2018年全国各地高考数学一题多解:全国II卷(含答案)
2018年高考全国卷2理科数学真题(附含答案解析)

2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A. B. C. D.2.已知集合A={(x,y)|x ²+y ²≤3,x∈Z,y∈Z},则A中元素的个数为A.9B.8C.5D.43.函数f(x)=e ²-e-x/x ²的图像大致为A.B.C.D.4.已知向量a,b满足∣a∣=1,a·b=-1,则a·(2a-b)=A.4B.3C.2D.05.双曲线x ²/a ²-y ²/b ²=1(a﹥0,b﹥0)的离心率为,则其渐进线方程为A.y=±xB.y=±xC.y=±D.y=±6.在中,cos=,BC=1,AC=5,则AB=A.4B.C.D.27.为计算s=1-+-+…+-,设计了右侧的程序框图,则在空白框中应填入A.i=i+1B.i=i+2C.i=i+3D.i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。
哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23,在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.9.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=则异面直线AD1与DB1所成角的余弦值为A. B.10.若f(x)=cosx-sinx在[-a,a]是减函数,则a的最大值是A. B. C. D. π11.已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x)。
若f(1)=2,则f(1)+ f(2)+ f(3)+…+f(50)=A.-50B.0C.2D.5012.已知F1,F2是椭圆C: =1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为A..B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年全国2卷数学试卷及参考答案

2018年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。
1.1212ii+=-( ) A .4355i --B .4355i -+C .3455i -- D .3455i -+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为()A .9B .8C .5D .43.函数()2x xe ef x x --=的图象大致是()4.已知向量a b ,满足,1a =,1a b ⋅=-,则()2a a b ⋅-=() A .4B .3C .2D .05.双曲线()2222100x y a b a b-=>,>3A .2y x =±B .3y x =±C .22y x =±D .32y x =± 6.在ABC △中,5cos25C =,1BC =,5AC =,则AB =() A .42B .30 C .29 D .257.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图, 则在空白框中应填入() A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是() A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为()A .15BCD10.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是()A .4πB .2πC .43πD .π11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=()A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为() A .23B .12C .13D .14二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln 1y x =+在点()00,处的切线方程为__________.14.若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为_________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。
2018年高考全国卷2理科数学真题(附含答案解析)

2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A. B. C. D.2.已知集合A={(x,y)|x ²+y ²≤3,x∈Z,y∈Z},则A中元素的个数为A.9B.8C.5D.43.函数f(x)=e ²-e-x/x ²的图像大致为A.B.C.D.4.已知向量a,b满足∣a∣=1,a·b=-1,则a·(2a-b)=A.4B.3C.2D.05.双曲线x ²/a ²-y ²/b ²=1(a﹥0,b﹥0)的离心率为,则其渐进线方程为A.y=±xB.y=±xC.y=±D.y=±6.在中,cos=,BC=1,AC=5,则AB=A.4B.C.D.27.为计算s=1-+-+…+-,设计了右侧的程序框图,则在空白框中应填入A.i=i+1B.i=i+2C.i=i+3D.i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。
哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23,在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.9.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=则异面直线AD1与DB1所成角的余弦值为A. B.10.若f(x)=cosx-sinx在[-a,a]是减函数,则a的最大值是A. B. C. D. π11.已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x)。
若f(1)=2,则f(1)+ f(2)+ f(3)+…+f(50)=A.-50B.0C.2D.5012.已知F1,F2是椭圆C: =1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为A..B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年全国各地高考数学一题多解:全国II卷(含答案)

全国 II 卷【理数 10 题】已知直三棱柱 C1 1C 1中,C120 ,2 , C CC 1 1,则异面直线1与 C 1 所成角的余弦值为()315 10 3A .B .C .D .2553【答案】 C【考点】 线面角解法二:向量法:取空间向量的一组基底为BA, BC , BB 1 ,则 AB 1 BB 1 BA ,BC 1 BC CC 1 BC BB 1 ,易知 AB 15, BC 12 ,2AB 1 BC 1 (BB 1 BA) (BC BB 1)= BB 1 BC BB 1BA BC BA BB 1 =2 ,1 与 C 1 所成角的余弦值为AB 1 BC 1 2 10,故此题答所以异面直线cos AB 1, BC 1BC 1AB 1 2 55案为 C.解法三: 建系法: 如下图, 以垂直于 BC 的方向为 x 轴, BC 为 y 轴, BB 1 为 z 轴,成立空间直角坐标系,则 B 1 (0,0,1), A( 3, 1,0), BC 1 (0,1,1), AB 1 ( 3,1,1) ,所以异面直线1与C 1 所成角的余弦值cosAB 1 BC 1 1 110,故此题答案为 C.AB 1 BC 12 55【理数 12 题】已知ABC 是边长为 2 的等边三角形, P 为平面 ABC 内一点,则PA ( PB PC)的最小值是()A. 23 4D. 1B. C.2 3【答案】 B【考点】平面向量的坐标运算、函数的最值【剖析】平面向量中相关最值问题的求解往常有两种思路:①“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,而后依据平面图形的特点直接进行判断;②“数化”,即利用平面向量的坐标运算 ,把问题转变为代数中的函数最值与值域、不等式的解集、方程有解等问题,而后利用函数、不等式、方程的相关知识来解决.【分析】解法二:极化恒等式:取BC 的中点为M,则 PB PC 2PM ,于是PA (PB PC) 2PA PM ,根据极化恒等式可得PA PM=1(PA PM )2 (PA PM )21(2PN )2 ( MA)2 PN 2 33,应选 B.4 4 4 4解法三:代数法:如下图,若 PA ( PB PC ) 取最小值,则 PA 与PB PC 反向共线,即点P位于ABC 的中线上,中线长为22 12 = 3 ,设PA x ,则 PB PC =2( 3 x) ,所以PA (PB PC ) PA PB PC x 2( 3 x) 2x2 2 3x ;当x 3 时, PA (PB PC ) 获得最小值,此时,PA (PB PC )= 2 2 ( 3 )232 PA .2 2 2。
2018高考全国2卷理科数学带详细标准答案

设平面 PAM 地法向量为 n ( x, y, z) .
uuur 由 AP n
uuur 0, AM n
0得 2y
2 3z
0
,可取
ax (4 a) y 0
n ( 3( a 4), 3a, a) ,
uuur 所以 cos OB , n
2 3( a 4)
.由已知得
2 3(a 4)2 3a 2 a2
uuur
5 / 12
个人收集整理 仅供参考学习
19.解:
( 1)由题意得 F (1,0) , l 地方程为 y k ( x 1)(k 0) .
设 A( x1, y1), B(x2, y2 ) ,
由
y y2
k(x 4x
1),得 k 2 x2
(2k 2
4) x k 2
0.
16k 2 16 0 ,故 x1 x2
( 2)你认为用哪个模型得到地预测值更可靠?并说明理由.
19.( 12 分) 设抛物线 C:y 2 4x 地焦点为 F ,过 F 且斜率为 k( k 0) 地直线 l 与 C 交于 A ,B 两点,
| AB | 8 . ( 1)求 l 地方程; ( 2)求过点 A , B 且与 C 地准线相切地圆地方程.
2 / 12
个人收集整理 仅供参考学习
三、解答题:共 70 分 .解答应写出文字说明、证明过程或演算步骤 .第 17~21 题为必考题,
每个试题考生都必须作答 .第 22、 23 为选考题 .考生根据要求作答 .RTCrpUDGiT
(一)必考题:共 60 分 .
17.( 12 分) 记 Sn 为等差数列 { an } 地前 n 项和,已知 a1
1. 1 2i 1 2i
2018年高考全国二卷数学含答案

2018年高考全国二卷数学含答案2018年普通高等学校招生全国统一考试二卷文科数学本试卷分为第I卷(选择题)和第II卷(非选择题)两部分,共150分,考试时间120分钟。
第I卷参考公式:如果事件A、B互斥,那么P(A+B)=P(A)+P(B)。
如果事件A、B相互独立,那么P(A·B)=P(A)·P (B)。
如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率为:Pn(k)=C(n,k)Pk(1-P)^(n-k)。
球的表面积公式:2S=4πR,其中R表示球的半径。
球的体积公式:V=4/3πR^3,其中R表示球的半径。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M={x|x<4},N={x|x-2x-3<0},则集合M∩N=A。
{x|x3} C。
{x|-1<x<2} D。
{x|2<x<3}2.函数y=1/x(x≠-5)的反函数是A。
y=-5(x≠0) B。
y=x+5(x∈R) C。
y=5/x(x≠0) D。
y=x-5(x∈R)3.曲线y=x^2-3x+1在点(1,-1)处的切线方程为A。
y=3x-4 B。
y=-3x+2 C。
y=-4x+34.已知圆C与圆(x-1)^2+y^2=1关于直线y=-x对称,则圆C的方程为A。
(x+1)^2+y^2=1 B。
x+y=1 C。
x+(y+1)^2=1 D。
x+(y-1)^2=15.已知函数y=tan(2x+θ)的图象过点(-π/12,),则θ可以是A。
-π/12 B。
π/6 C。
π/12 D。
5π/126.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为A。
75° B。
60° C。
45° D。
30°7.函数y=-e^x的图象A。
与y=e^x的图象关于y轴对称 B。
2018年高考理科数学全国卷2(含答案解析)
绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页,考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.1212ii+=- 43. 55A i -- 43. 55B i -+ 34. 55C i -- 34. 55D i -+2.已知集合(){}22,3,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为. 9A. 8B . 5C . 4D3.函数2()x xe ef x x--=的图象大致为4.已知向量,a b 满足1,1a a b =⋅=-,则()2a a b ⋅-=. 4A . 3B . 2C . 0D5.双曲线()222210,0x y a b a b-=>>的离心率为3,则其渐近线方程为. 2A y x =± . 3B y x =± 2. 2C y x =± 3. 2D y x =±6.在ABC ∆中,5cos ,1,5,25C BC AC ===则AB = . 42A . 30B . 29C. 25D 7.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入. 1A i i =+ . 2B i i =+ . 3C i i =+ . 4D i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23. 在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是1.12A 1. 14B 1. 15C 1. 18D 9.在长方体1111ABCD A B C D -中,11,3,AB BC AA ===则异面直线1AD 与1DB 所成角的余弦值为1. 5A5. 6B 5. 5C 2.2D 10.若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是.4A π.2B π3.4C π .D π-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________11.已知()f x 是定义域为(),-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=. 50A -. 0B . 2C . 50D12.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,A 是C 的左顶点,点P 在过A且斜率为6的直线上,12PF F ∆为等腰三角形,12120F F P ∠=,则C 的离心率为2. 3A 1. 2B 1. 3C 1. 4D二、填空题(本题共4小题,每小题5分,共20分)13.曲线2ln(1)y x =+在点()0,0处的切线方程为_____________.14.若,x y 满足约束条件250,230,50,x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩则z x y =+的最大值为________.15.已知sin cos 1,cos sin 0αβαβ+=+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA 、SB 所成角的余弦值为78,SA 与圆锥底面所成角为45.若SAB ∆的面积为则该圆锥的侧面积为__________.三、解答题(共70分。
2018年高考数学全国卷试题答案解析(6套)
中,最短路径的长度为
5
A. 【答案】B
B.
C.
D. 2
【解析】分析:首先根据题中所给的三视图,得到点 M 和点 N 在圆柱上所处的位置,点 M 在上底面上,点 N 在下底面上,并且将圆柱的侧面展开图平铺,点 M、N 在其四分之一的 矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果. 详解:根据圆柱的三视图以及其本身的特征, 可以确定点 M 和点 N 分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的 长方形的对角线的端点处, 所以所求的最短路径的长度为 ,故选 B.
【答案】B 【解析】分析:首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为 ,之后应用余弦型函数的性质得到相关的量,从而得到正确选项. 详解:根据题意有 所以函数 且最大值为 的最小正周期为 ,故选 B. , ,
点睛: 该题考查的是有关化简三角函数解析式, 并且通过余弦型函数的相关性质得到函数的 性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果. 9. 某圆柱的高为 2,底面周长为 16,其三视图如右图.圆柱表面上的点 在正视图上的对 应点为 ,圆柱表面上的点 在左视图上的对应点为 ,则在此圆柱侧面上,从 到 的路径
2018 年高考全国卷数学试题答案解析
目录
文科 全国一卷 全国二卷 全国三卷 2-18 19-35 36-47
理科 全国一卷 全国二卷 全国三卷 48-66 67-80 81-96
1
全国卷 1 ቤተ መጻሕፍቲ ባይዱ科数学试题解析
1. 已知集合 A. 【答案】A 【解析】 分析: 利用集合的交集中元素的特征, 结合题中所给的集合中的元素, 求得集合 中的元素,最后求得结果. 详解:根据集合交集中元素的特征,可以求得 2. 设 A. 0 B. ,则 C. D. ,故选 A. B. , C. D. ,则
2018年全国高考新课标2卷理科数学试题(解析版)
2018年全国高考新课标2卷理科数学试题(解析版)2018年普通高等学校招生全国统一考试新课标2卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知1+2i/(1-2i),则结果为:A。
--iB。
-+iC。
--iD。
-+i解析:选D。
2.已知集合A={(x,y)|x+y≤3,x∈Z,y∈Z },则A中元素的个数为:A。
9B。
8C。
5D。
4解析:选A。
问题为确定圆面内整点个数。
3.函数f(x)=2/x的图像大致为:A。
B。
C。
D。
解析:选B。
f(x)为奇函数,排除A。
当x>0时,f(x)>0,排除D。
取x=2,f(2)=1,故选B。
4.已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=:A。
4B。
3C。
2D。
2-2xy解析:选B。
a·(2a-b)=2a-a·b=2+1=3.5.双曲线a^2(x^2)-b^2(y^2)=1(a>0,b>0)的离心率为3,则其渐近线方程为:A。
y=±2xB。
y=±3xC。
y=±2x/abD。
y=±3x/ab解析:选A。
e=3,c=3ab=2a。
6.在ΔABC中,cosC=1/5,BC=1,AC=5,则AB=:A。
42B。
30C。
29D。
25解析:选A。
cosC=2cos^2(C/2)-1=-1/5,AB=AC+BC-2AB·BC·cosC=32,AB=42.7.为计算S=1-1/3+1/5-1/7+……+(-1)^n-1/(2n-1),设计了右侧的程序框图,则在空白框中应填入:开始N=0,T=1i=1是N=N+1/T=T+(-1)^N-1/(2N-1)i<100否S=N-T输出S结束A。
2018普通高等学校招生全国统一考试理科数学全国卷2试题及答案解析
WORD整理版分享2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的XX、XX号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.12i1 2iA.4 3 4 3i3 4 3 4 5i B.5C.i D.i5 5 5 5 5 52.已知集合A x,y x2y2≤3,x Z,y Z,则A中元素的个数为A.9 B.8 C.5 D.43.函数fe x e x的图像大致为xx24.已知向量a,b满足|a| 1,ab 1,则a(2ab)A.4 B.3 C.2 D.05.双曲线x2y2221(a 0,b0)的离心率为3,则其渐近线方程为a bA.y 2x B.y 3x C.y2D.y3x x 2 26.在△ABC中,cos C5,BC 1,AC 5,则AB2 5A.42 B.30 C.29 D.25X文X例参考指导WORD 整理版分享7.为计算S 1 1 1 1 ⋯1 1,设计了右侧的程序框图,开始 2 3 4 99 100则在空白框中应填入N 0,T0A .i i 1i1B .i i 2是 否 i 100 C .i i 31N SNT D .i i 4NiT T 1输出S i1结束8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30 7 23.在不超过30的素数中,随 机选取两个不同的数,其和等于 30的概率是A .1B .1C .1D .1121415189.在长方体ABCDA1B1C1D1中,ABBC1,AA 13,则异面直线 AD 1与DB 1 所成角 的余弦值为A .1B . 5C .5 D . 2 565 210.若f(x)cosxsinx 在[ a,a]是减函数,则a 的最大值是A .πB .πC .3πD .π42411.已知f(x)是定义域为( , )的奇函数,满足 f(1 x) f(1x) .若f(1) 2,则 f(1)f(2) f(3)⋯ f(50)A .50B .0C .2D .5012.已知F 1,F 2 x 2y 21(a b0) 的左、右焦点, A 是C 的左顶点,点P 在是椭圆C :22 a b过A 且斜率为 3的直线上,△PF 1F 2 为等腰三角形, F 1F 2P120,则C 的离心率为6 A .2B .1C .1D .13 2 3 4二、填空题:本题共 4小题,每小题 5分,共20分.13.曲线y2ln(x 1)在点(0,0)处的切线方程为__________.X文X例参考指导WORD整理版分享x 2y50 ,14.若x,y满足约束条件x 2y30 ,则zx y的最大值为__________.x 5 0,15.已知sinαcosβ1,cosαsinβ0,则sin(αβ) __________.16.已知圆锥的顶点为S ,母线SA,所成角的余弦值为7,与圆锥底面所成角为45°,SB SA8若△SAB的面积为515,则该圆锥的侧面积为__________.三、解答题:共70分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国II 卷
【理数10题】已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )
A
B
C
D
【答案】C
【考点】 线面角
解法二:向量法:取空间向量的一组基底为{}
1,,BA BC BB ,则11AB BB BA =-, 111BC BC CC BC BB =+=+,易知15AB =,12BC = 21111111()()==2AB BC BB BA BC BB BB BC BB BA BC BA BB ⋅=-⋅+⋅+-⋅-
⋅,
所以异面直线1AB 与1C B 所成角的余弦值为111111cos ,2AB BC AB BC AB BC ⋅<>=
==
⋅,故本题答案为C.
解法三:建系法:如图所示,以垂直于BC 的方向为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,则111(0,0,1),1,0),(0,1,1),(3,1,1)
B A B
C AB -==-,所以异面直线1AB 与1C B
所成角的余弦值11
11cos 52AB BC AB BC θ⋅===⋅,故本题答案为C.
【理数12题】已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是( )
A.2-
B.32-
C. 43
- D.1- 【答案】B
【考点】 平面向量的坐标运算、函数的最值
【分析】平面向量中有关最值问题的求解通常有两种思路:①“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;②“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.
【解析】
解法二:极化恒等式:取BC 的中点为M ,则2PB PC PM +=,于是()2PA PB PC PA PM ⋅+=⋅,根据极化恒等式可得
222221133=()()(2)()4444
PA PM PA PM PA PM PN MA PN ⎡⎤⎡⎤⋅+--=-=-≥-⎣⎦⎣⎦,故选B. 解法三:代数法:如图所示,若()PA PB PC ⋅+取最小值,则PA 与PB PC +反向共线,即点P 位于ABC
∆
PA x =,则=2(3)PB PC x +,因此
2())2PA PB PC PA PB PC x x x ⋅+=-⋅+=-⋅=-;
当x =()PA PB PC ⋅+取得最小值,此时,223()=222PA PB PC PA ⋅+-=-⨯=-.。