《同底数幂的除法》教学课件
合集下载
同底数幂的除法课件

八年级数学湘教版·上册
第1章
分式
1.3.1同底数幂的除法
授课人:X
学习目标
1.同底数幂的除法法则以及利用该法则进行计算;(重点)
2.同底数幂的除法法则的应用.(难点)
新课导入
2
4a b
约分:①
12a 3bc
1
=
.
3
n
,
②
a
a n 1
, ③
=
∙
1
= .
x2 4
.
2
x 4x 4
4
(6) −
= ( + )7−4
= −
= ( + )3
=−
3
3−2
÷ ( − )2
1MB = 210 KB.
1KB = 210 B.
新知探究
问题:小明的爸爸最近买了一台计算机,硬盘总容量为20GB,而10年前买的一台
计算机,硬盘的总容量为20MB,你能算出现在买的这台计算机的硬盘总容量是本
来买的那台计算机总容量的多少倍吗?
20GB=20x210B .
20 × 210 20 × 210
的值
2 = 32 =9
÷
2
8
=8÷9=
9
课堂小结
同底数幂相除,底数不变,指数相减.
同底数幂的除法
同底数幂相除的逆用.
课堂小测
xy
xy
1 填空: (1)
2 3
− 2
=_______
(2) x7.( x )=x8
(3)
b4.b3.(
x
m1
x
2 m 2
9
12
第1章
分式
1.3.1同底数幂的除法
授课人:X
学习目标
1.同底数幂的除法法则以及利用该法则进行计算;(重点)
2.同底数幂的除法法则的应用.(难点)
新课导入
2
4a b
约分:①
12a 3bc
1
=
.
3
n
,
②
a
a n 1
, ③
=
∙
1
= .
x2 4
.
2
x 4x 4
4
(6) −
= ( + )7−4
= −
= ( + )3
=−
3
3−2
÷ ( − )2
1MB = 210 KB.
1KB = 210 B.
新知探究
问题:小明的爸爸最近买了一台计算机,硬盘总容量为20GB,而10年前买的一台
计算机,硬盘的总容量为20MB,你能算出现在买的这台计算机的硬盘总容量是本
来买的那台计算机总容量的多少倍吗?
20GB=20x210B .
20 × 210 20 × 210
的值
2 = 32 =9
÷
2
8
=8÷9=
9
课堂小结
同底数幂相除,底数不变,指数相减.
同底数幂的除法
同底数幂相除的逆用.
课堂小测
xy
xy
1 填空: (1)
2 3
− 2
=_______
(2) x7.( x )=x8
(3)
b4.b3.(
x
m1
x
2 m 2
9
12
同底数幂的除法--课件

拓展目标
3、计算:
(1)a12 a3 • a4
(2)(0.25)6 (1)5 4
x2n3 (3) x4 (n为正整数 )
解:原式 a123 • a4 a9 • a4
a13
原式 (1 )6 (1 )5 44
( 1 )65 4
1 4
原式 x2n34
x2n1
达标检测
1、计算:
(1) a 4 a3
(1)底数有什么关系? (2)指数有什么关系?
合作探究
2、如果把数字改为字母 : 一般地,设 a≠0 ,m、n是正整 数,且m>n,则am÷an=( )
猜想:a m a mn (a 0,m,n都是正整数,且m>n) an
因为 a m an
a(mn)n an
a(mn) an an
amn
3、上题中为什么规定a≠0 ?
储存卡的容量为:26 M=26×210K=216K
能容纳的照片数量为:216÷28=
问题:216、28是同底数幂, 同底数幂相除如何计算呢?
?
课题
这就是我们本节课要学习的主要内容
同底数幂的除法
板书课题
自主学习
1、计算
(1) 28 28
(3)103 105
(2) 72 73
(4) m3 m3
归纳得出
同底数幂的除法法则:
同底数幂相除,底数不变,指数相减
符号语言表示为:
am an
amn (a 0,m,n都是正整数,且m>n)
注意:
条件:①除法 ②同底数幂 结果:①底数不变 ②指数相减
基础目标
1、计算:
(1)
x8 x4
(xy)6 (2) (xy)4
《同底数幂的除法》优秀课件

《同底数幂的除法》 优秀课件
汇报人: 日期:
目 录
• 引入 • 知识点讲解 • 课堂互动 • 练R 01
引入
定义与性质
定义
同底数幂的除法是指两个同底数幂相除的运算。
性质
同底数幂相除,底数不变,指数相减。
引入的必要性
掌握基本数学概念
同底数幂的除法是数学运算中的基本概念之一,学生有必要 掌握。
03
通过个别指导和课堂互动等形式,及时了解学生的学习情况并
做出反馈,帮助学生解决学习和实践中的问题。
CHAPTER 04
练习与巩固
基础练习
总结词
强化基础,针对训练
VS
详细描述
设计一系列基础题目,包括同底数幂的除 法法则的直接应用,以及简单的综合应用 ,帮助学生掌握基本概念和运算方法。
进阶练习
总结词
促进知识迁移
通过问题引导,帮助学生 将同底数幂的除法的知识 与其他数学知识进行联系 和迁移。
学生参与的方式和方法
小组讨论
将学生分成小组,让每个小组 内的学生相互讨论和交流,共 同探讨同底数幂的除法的计算
方法和规律。
互动游戏
设计一些互动游戏,让学生在游戏 中学习和掌握同底数幂的除法的知 识和技能。
个别指导
提升难度,培养能力
详细描述
设计一些稍有难度的题目,包括一些陷阱题 和需要灵活运用法则的题目,引导学生学会 分析和解决问题的能力,同时加深对法则的 理解。
综合练习
总结词
综合应用,拓展思维
详细描述
设计一些综合性的题目,需要学生灵活运用同底数幂 的除法法则和其他数学知识,例如解方程、求最值等 ,帮助学生提高综合应用能力和数学思维。
学生易错点分析
汇报人: 日期:
目 录
• 引入 • 知识点讲解 • 课堂互动 • 练R 01
引入
定义与性质
定义
同底数幂的除法是指两个同底数幂相除的运算。
性质
同底数幂相除,底数不变,指数相减。
引入的必要性
掌握基本数学概念
同底数幂的除法是数学运算中的基本概念之一,学生有必要 掌握。
03
通过个别指导和课堂互动等形式,及时了解学生的学习情况并
做出反馈,帮助学生解决学习和实践中的问题。
CHAPTER 04
练习与巩固
基础练习
总结词
强化基础,针对训练
VS
详细描述
设计一系列基础题目,包括同底数幂的除 法法则的直接应用,以及简单的综合应用 ,帮助学生掌握基本概念和运算方法。
进阶练习
总结词
促进知识迁移
通过问题引导,帮助学生 将同底数幂的除法的知识 与其他数学知识进行联系 和迁移。
学生参与的方式和方法
小组讨论
将学生分成小组,让每个小组 内的学生相互讨论和交流,共 同探讨同底数幂的除法的计算
方法和规律。
互动游戏
设计一些互动游戏,让学生在游戏 中学习和掌握同底数幂的除法的知 识和技能。
个别指导
提升难度,培养能力
详细描述
设计一些稍有难度的题目,包括一些陷阱题 和需要灵活运用法则的题目,引导学生学会 分析和解决问题的能力,同时加深对法则的 理解。
综合练习
总结词
综合应用,拓展思维
详细描述
设计一些综合性的题目,需要学生灵活运用同底数幂 的除法法则和其他数学知识,例如解方程、求最值等 ,帮助学生提高综合应用能力和数学思维。
学生易错点分析
4.同底数幂的除法PPT课件(华师大版)

2.计算:
随堂演练
3.计算: 3(x2)3·x3-(x3)3+(-x)2·x9÷x2
4.计算:(1)(a8)2÷a8; (2)(a-b)2(b-a)2n÷(a-b)2n-1
5.已知am=3,an=4,求a2m-n的值.
6.若(xm÷x2n)3÷xm-n与4x2为同类项,且 2m+5n=7,求4m2-25n2的值.
课堂小结
通过这节课的学习活动, 你有什么收获?
课后作业
1.从教材习题中选取, 2.完成练习册本课时的习题.
现在,我怕的并不是那艰苦严峻的生活, 而是不能再学习和认识我迫切想了解的世 界。对我来说,不学习,毋宁死。
—— 罗蒙诺索夫
推动新课
1.计算下列各式
2
2
2
2
2
2
2
2
5-3
53
a
a
a
a
a
3-2
32
2.探究:am÷an=? 由幂的定义可知:
你能从中归纳出同底数幂除法的法则吗?
【归纳结论】
同底数幂相除,底数不变,指 数相减. am÷an=am-n(a≠0,m,n是 正整数,且m>n)
逆用:
am-n= am÷an (a≠0,m, n是正整数,且m>n)
(3)积的乘方等于积中各因数乘方的积.(ab)n= anbn (n是正整数)
2.一个2GB的便携式U盘可以存储的数码照片张 数与数码照片文件的大小有关,文件越大,存 储的张数越少,若每张数码照片的大小为 211KB,则这个U盘能存储多少张照片?
解:2G=2048M=2097125KB U盘能存储照片的张数2097125÷211≈9938(张) 答:这个U盘能存储9938张照片.
《同底数幂的除法》PPT课件

例1、计算:(-1.5)8 (-1.5)7
例2(a b)6 (a b)2 (a b)3
例2 计算: 攀登高峰
解题后的反思
(1) a5 a4 a2; (2) ( x)7 x2;
(3)(ab)5 (ab)2;(4) (a b)6 (a b)4;
1.乘除混合运算的顺序与有理数混合运算顺序 相同(即“从左到右”).
交流与发现
• 火星有两颗卫星,即火卫1和火卫2,火卫1 的质量约为1016千克。截止到2005年4月, 已发现木星有58颗卫星,其中木卫4的质量 约为1023千克,木卫4的质量约为火卫1质量 的多少倍?
• 思考:木卫4的质量约为火卫1质量的多少倍?
1023 1016
试卷
下载
/shiti除/ 号相当 教下案载于分数线
(2) a3m-2n= a 3m ÷ a 2n
= (am)3 ÷(an)2
=33 ÷52=27 ÷25
27
= 25
1.同底数幂相除的法则:注意a≠0.
2.幂的四个运算法则:
a 同底数幂相乘:指数相加。 m an amn
同底数幂相除:指数相减。 am an amn
幂的乘方: 指数相乘 (am )n amn 积的乘方: 乘方的积 (ab)n anbn
温故知新
• 1.同底数幂的乘法运算法则是
a m a n a mn (m、n为正整数)
• 2.幂的乘方的运算法则是
am n amn (m、n为正整数)
• 3.积的乘方的运算法则是
(ab)n anbn (n为正整数)
特别看一下:
同底数幂的乘法法则: 同底数幂相乘,底数不变,
指数相加. 即aman=am+n(m,n都是正
《同底数幂的除法》参考课件

感谢观看
在数学竞赛中,不等式是常见的题型之一。通过使用 同底数幂的除法,可以将不等式转化为更易于求解的 形式,例如利用指数函数的性质求解。
优化算法设计
在算法设计中,同底数幂的除法可以用于优化某些算 法的性能。例如,通过使用二进制指数算法来加速某 些计算过程,从而提高算法的效率。
07
CATALOGUE
同底数幂的除法与其他数学知识的联系
与指数函数的联系
指数函数是幂函数的一种特例,当幂函数的指数为整数时,就变成了指数函数。 同底数幂的除法可以看作是幂函数中指数为负数的情况,与指数函数有密切联系 。
同底数幂的除法运算可以用来简化指数函数的运算,例如计算 $a^{m} \div a^{n}$ 可以转化为 $a^{m-n}$,从而简化计算过程。
除法在实际问题中的应用和意义。
05
CATALOGUE
课后作业与拓展
课后作业
计算下列同底数幂的除法
01
02
$2^{5} \div 2^{3}$
$3^{7} \div 3^{4}$
03
04
$5^{4} \div 5^{2}$
$6^{3} \div 6^{2}$
05
06
对于上述计算,总结出同底数幂的除法的运算规律。
与对数函数的联系
对数函数是一种特殊的函数,其定义域和值域都是正实数。同底数幂的除法可以看作是对数函数的逆运算。
当底数为 $e$ 时,同底数幂的除法可以转化为对数运算。例如,计算 $e^{m} \div e^{n}$ 可以转化为 $m - n$,因为 $\log_{e}a^{n} = n$。
与幂函数的联系
要点一
组织学生分组讨论
将学生分成若干小组,让他们在小组内讨论同底数幂 的除法的计算方法,并鼓励他们互相交流、互相学习 。
在数学竞赛中,不等式是常见的题型之一。通过使用 同底数幂的除法,可以将不等式转化为更易于求解的 形式,例如利用指数函数的性质求解。
优化算法设计
在算法设计中,同底数幂的除法可以用于优化某些算 法的性能。例如,通过使用二进制指数算法来加速某 些计算过程,从而提高算法的效率。
07
CATALOGUE
同底数幂的除法与其他数学知识的联系
与指数函数的联系
指数函数是幂函数的一种特例,当幂函数的指数为整数时,就变成了指数函数。 同底数幂的除法可以看作是幂函数中指数为负数的情况,与指数函数有密切联系 。
同底数幂的除法运算可以用来简化指数函数的运算,例如计算 $a^{m} \div a^{n}$ 可以转化为 $a^{m-n}$,从而简化计算过程。
除法在实际问题中的应用和意义。
05
CATALOGUE
课后作业与拓展
课后作业
计算下列同底数幂的除法
01
02
$2^{5} \div 2^{3}$
$3^{7} \div 3^{4}$
03
04
$5^{4} \div 5^{2}$
$6^{3} \div 6^{2}$
05
06
对于上述计算,总结出同底数幂的除法的运算规律。
与对数函数的联系
对数函数是一种特殊的函数,其定义域和值域都是正实数。同底数幂的除法可以看作是对数函数的逆运算。
当底数为 $e$ 时,同底数幂的除法可以转化为对数运算。例如,计算 $e^{m} \div e^{n}$ 可以转化为 $m - n$,因为 $\log_{e}a^{n} = n$。
与幂函数的联系
要点一
组织学生分组讨论
将学生分成若干小组,让他们在小组内讨论同底数幂 的除法的计算方法,并鼓励他们互相交流、互相学习 。
苏科版七年级数学下册:8.3 同底数幂的除法 课件(共13张PPT)
7
A3
11
C
6
E
2
2
n
m n
( 2)
x x ;
(4)
( ab) ( ab);
(6)
a a
10 B
D
10 F
G
H
I
J
8
5
10
a a a
m
练一练:
10
4
m ÷(-m)
9
(-b) ÷
6
(-b)
(ab)8÷(-ab)2
2m+3
2m-3
t
÷t
n
m n
阅读 体验
☞
例2.计算:
(1) (-a-b) 4÷(a+b)3 ;
8.3 同底数幂的除法
你知道吗
如图,若已知这个长方形的面积为25 cm2,
cm,则宽为多少cm
3
长为2
?
如何计算?
2 2
5
3
新知探究
计算下列各式:
(1)10 9 10 7 = 100 ,
10 2 = 100 ;
-27
-27 3 =_______;
(2) 3 3 =_____,
÷ = − ( m>n
为正整数)
2.上面⑵⑶两式中 a 的取值有什么限制吗?
3.对比前面学过的幂的运算法则,你能用汉语概
括出⑶所表示的运算法则吗?
同底数幂相除,底数不变,指数相减
☞
阅读 体验
例1 计算:
(1)a a ;
6
2
(2) b b ;
8
(3)ab ab ;
(2) 272n÷9n;
同底数幂的除法ppt课件
A.-9 B.-3 C.9
D.3
2.已知m,n为正整数,且xn=4,xm=8,
(1)求xm-n的值;
(2)求x3m-2n的值.
解:当xn=4,xm=8时,
(1)xm-n=xm÷xn=8÷4=2.
(2)x3m-2n=x3m÷x2n=(xm)3÷(xn)2=83÷42=32.
零指数幂和负整数指数幂
0
1.规定:a = 1
解:(1)6-1÷6-1=6-1-(-1)=60=1.
-5
-4
(2)(- ) ÷(- ) =(- )
解:(3)(-8)0÷(-8)-2
=(-8)0-(-2)
=(-8)2
=64.
-5-(-4)
-1
=(- ) =-2.
(1)任何非零数的零次幂都等于1;
(2)负整数指数幂是正整数指数幂的倒数,不是正整数指数幂的相反数;
=(-x)4
=x4.
(3)(ab)5÷ab;
(4)am+1÷a2(m>1);
(5)(x-y)5÷(x-y)2.
解:(3)(ab)5÷ab=(ab)5-1
=(ab)4
=a4b4.
(4)am+1÷a2
=am+1-2
=am-1.
(5)(x-y)5÷(x-y)2
=(x-y)5-2
=(x-y)3.
运用同底数幂的除法法则注意
-p
(a≠0),即任何不等于零的数的 0 次幂都等于 1 .
2.a = (a≠0,p 为正整数),即任何不为零的数的-p(p 为正整数)次幂
等于这个数的 p 次幂的 倒数 .
同底数幂的除法优质课件
2 3
随堂练习
计算: (1)3 xy y y =3x+1 (2)ma mb mc m =a+b+c
1 2 3 cd (3)6c d c d 2c d 2 4 3 2 2 (4)4 x y 3 xy 7 xy 7 x 7 y
2
2 c
例1:计算
2 4 (a ) 3 2 ÷(a ) 4 ×(-a) a6
y9 ÷(y7 ÷y3)
y5
注:1、混合运算的顺序为先乘方(开 方),再乘除,最后加减。 2、同级运算按“从左到右”依次进 行。 3、有括号先算括号里面的。
探究 (1)、32 ÷ 32 = 1( =32-2=30 ) (2)、103 ÷103 =
注意:
条件:①同底数幂 ②除法
结果:①底数不变 ②指数相减
计算:
(1)
a8÷a3 =a8-3 = a5 =(-a) =(-a)7= -a7
12-7 5 12 7 =2 =32 (2) 2 ÷2 =2 3 10 10-3 (3) (-a) ÷(-a)
1 8 1 5 1 (5)( ) ( ) 8 2 2
2 3 3 2
随堂练习
(5) (a b)2 (a b)2 2( ab ) 2
(6) x 2 y 2 x 2 y x 2 y 4 y x+2y =[x2+4xy+4y2 –(x2–4y2)] =[4xy+.已知: a
(1)9a 3
3
3a
3
(2)4x (2)
2
2 x
2
(3)16a 8a
2
2a
3a
随堂练习
计算: (1)3 xy y y =3x+1 (2)ma mb mc m =a+b+c
1 2 3 cd (3)6c d c d 2c d 2 4 3 2 2 (4)4 x y 3 xy 7 xy 7 x 7 y
2
2 c
例1:计算
2 4 (a ) 3 2 ÷(a ) 4 ×(-a) a6
y9 ÷(y7 ÷y3)
y5
注:1、混合运算的顺序为先乘方(开 方),再乘除,最后加减。 2、同级运算按“从左到右”依次进 行。 3、有括号先算括号里面的。
探究 (1)、32 ÷ 32 = 1( =32-2=30 ) (2)、103 ÷103 =
注意:
条件:①同底数幂 ②除法
结果:①底数不变 ②指数相减
计算:
(1)
a8÷a3 =a8-3 = a5 =(-a) =(-a)7= -a7
12-7 5 12 7 =2 =32 (2) 2 ÷2 =2 3 10 10-3 (3) (-a) ÷(-a)
1 8 1 5 1 (5)( ) ( ) 8 2 2
2 3 3 2
随堂练习
(5) (a b)2 (a b)2 2( ab ) 2
(6) x 2 y 2 x 2 y x 2 y 4 y x+2y =[x2+4xy+4y2 –(x2–4y2)] =[4xy+.已知: a
(1)9a 3
3
3a
3
(2)4x (2)
2
2 x
2
(3)16a 8a
2
2a
3a
《同底数幂的除法》课件
规则概述
定义
同底数幂的除法规则是指当两个同底 数的幂相除时,其结果是该底数的幂 的差。
公式
适用范围
适用于任何实数底数 $a$,且 $m$ 和 $n$ 为整数。
$a^m div a^n = a^{m-n}$,其中 $a$ 是底数,$m$ 和 $n$ 是指数。
规则推导
推导过程
根据幂的性质,我们知道 $a^m times a^n = a^{m+n}$。由此,我们可以得 出 $a^m div a^n = a^m times frac{1}{a^n} = a^{m-n}$。
幂的运算法则
幂的乘法、除法、乘方等运算法则是幂运算的基本法则,是解决复 杂数学问题的关键。
幂的性质
幂的性质包括奇偶性、周期性、对称性等,这些性质在解决数学问 题时具有重要作用。
学生自我总结
学生应该回顾自己在本课中所学的知识点,包括同底数幂的除法法则、幂的运算法 则和幂的性质等,并思考这些知识点在实际问题中的应用。
运算技巧
通过对数性质,可以简化同底数幂的除法的计算过程。例如,利用对数的运算法 则,可以将复杂的幂次运算转化为简单的对数运算,从而简化计算过程。这种技 巧有助于提高学生的运算能力和数学思维能力。
与三角函数的关联
三角函数与指数形式
同底数幂的除法与三角函数之间存在一定的关联。例如,三角函数可以通过指数形式表示,而同底数幂的除法可 以与这种指数形式进行关联。这种关联有助于学生更好地理解三角函数和同底数幂的除法之间的关系。
进阶练习3
求值 (2^3)^2 ÷ (2^2)^3 = ?
进阶练习4
化简 (a^m × a^n) ÷ (a^m)^n = ?
综合练习
综合练习1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意
最后结果中幂的形式应是最简的.
① 幂的指数、底数都应是最简的;底数中系数 不能为负;
② 幂的底数是积的形式时,要再用
一次(ab)n=an bn.
1、计算: (1) 26÷23 ;
(3) m5÷m ;
随堂练习
(2) x10÷x8; (4) (-b)5÷ (-b)3.
2、计算:
(1种液体每升含有1012 个有害细菌,为了试 验某种杀菌剂的效果,科学家们进行了实验,发 现 1 滴杀菌剂可以杀死109 个此种细菌。要将1 升液体中的有害细菌全部杀死,需要这种杀菌剂 多少滴?
你是怎样计算的?
解: 需要滴数:1012÷109 =?103
∵ 109×10 ( 3 ) =1012
用 逆运算与同底数幂的乘法 来计算
做一做
计算下列各式: (1)105 ÷103
(2)(–3)4÷(–3)2
(3)a6÷a2(a≠0)
解:
(1) ∵ 103×10( 2 ) =105,
∴105 ÷103 = 102 ;
(2)∵ (–3)2×(–3)( 2 ) =(–3)4, (–3)4 ÷(–3) 2= (–3)2 ;
(3) ∵ a2×a ( 4 ) =a6,
am÷an= am–n
猜想
∴a6 ÷a2= a4 ;
2、讨论下面的问题: 同底数幂相除法则中各字母必须满足什么条件?
am÷an= am–n
(a≠0,m,n都是正整数,且m>n) 同底数幂相除,底数_不__变__,指数_相__减___.
例题讲解
【例1】计算:
6.3 同底数幂的除法
旧知回顾
前面我们学习了哪些幂的运算? 在探索法则的过程中我们用到了哪些方法? 1.同底数幂的乘法运算法则:
am ·an= am+n(m,n都是正整数)
2.幂的乘方运算法则:
(am)n= amn (m,n都是正整数)
3.积的乘方运算法则
(ab)n = an·bn(m,n都是正整数)
(2) x2•x8•( )=x19;
课堂小结
n个a
幂的意义: a·a·… ·a=an
同底数幂的乘法运算法则:
am ·an =am+n
同底幂的除法运算法则:
am÷an=am–n
作业:
结束
(1) a7÷a4 ;
(2) (-x)6÷(-x)3;
(3) (xy)4÷(xy) ;
(4) (3x2)5÷ (3x2)3.
解:(1) a7÷a4 = a7–4 = a3 ; (2) (-x)6÷(-x)3 = (-x)6–3 = (-x)3 = -x3 ; (3) (xy)4÷(xy) =(xy)4–1=(xy)3=x3y3 (4) (3x2)5÷ (3x2)3= (3x2)5 – 3= 9x4 .