已知函数f(x)=则函数y=f(1-x)的大致图像是( ).

【参考答案】

想一想①:

1. -.

2.(1)1.(2)

3.略

想一想②:

1.(-1,3).

2.由已知函数f(x)=ln(a x-a-x)(a>1),当x∈(1,+∞)时是增函数,

∴ x∈(1,+∞)时,f(x)>0恒成立,只需f(1)≥0即可. 由ln(a-a-1) ≥0, a-a-1≥1,解得a.

想一想③:

1. ().

2.(-∞,-3),[-1,1).

3.x∈(3,+∞).

想一想④:

图1.10—6

。。。。

··

·

·

答案:1.2. 2. {x|-1<x<0}. 3..

习题1.11

1.由已知可得,x=,y=,z=.应选D.

2.由已知解得,∴选A.

3.D.

4..

5..

6.由x2-2>0得x>或x<.当a

当b>a>,函数f(x)单减,可得,a=2,b= 4.从而ab=8.

7.由f(-1)=-2,得:f(-1)=1-(lga+2)+lgb=-2,解之lga-lgb=1,∴=10,a=10b.

又由x∈R,f(x)≥2x恒成立.知:x2+(lga+2)x+lgb≥2x,即x2+xlga+lgb≥0,

对x∈R恒成立,由Δ=lg2a-4lgb≤0,整理得(1+lgb)2-4lgb≤0,即(lgb-1)2≤0,只有lgb=1,不等式成立.即b=10,∴a=100.∴ f(x)=x2+4x+1=(2+x)2-3,

当x=-2时,f(x)min=-3.

8.解法1(作差法)|log a(1-x)|-|log a(1+x)|=||-||

=(|lg(1-x)|-|lg(1+x)|).∵0

∴上式=-[(lg(1-x)+lg(1+x)]=-·lg(1-x2), 由0

得,lg(1-x2)<0,∴-·lg(1-x2)>0,∴|log a(1-x)|>|log a(1+x)|.

解法2(作商法)=|log(1-x)(1+x)|,∵0

∴|log(1-x)(1+x)|=-log(1-x)(1+x)=log(1-x).由01,0<1-x2<1.

∴ 0<(1-x)(1+x)<1,∴>1-x>0,即0

∴ |log a(1-x)|>|log a(1+x)|.

9.定义域为(-∞,1),值域为(-∞,1).

10.由已知A、B、C三点坐标分别为(a,log2a),(a+1,log2(a+1)),(a+2,log2(a+2)),则

=

=log2log2log2,

因为a,所以()=().

11.A.在同一直角坐标系中同时作出函数y=2x,y=()x,y=lo,y=log 2x的图像即可知.

12.D.∵ b<(log54)2,∴ a-b>log54-(log54)2=log54(1-log54)>0,即a>b.

13. B.考虑定义域(-1,0)(1,+),又函数u=x在定义域内为增函数,从而函数f(x)=ln(x-)

在定义域内的两个区间内分别为增函数.

14.D.法1.利用函数y=f(1-x)与函数y=f(x)的图像关于直线x= 对称;

法2.y=f(x)

幂函数、指数函数和对数函数_对数及其运算法则_教案

幂函数、指数函数和对数函数·对数及其运算法则·教案 如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b就叫做以a为底N的对数,记作 logaN=b, 其中a叫做底数,N叫做真数,式子logaN叫做对数式. 练习1 把下列指数式写成对数形式: 练习2 把下列对数形式写成指数形式: 练习3 求下列各式的值: 因为22=4,所以以2为底4的对数等于2. 因为53=125,所以以5为底125的对数等于3. 师:由定义,我们还应注意到对数式logaN=b中字母的取值范围是什么? 生:a>0且a≠1;b∈R;N∈R. 师:N∈R?(这是学生最易出错的地方,应一开始让学生牢牢记住真数大于零.) 生:由于在实数范围内,正数的任何次幂都是正数,因而ab=N中N总是正数. 师:要特别强调的是:零和负数没有对数. 师:定义中为什么规定a>0,a≠1? 生:因为若a<0,则N取某些值时,b可能不存在,如b=log(-2)8不存在;若a=0,则当N不为0时,b不存在,如log02不存在;当N为0时,b可以为任何正数,是不唯一的,即log00有无数个值;若a=1,N 不为1时,b不存在,如log13不存在,N为1时,b可以为任何数,是不唯一的,即log11有无数多个值.因此,我们规定:a>0,a≠1. 师:(板书)对数logaN(a>0且a≠1)在底数a=10时,叫做常用对数,简记lgN;底数a=e时,叫做自然对数,记作lnN,其中e是个无理数,即e≈2.718 28……. 练习4 计算下列对数: lg10000,lg0.01,2log24,3log327,10lg105,5log51125. 师:请同学说出结果,并发现规律,大胆猜想. 生:2log24=4.这是因为log24=2,而22=4. 生:3log327=27.这是因为log327=3,而33=27. 生:10lg105=105. 生:我猜想alogaN=N,所以5log51125=1125. alogaN=N(a>0,a≠1,N>0).(用红笔在字母取值范围下画上曲线) 证明:设指数等式ab=N,则相应的对数等式为logaN=b,所以ab=alogaN=N. 师:你是根据什么证明对数恒等式的? 生:根据对数定义. 师:(分析小结)证明的关键是设指数等式ab=N.因为要证明这个对数恒等式,而现在我们有关对数的知

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结及练习题 一.指数函数 (一)指数及指数幂的运算 n m n m a a = s r s r a a a +=? rs s r a a =)( r r r b a ab =)( (二)指数函数及其性质 1.指数函数的概念:一般地,形如x a y =(0>a 且1≠a )叫做指数函数。 2.指数函数的图象和性质 10<a 6 54321 -1 -4-2 2460 1 6 5 4 3 2 1 -1 -4-2 246 1 定义域 R 定义域 R 值域y >0 值域y >0 在R 上单调递减 在R 上单调递增 非奇非偶函数 非奇非偶函数 定点(0,1) 定点(0,1) 二.对数函数 (一)对数 1.对数的概念:一般地,如果N a x =(0>a 且1≠a ),那么x 叫做以a 为底N 的对数,记作N x a log =,其中a 叫做底数,N 叫做真数,N a log 叫做对数式。 2.指数式与对数式的互化 幂值 真数 x N N a a x =?=log 底数 指数 对数

3.两个重要对数 (1)常用对数:以10为底的对数N lg (2)自然对数:以无理数 71828.2=e 为底的对数N ln (二)对数的运算性质(0>a 且1≠a ,0,0>>N M ) ①MN N M a a a log log log =+ ②N M N M a a a log log log =- ③M n M a n a log log = ④换底公式:a b b c c a log log log =(0>c 且1≠c ) 关于换底公式的重要结论:①b m n b a n a m log log = ②1log log =?a b b a (三)对数函数 1.对数函数的概念:形如x y a log =(0>a 且1≠a )叫做对数函数,其中x 是自变量。 2对数函数的图象及性质 01 32.5 2 1.51 0.5-0.5 -1-1.5-2-2.5 -1 1 23456780 1 1 32.5 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -2.5 -1 1 2345678 1 1 定义域x >0 定义域x >0 值域为R 值域为R 在R 上递减 在R 上递增 定点(1,0) 定点(1,0)

对数的计算以及对数函数的基本性质

对数的计算以及对数函数的基本性质 1.对数与对数运算 (1)对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. ②负数和零没有对数. ③对数式与指数式的互化: log (0,1,0) x a x N a N a a N =?=>≠>. (2)几个重要的对数恒等式:log 10 a =, log 1 a a =, log b a a b =. (3)常用对数与自然对数 常用对数:lg N ,即 10log N ; 自然对数:ln N ,即 log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘: log log () n a a n M M n R =∈ ④log a N a N = ⑤log log (0,)b n a a n M M b n R b = ≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a = >≠且 2.对数函数及其性质 定义:函数log (0 a y x a =>且1)a ≠叫做对数函数 图象: 定义域:(0,)+∞ 值域:R 过定点:图象过定点(1,0),即当1x =时,0y =. 1 x y O 1 x y O

奇偶性:非奇非偶 单调性:在(0,)+∞上是增函数1a >;在(0,)+∞上是减函数01a <<; 函数值的变化情况: log 0(1)log 0(1)log 0(01) a a a x x x x x x >>==<<< log 0(1)log 0(1)log 0(01) a a a x x x x x x <>==><< 变化对图象的影响:在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高. 判断技巧:指数函数令1=x 得到第一象限内底大图上;对数函数令1=y 得到第一象限底大图下。 3.反函数的概念 (1)设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ?=.如果对于y 在 C 中的任何一个值,通过式子()x y ?=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ?=表示x 是y 的函数,函数()x y ?=叫做函数()y f x =的反函数,记作1 ()x f y -=,习惯上改写成1()y f x -=. (2)反函数的性质 ①原函数()y f x =与反函数1 ()y f x -=的图象关于直线y x =对称. ②函数()y f x =的定义域、值域分别是其反函数1 ()y f x -=的值域、定义域. ③若(,)P a b 在原函数()y f x =的图象上,则' (,)P b a 在反函数1 ()y f x -=的图象上. ④一般地,函数()y f x =要有反函数则它必须为单调函数. 例题与解析: 例题1:将下列指数式与对数式进行互化. (1)64)4 1 (=x (2)5 15 2 1= - (3)327log 3 1-= (4)664log -=x 解析:(1)∵64)41(=x ,∴x =41log 64 (2)∵51521 =-,∴21 51log 5 -= (3)∵327log 3 1-=,∴27)31(3=- (4)∵log x 64 = –6,∴x - 6 = 64. 例题2:比较下列各组数的大小: (1)log 0.7 1.3和log 0.71.8; (2)log 35和log 64. (3)(lg n )1.7和(lg n )2 (n >1);

最新高一数学对数运算及对数函数试题

高一数学对数运算及对数函数试题 一:选择题 1.若log 7[log 3(log 2x )]=0,则为( ) A . B . C . D . 解:∵log 7[log 3(log 2x )]=0, ∴log 3(log 2x )=1, ∴log 2x=3, ∴x=8, ∴ = = = . 故选D . 2.23(log 9)(log 4)?=( ) (A ) 14 (B )1 2 (C ) 2 (D )4 【答案】D 3.的值是( C ) A . 12 B . C . ﹣12 D . 解:=log 6(4×9)+2﹣16=﹣12, 故选C . 4.实数﹣ ?+lg4+2lg5的值为( D ) A . 25 B . 28 C . 32 D . 33 解: ﹣?+lg4+2lg5=﹣2×(﹣2)+lg (4×25)=27+4+2=33, 故选D . 5.已知lg2=a ,10b =3,则log 125可表示为( ) A . B . C . D .

解:∵lg2=a,10b=3, ∴lg3=b, ∴log125= = =. 故选C. 6.lgx+lgy=2lg(x﹣2y),则的值的集合是() A.{1} B.{2} C.{1,0} D.{2,0} 解:∵lgx+lgy=2lg(x﹣2y),∴lg(x﹣2y)2=lgxy, ∴(x﹣2y)2=xy,∴x2﹣5xy+4y2=0, ∴﹣5?+4=0,∴=1(舍去)或=4, 故=log24=2, 故选B. 7.已知f(e x)=x,则f(5)等于(D) A.e5B.5e C.l og5e D.l n5 解:∵f(e x)=x,令e x=t,解得x=lnt, ∴f(t)=lnt(t>0), ∴f(5)=ln5, 故选D. 8.设,则a,b,c的大小顺序为()A.a>b>c B.a>c>b C.b>a>c D.c<a<b 解:因为, 又1.8>1.5>1.44, 函数y=2x是增函数,所以a>c>b. 故选B. 9.已知幂函数y=f(x)的图象过点,则log2f(2)的值为(A)A.B. C.2D.﹣2 ﹣

指数函数与对数运算解读

指数函数与对数运算 一、选择题 1.下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .3124 3)3(-=- C .4 343 3)(y x y x +=+ D . 33 39= 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 3.对数式b a a =--)5(log 2中,实数a 的取值范围是 ( ) A .)5,(-∞ B .(2,5) C .),2(+∞ D . )5,3()3,2( 4.如果c b a x lg 5lg 3lg lg -+=,那么 ( ) A .x =a +3b -c B .c ab x 53= C .53 c ab x = D .x =a +b 3-c 3 5.已知指数函数()y f x =,且35 ()225 f -= ,则函数()y f x =的解析式是( ) A 、32 y x = B 、5x y -= C 、5 y x = D 、5x y = 6.设123()4a -=,144()3b =,3 43 ()2 c -=则,,a b c 的大小顺序是 ( ) A c a b << B c b a << C b a c << D b c a << 7.为了得到函数13()3 x y =?的图象,可以把函数1()3 x y =的图象 ( ) A 向左平移3个单位长度 B 向右平移3个单位长度 C 向左平移1个单位长度 D 向右平移1个单位长度 8.函数13x y =-的定义域是( ) A 、(,0]-∞ B 、(,1]-∞ C 、[0,)+∞ D 、[1,)+∞ 9. 若{} |2x M y y ==,{ } |1N x y x == -则M N = ( ) A {}|1y y > B {}|1y y ≥ C {}|0y y > D {}|0y y ≥ 10.函数?????>≤-=-0 ,0 ,12)(2x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或

对数函数及其性质-对数的公式互化-详尽的讲解

2.1 对数与对数运算 1.对数的概念 一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数. 说明:(1)实质上,上述对数表达式,不过是指数函数y =a x 的另一种表达形式,例如:34=81与4=log 381这两个式子表达是同一关系,因此,有关系式a x =N ?x =log a N ,从而得对数恒等式:a log a N =N . (2)“log ”同“+”“×”“ ”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这种运算叫对数运算,不过对数运算的符号写在数的前面. (3)根据对数的定义,对数log a N (a >0,且a ≠1)具有下列性质: ①零和负数没有对数,即N >0; ②1的对数为零,即log a 1=0; ③底的对数等于1,即log a a =1. 2.对数的运算法则 利用对数的运算法则,可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然.这种运算的互化可简化计算方法,加快计算速度. (1)基本公式 ①log a (MN )=log a M +log a N (a >0,a ≠1,M >0,N >0),即正数的积的对数,等于同一底数的各个因数的对数的和. ②log a M N =log a M -log a N (a >0,a ≠1,M >0,N >0),即两个正数的商的对数,等于被除数 的对数减去除数的对数. ③log a M n =n ·log a M (a >0,a ≠1,M >0,n ∈R ),即正数的幂的对数等于幂的底数的对数乘以幂指数. (2)对数的运算性质注意点 ①必须注意M >0,N >0,例如log a [(-3)×(-4)]是存在的,但是log a (-3)与log a (-4)均不存在,故不能写成log a [(-3)×(-4)]=log a (-3)+log a (-4). ②防止出现以下错误:log a (M ±N )=log a M ±log a N ,log a (M ·N )=log a M ·log a N ,log a M N = log a M log a N ,log a M n =(log a M )n . 3.对数换底公式 在实际应用中,常碰到底数不为10的对数,如何求这类对数,我们有下面的对数换底

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

对数函数基础运算法则及例题-答案

对数函数的定义: 函数x y a log =)10(≠>a a 且叫做对数函数,定义域为),0(+∞,值域为 ),(+∞-∞. 对数的四则运算法则: 若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+; (2) log log log a a a M M N N =-; (3)log log ()n a a M n M n R =∈. (4)N n N a n a log 1 log = 对数函数的图像及性质

例1.已知x =4 9时,不等式 (x 2 – x – 2)> (–x 2 +2x + 3)成立, 求使此不等式成立的x 的取值范围. 解:∵x =49使原不等式成立. ∴[249)49(2--]> )34 9 2)49(1[2+?+? 即16 13>16 39. 而16 13<16 39. 所以y = 为减函数,故0<a <1. ∴原不等式可化为??? ????++-<-->++->--3220 320222 2 2x x x x x x x x , 解得??? ???? <<-<<->-<2513121x x x x 或. 故使不等式成立的x 的取值范围是)2 5, 2( 例2.求证:函数f (x ) =x x -1log 2 在(0, 1)上是增函数. 解:设0<x 1<x 2<1, 则f (x 2) – f (x 1) = 212 221log log 11x x x x ---2 1221 (1) log (1)x x x x -=-= .11log 2 1 122 x x x x --? ∵0<x 1<x 2<1,∴1 2x x >1,2111x x -->1. 则2 1 122 11log x x x x --? >0, ∴f (x 2)>f (x 1). 故函数f (x )在(0, 1)上是增函数 例3.已知f (x ) = (a – ) (a >1).

指数对数幂函数总结归纳

指数与指数幂的运算 【学习目标】 1.理解有理指数幂的含义,掌握幂的运算. 2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点. 3.理解对数的概念及其运算性质. 4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指 数型函数、对数型函数进行变形处理. 5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质. 6.知道指数函数 与对数函数互为反函数(a >0,a ≠1). 【要点梳理】 要点一、幂的概念及运算性质 1.整数指数幂的概念及运算性质 2.分数指数幂的概念及运算性质 为避免讨论,我们约定a>0,n ,m ∈N *,且 m n 为既约分数,分数指数幂可如下定义: 3.运算法则 当a >0,b >0时有: (1)n m n m a a a +=?; (2)()mn n m a a =; (3)()0≠>=-a n m a a a n m n m ,; (4)()m m m b a ab =. 要点诠释: (1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算; (2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如2442)4()4(-≠-; (3)幂指数不能随便约分.如2 142 )4()4(-≠-. 要点二、根式的概念和运算法则 1.n 次方根的定义: 若x n =y(n ∈N * ,n>1,y ∈R),则x 称为y 的n 次方根,即x=n y . n 为奇数时, y 的奇次方根有一个,是负数,记为n y ;零的奇次方根为零,记为00=n ; n 为偶数时,正数y 的偶次方根有两个,记为n y ±;负数没有偶次方根;零的偶次方根为零,记为00n =. 2.两个等式 (1)当1n >且*n N ∈时, ()n n a a =; (2)???=)(||) (,为偶数为奇数n a n a a n n 要点诠释: ①计算根式的结果关键取决于根指数n 的取值,尤其当根指数取偶数时,开方后的结果必为非负数,可先写成||a 的形式,这样能避免出现错误. ②指数幂的一般运算步骤 有括号先算括号里的;无括号先做指数运算. 负指数幂化为正指数幂的倒数. 底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数(如 ),先要化成假分数(如15/4),

指数函数、对数函数和幂函数知识点归纳

一、幂函数 1、幂的有关概念 正整数指数幂: ...() n n a a a a n N =∈ g123 零指数幂: 01(0) a a =≠ 负整数指数幂: 1 (0,) p p a a p N a -=≠∈ 分数指数幂:正分数指数幂的意义是: (0,,,1) m n m n a a a m n N n =>∈> 且 负分数指数幂的意义是: 1 (0,,,1) m n m n m n a a m n N n a a - ==>∈> 且 2、幂函数的定义 一般地,函数 a y x =叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况). 3、幂函数的图象 幂函数a y x = 当 11 ,,1,2,3 32 a= 时的图象见左图;当 1 2,1, 2 a=--- 时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:

a y x =有下列性质: (1)0a >时: ①图象都通过点(0,0),(1,1); ②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时: ①图象都通过点(1,1); ②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. 二、指数函数 ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞; 3)当10<a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a . 5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=?-= 三、对数函数 如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b = log b a a N N b =?=(0a >,1a ≠,0N >). 1.对数的性质 ()log log log a a a MN M N =+. log log log a a a M M N N =-.

对数的运算及对数函数

§2.2.1 对数与对数运算(一) ¤知识要点: 1. 定义:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ).记作 log a x N =,其中a 叫做对数的底数,N 叫做真数 2. 我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数10log N 简记为lg N 在 科学技术中常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,并把自然对数log e N 简记作ln N 3. 根据对数的定义,得到对数与指数间的互化关系:当0,1a a >≠时,log b a N b a N =?=. 4. 负数与零没有对数;log 10a =, log 1a a = ,log a a N N = ¤例题精讲: 【例1】将下列指数式化为对数式,对数式化为指数式: (1)71 2128 -= ; (2)327a =; (3)1100.1-=; (4)12 log 325=-; (5)lg0.0013=-; (6)ln100=4.606. 【例2】计算下列各式的值:(1)lg0.001; (2)4log 8; (3). 第14练 §2.2.1 对数与对数运算(一) ※基础达标 1.log (0,1,0)b N a b b N =>≠>对应的指数式是( ). A. b a N = B. a b N = C. N a b = D. N b a = 2.下列指数式与对数式互化不正确的一组是( ). A. 0 1ln10e ==与 B. 1()3 81118 log 223 -==-与 C. 12 3log 9293==与 D. 17log 7177==与 3.设lg 525x =,则x 的值等于( ). A. 10 B. 0.01 C. 100 D. 1000 4.设13 log 82 x =,则底数x 的值等于( ). A. 2 B. 12 C. 4 D. 1 4 5.已知432log [log (log )]0x =,那么1 2 x -等于( ). A. 1 3 B. C. D. 6.若21 log 3 x =,则x = ; 若log 32x =-,则x = . 7.计算: = ; 6lg 0.1= . ※能力提高 8.求下列各式的值:(1) 8; (2)9log

(完整版)对数公式及对数函数的总结

对数运算和对数函数 对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. ②负数和零没有对数。③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>。 常用对数与自然对数 常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 对数函数及其性质 类型一、对数公式的应用

1计算下列对数 =-3log 6log 22 =?3 1log 12 log 2 22 2 =+2lg 5lg =61000lg =+64log 128log 22 =?)24(log 432 =++)2log 2)(log 3log 3(log 9384 =++3log 23log 2242 =?16log 27log 32 =+-2log 90log 5log 333 =++c b a 842log log log =+++200 199lg 43lg 32lg Λ =++32log 8log 8log 842 =+25.0log 10log 255 =-64log 325log 225 =)))65536(log (log (log log 2222 2 解对数的值: 18lg 7lg 37lg 214lg -+- 0 =-+-1)21 (2lg 225lg -1 1 3 341log 2log 8?? -? ??? 的值0 提示:对数公式的运算 如果0,1,0,0a a M N >≠>>,那么 (1)加法:log log log ()a a a M N MN += (2)减法:log log log a a a M M N N -= (3)数乘:log log ()n a a n M M n R =∈ (4)log a N a N = (5)log log (0,)b n a a n M M b n R b =≠∈ (6)换底公式:log log (0,1)log b a b N N b b a = >≠且 (7)1log log =?a b b a (8)a b b a log 1log = 类型二、求下列函数的定义域问题 1函数)13lg(13)(2 ++-= x x x x f 的定义域是)1,31 (- 2设()x x x f -+=22lg ,则?? ? ??+??? ??x f x f 22的定义域为 ()()4,11,4Y -- 3 函数()f x = ]1,0()0,1(Y - ) 提示:(1)分式函数,分母不为0,如0,1 ≠= x x y 。 (2) 二次根式函数,被开方数大于等于0,0,≥= x x y 。 (3)对数函数,真数大于0,0,log >=x x y a 。 类型三、对数函数中的单调性问题

指数对数概念及运算公式

指数函数及对数函数重难点 根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根.即,若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n . ②性质:1)a a n n =)(; 2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==) 0() 0(||a a a a a a n 幂的有关概念: ①规定:1)∈???=n a a a a n ( N * , 2))0(10 ≠=a a , n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ), 2)r a a a s r s r ,0()(>=?、∈s Q ), 3)∈>>?=?r b a b a b a r r r ,0,0()( Q ) (注)上述性质对r 、∈s R 均适用. 例 求值 (1) 3 28 (2)2 125 - (3)()5 21- (4)() 43 8116- 例.用分数指数幂表示下列分式(其中各式字母均为正数) (1)43a a ? (2)a a a (3)32 )(b a - (4)43 )(b a + (5)32 2b a ab + (6)42 33 )(b a + 例.化简求值

(1)0 121 32322510002.08 27)()()()(-+--+---- (2)2 11 5 3125.05 25 .231 1.0)32(256) 027.0(?? ????+-+-????? ?-- (3)=?÷ ?--3133 73 32 9a a a a (4)21 1511336622263a b a b a b ??????-÷- ??? ??????? = (5)6323 1.512??= 指数函数的定义: ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R , 2)函数的值域为),0(+∞, 3)当10<a 时函数为增函数. 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)2 2 x y += (2)(2)x y =- (3)2x y =- (4)x y π= (5)2y x = (6)2 4y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠) 例:比较下列各题中的个值的大小 (1)1.72.5 与 1.7 3 ( 2 )0.1 0.8 -与0.2 0.8 - ( 3 ) 1.70.3 与 0.93.1 例:已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求 (0),(1),(3)f f f -的值. 思考:已知0.7 0.9 0.8 0.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c . 例 如图为指数函数x x x x d y c y b y a y ====)4(,)3(,)2(,)1(,则 d c b a ,,,与1的大小关系为 O x y a d c b

指数函数 和 对数函数公式 (全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01 且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0 ,y x =0,当x ≤0,函数值不存在。 a =1 时,y x =1对一切x 虽有意义,函数值恒为1,但y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ???=212 10,, 的图象的认识。 图象特征与函数性质: 图象特征 函数性质 (1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x >0; (2)图象都经过点(0,1); (2)无论a 取任何正数,x =0时,y =1; (3)y y x x ==210,在第一象限内的纵坐标都大于1,在第二象限内的纵坐标都小于1,y x =?? ? ? ?12的图象正好相反; (3)当a >1时,x a x a x x >><<<>?????0101, 则, 则 (4)y y x x ==210,的图象自左到右逐渐(4)当a >1时,y a x =是增函数,

对数函数运算公式

对数函数运算公式集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

1 、b a b a =log 2、 b b a a =log 3、N a M a MN a log log log += 4、N a M a N M a log log log -= 5、M a M a n n log log = 6、M a M a n n log 1log = 1、a^(log(a)(b))=b 2、log(a)(a^b)=b 3、log(a)(MN)=log(a)(M)+log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(M^n)=nlog(a)(M) 6、log(a^n)M=1/nlog(a)(M) 推导 1、因为n=log(a)(b),代入则a^n=b ,即a^(log(a)(b))=b 。 2、因为a^b=a^b 令t=a^b 所以a^b=t ,b=log(a)(t)=log(a)(a^b) 3、MN=M×N 由基本性质1(换掉M 和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N) 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

两种方法只是性质不同,采用方法依实际情况而定 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 4、与(3)类似处理 MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 5、与(3)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]

对数运算、对数函数经典例题讲义

1.对数的概念 如果a x =N (a >0,且a ≠1),那么数x 叫做__________________,记作____________,其中a 叫做__________,N 叫做______. 2.常用对数与自然对数 通常将以10为底的对数叫做____________,以e 为底的对数叫做____________,log 10N 可简记为______,log e N 简记为________. 3.对数与指数的关系 若a >0,且a ≠1,则a x =N ?log a N =____. 对数恒等式:a log a N =____;log a a x =____(a >0,且a ≠1). 4.对数的性质 (1)1的对数为____; (2)底的对数为____; (3)零和负数__________. 1.有下列说法: ①零和负数没有对数; ②任何一个指数式都可以化成对数式; ③以10为底的对数叫做常用对数; ④以e 为底的对数叫做自然对数. 其中正确命题的个数为( ) A .1 B .2 C .3 D .4 2.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =100;④若e =ln x ,则x =e 2.其中正确的是( ) A .①③ B .②④ C .①② D .③④ 3.在b =log (a -2)(5-a )中,实数a 的取值范围是( ) A .a >5或a <2 B .2

对数函数与指数函数的运算

对数函数与指数函数的运算 1.化简下列各式(其中各字母均为正数): (1) ;)(65312121132 b a b a b a ????-- (2).)4()3(6521 332121231----?÷-??b a b a b a 2.化简(1) 313 2)3(---a y x (2) )111)((2211b ab a b a +-+-- 3.化简下列各式 (1) 6113175.0231729)95()27174(256)61(027 .0------+-+-- (2) (a 3+a -3)(a 3-a -3)÷[(a 4+a -4+1)(a-a -1)] 4.求值(1)lg14-2lg 37+lg7-lg18 (2)9lg 243lg

(3) 2.1lg 10lg 38lg 27lg -+ (4)(lg2)3+(lg5)3+3lg2?lg5 (5)化简22)4(lg 16lg 25lg )25(lg ++ 答案: 1.(1)原式= .100653121612131656131212131=?=?=?-+-+--b a b a b a b a b a (2)原式=- )(45)4(25233136121332361------÷-=?÷b a b a b a b a .45145452 32321ab ab ab b a -=?-=?-=-- 2. (1) 639 27x a y ; (2) 3311b a +;

3.(1) 5132;(2) a a 1 ; 4. (1) 0;(2) 25;(3) 23;(4) 1;(5) 2 ;

对数运算与对数函数

对数运算与对数函数 已知底数和指数求幂的运算称为指数运算.如求23=?那么当已知底数和幂,求指数的 运算则称为对数运算.指数运算与对数运算互为逆运算. 【对数运算的相关问题】 1.定义. 若a b =N(a>0且a ≠1,N >0),则称b 是以a 为底N 的对数.记作b=log a N ,其中a 叫做底 数,N 叫做真数. 2指数式与对数式的互化 如图1.10—1所示. ②互换规则:底数不变,指数 与对数互换,幂与真数互换. 3.对数恒等式:① . ② . 证明:①设log a N=b (1),则a b =N (2),将(1)代入(2)得. ②设a b =N(3),则b=log a N(4),将(3)代入(4)得.此结论说明任何一个实数b 都 可以用一个对数表示. 说明:为什么零与负数无对数?为什么要求指数、对数的底数 a >0且a ≠1? 由a b =N ,N >0说明b=log a N 中的真数必须大于0.∴ 零与负数无对数. 又∵ 由1b =1知b 的取值是无法确定的,再如在实数范围内是无意义的.故底数a >0且a ≠1. 例1.化简下列各式:(1). (2) . 解: (1)原式=31 ×=3×6=18. (2)原式=. 4.对数运算性质 如果 (1). (2)= . (3) . 5.换底公式及推论 ①换底公式:. ②推论1: . a b =N b=log a N ? 指数式← →对数式 底数 指数 对数 幂 真数 ①.指数式与对数式 的互化. 图1.10—1

③推论2:. 例2.已知f(x)是R上以2为周期的奇函数,当x∈[0,1]时f(x)=2x,求f(log0.523)的值. 解:∵f(x)是R上以2为周期的奇函数, ∴f(log0.523)=f()=f(-log223)=-f(log223-4)= -f(), 又∵当x∈[0,1]时f(x)=2x,∴f(log0.523)= . 例3.求值. (1). (2)lg52++lg5lg20+lg22. 解:(1)法1.原式=lo()=lo2= lo()3=3. 法2.原式= (2)原式=2lg5+2lg2+lg5(2lg2+lg5)+lg22=2(lg2+lg5)+(lg2+lg5)2=3. 例4.(1)已知log189=a,18b=5. 求log3645. (2)若26a=33b=62c..求证:3ab-2ac=bc. (3)若.求的值. 解:(1)法1.由log189=a,得a=log18 又由18b=5,得b=log185, ∴log3645= 法2. log189=a,得, 再由b=log185= ∴log3645= (2)设26a=33b=62c.=k>0,则6a=log2k,∴6log k2,

相关文档
最新文档