行列式试题库1讲解学习

合集下载

(完整版)行列式试题库1

(完整版)行列式试题库1

一.判断题(易)1、n 阶行列式111212122212n nn n nna a a a a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅是由2n 个数构成的n 行n 列的数表( ).答案:×(较容易)2、62162100000000λλλ=λλλ.( ).答案:×(较容易)3、82182100000000k k k k k k=.( ).答案: √(较容易)4.若方阵A 的各行元素之和为零,则0A = ( ) 答案: √二.填空题(中等)1.设1234577733324523332246523=A ,313233++=A A A _________,3435+=A A ________答案:0,0(中等)2.1234243141321432=D , 求11213141+++A A A A =________答案:0(较容易)3. 5阶行列式D 的第2列元素依次为1,1,0,2,1它们对应的余子式分别为-1,3,-2,0,1,则=D ________. 答案:3(较容易)4.db acd b c a bd c a b d a c = .答案:0(较容易)5.yx yx x y x y x y x x y x 323222 +++++=.答案:)(2y x xy +-(较容易)6. 6217213424435431014327427246-=答案:510294⨯-(中等)7.已知三阶行列式 987654321 =D ,它的元素ij a 的代数余子式为ij A (3,2,1,3,2,1==j i ),则与232221cA bA aA ++对应的三阶行列式为.答案: 987321 c b a(中等)8. 设行列式30402222,075322D =-- 则第四行各元素余子式之和的值为 .答案:–28(较容易)9.11110011110y y y x xx--= .答案:22x y(中等)10. 行列式1111111111111111--+---+---x x x x = .答案:4x(较容易)11. 当λ= 或μ= 时,齐次方程组⎪⎩⎪⎨⎧=+μ+=+μ+=++λ0200321321321x x x x x x x x x 有非零解.答案:1,0(较容易)2. 设222233331111a bcdD ab c da b c d =,则D=______________答案:()()()()()()d c d b d a c b c a b a ------(较容易)13. 已知四阶行列式D 的第二行元素分别为3, 1, -1, 2, 他们对应的余子式分别为1, 2, 2, -1, 则行列式=D ______ 答案:-1(较容易)14. 设A 是三阶方阵, 且3||=A , 则|)2(|1-A =_______答案:124(容易)15. A 为正交矩阵, 则=||A _____________答案:1或-1 (较容易)16. 已知四阶行列式D 的第3列元素分别为1,3,-2,2,他们对应的余子式分别为3,-2,1,1,则行列式D=________ 答案:5(容易)17. 行列式25613412a中元素a 的代数余子式 = _________ 答案:-4(较容易)18.四阶行列式D 的第二行的元素都是2,且第二行元素的代数余子式都是3,则D= _________ 答案:0(较容易)19.设A 是三阶行列式,且1A =,则2A A =______ 答案:512(较容易)20.设五阶矩阵A 的行列式2A =-,则其伴随矩阵*A 的行列式*A = ____ 答案:16(容易)21. 已知三阶行列式251102321-=D , 则第3行第2列元素的代数余子式32A =_____________答案:7(容易)22. 按自然数从小到大为标准顺序,排列4132的逆序数为 .. 答案:1(容易)23. 当=i =k 时排列1274i 56k 9为偶排列. 答案:8,3(容易)24. 排列1 3 …(12-n )2 4…(n 2)的逆序数为 _______ . 答案:(1)2n n - (容易)25. 在五阶行列式中项5541322413a a a a a 前面应冠以 号(填正或负). 答案:负(容易)26. 四阶行列式中含有因子2311a a 且带负号的项为_____ 答案:44322311a a a a -(容易)27. 设A 为n 阶矩阵,且T A A E =,则必有________A =答案:1 或-1(容易)28. 设A 为n 阶可逆矩阵,如果2A =,则*A =________答案:12n -(容易)29. 设A 为n 阶可逆矩阵,如果 2A =- ,则*A =________答案:1(2)n --(容易)30. 设A 为n 阶矩阵,且TA A E =,则必有T A =________答案:1 或-1(容易)31.设A 是n 阶方阵, *A 为其伴随矩阵, 若a A =||, 则||*A =__________答案:1n a-(容易)32.若2||44-=⨯A , 则=||*A _________ 答案:8(容易)33.设3211111410D -=-,则313233A A A ++=_____ 答案:0(较容易)34. 若0x a aax a a ax=,则a =_____答案:2a -或0(较容易)35.已知3021111xy z =,则33332222x y zx y z x y z ++=+++_____ 答案:2(较容易)36.设12234000000000a a D a a =121340000200003004a a D a a =,则1D =_____2D 答案:24(容易)37.120034000054045D --==-- ____答案:-18(容易)38.1200340000130051D ==- ____答案:32(较容易)39.1111001100111001D == ____答案:0(较容易)40.若齐次线性方程组03030x y z x y z x y z λ+-=⎧⎪-+=⎨⎪-+=⎩有非零解,则λ=____答案:12λ=-(容易)41.行列式A 中元素ij a 的代数余子式ij A 与余子式ij M 之间的关系____ 答案:(1)i jij ij A M +=-(较容易)42.若n 阶方阵A 的秩为n-1,在A =____ 答案:0(较容易)43.设A,B 是两个三阶的方阵,且1A =-,2B =,那么133()TA B -=____答案:278-(容易)44.设三阶方阵A 的不同特征值为-1,2,4 ,则A =____ 答案:-8(较容易)45.若A,B 为n 阶方阵,且1,32A B ==-,则*12A B --=____ 答案:12(1)3n +- (容易)46.A 为三阶方阵,2A =,则12A =____ 答案:14(较容易)47.设行列式2345246812035643D =,则414243442468A A A A +++=____答案:0(较容易)48.若3022111xy z =-,则413111111x y z ---=____答案:2(较容易)49.8276412549162523451111= ____答案:12(较容易)50. 如果3333231232221131211==a a a a a a a a a D ,则11121321222331323332623a a a a a a a a a ---= ____ 答案:-18(较容易)51. 如果3333231232221131211==a a a a a a a a a D ,则111213212223313233222222222a a a a a a a a a = ____ 答案:24(容易)52.已知三阶方阵A 的三个特征值为1,-2,3 ,则A =____ 答案:-6(容易)53. 010000200000100n D n n ==- 答案:1(1)!n n +-(容易)54. 0x y Dxz y z=---=答案:0(容易)55.已知125328401390216D ----=,23A = 答案:-9(容易)56. efcfbf de cdbd aeacab ---= 答案:4abcdef(较容易)57. 33221111110011001b b b b b b D ------== 答案:1(较容易)行列式2001021*********=答案:9三.选择题(容易)1. 如果⎩⎨⎧=-+=+-0)1(202)1(2121x k x x x k 仅有零解,则( ).A. 1≠k ,B. 1-≠k 或3≠k ,C. 3=k ,D. 1-≠k 且3≠k .答案:D(较容易)2. 设,,D αβγ=, ,,αβγ分别表示行列式D 的三个列,则D =( )A. ,,γβαB. ,,αββγγα+++C. ,,αβγ---D. ,,ααβαβγ+++答案:D(较容易)3.四阶行列式D=112233440000000a b a b b a b a 的值等于( ) A. 12341234a a a a b b b b - B. 12341234a a a a b b b b +C. 12123434 ()()a a b b a a b b --D. 23231414()()a a b b a a b b --答案:D(容易)4.如果1112132122233132332a a a a a a a a a =,则111213212223313233222222222a a a a a a a a a =( ) A. 2 B. 4 C. 12 D. 16 答案:D(较容易)5.已知4阶方阵A ,其第三列元素分别为1,3,-2,2,它们的余子式的值分别为3,-2,1,1则行列式A =( )A. 5B. -5C. -3D. 3 答案:A(中等)6.设231111111()114118x f x x x -=-,则方程()0f x =的三个根分别为( )A. 1,-1,2B. 1,1,4C. 1,-1,8D. 2,4,8 答案: A(较容易)7.行列式112233110a ba ca ba c ab ac ++++++=( )A. 0B. b c -C. 21()()c b a a --D. 21()b a a - 答案:C(容易)8.行列式132520103D -=--中元素32a 的代数余子式为( ) A. 0 B. -10 C. 10 D. 3 答案:B(容易)9.行列式21312201D -=中元素32a 的代数余子式为( ) A. 4 B. -4 C. 0 D. 2 答案:A(较容易)10.若1112132122233132331a a a a a a a a a = 则313233212223111213222333a a a a a a a a a ---=( ) A. -5 B. 6 C. -1 D. 1 答案: B(较容易)11.设22115()114723f x x x =+-,则方程()0f x =的根分别为( )A. 1,1,3,3B. -1,-1,3,3C. -1,-1,-3,-3D. 1,-1,3,-3答案:D (较容易)12.已知111213212223313233a a a a a a d a a a =,则行列式313233111213211122122313333232323a a a a a a a a a a a a ---=+++( )A. 6d -B. 6dC. 3d -D.3d 答案:A(较容易)13.1231231233a a a b b b c c c ⨯=( ) A. 123123123333a a a b b b c c c B. 123123123333333333a a a b b b c c c C. 123123123333a a a b b b c c c -D. 123123123333a a a b b b c c c 答案:D(较容易)14.行列式0003001002000100000002D -==--( ) A. -12 B. 12 C. -6 D. 6 答案:A(较容易)15.设det()n ij D a =,则0n D =的充分必要条件是( ) A. n D 中有两行(列)元素对应成比例 B. n D 中有一行(列)的元素均为零 C.11220()i j i j in jn a A a A a A i j ++⋅⋅⋅+== D. 11220()i j i j in jn a A a A a A i j ++⋅⋅⋅+=≠ 答案:C(中等)16.1223()71043171xx x x f x x--=--是( )次多项式A. 4B. 3C. 2D. 1 答案:C (较容易)17.四阶行列式D 的某行元素依次为-1,0,k,6, 它们的代数余子式分别为3,4,-2,0,且9D =-,则k =( )A. 0B. 3C. 1D. -1 答案:B(较容易)18.若1112132122233132331a a a a a a a a a =,则131112112321222133313231454545a a a a a a a a a a a a --=-( ) A. 5 B. -5 C. 20 D. -20 答案:A(容易)19.222a ab acab bbc ac bc c =( ) A. abc B. 1 C. 0 D. 222a b c 答案:C(较容易)20. 设*1,A A -分别为n 阶方阵A 的伴随矩阵和逆矩阵,则*1A A -=( ) A. nA B. 1n A- C. 2n A- D. 3n A-答案:C(较容易)21.已知A 为三阶矩阵,其第三行元素分别为1,3,-2,它们的余子式分别为3,-2,1,则A =( )A. 5B. -5C. 7D. -7 答案:C(较容易)22.如果1112132122233132331a a a a a a a a a =,则111112132121222331313233423423423a a a a a a a a a a a a --=-( ) A. 8 B. -12 C. 24 D. -24 答案:B(较容易)23.行列式103100204199200395301300600=( )A. 1000B. -1000C. 2000D.-2000 答案:C(较容易)24.行列式40105022*********D =的值为( )A. -12B. -24C. -36D. -72 答案:D(较容易)25.设A 为n 阶方阵,且0=A ,则( ) A. A 中必有两行(列)的对应元素成比例;B. A 中任意一行(列)向量是其余行(列)向量的线性组合;C. A 中必有一行(列)向量是其余行(列)向量的线性组合;D. A 中至少有一行(列)向量为零向量答案:C(较容易)26. 已知三阶矩阵A 的特征值为1,2,3,则行列式2A =( )A. 0B. 1C. 6D. 36 答案:D(较容易)27. 如果m a a a a a a a a a D ==333231232221131211,1312112322213332311333333333a a a a a a a a a D = 那么=1D ( ).A.m 3;B.m 3-;C. m 9;D. m 27-.答案:D(较容易)28.已知0001001010001000001D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅,则D =( )A. 1B. -1C. (1)2(1)n n -- D. (1)(2)2(1)n n ---答案:D29.行列式D 非零的充要条件是( ) A.D 的所有元素都不为零 B.D 至少有2n n -个元素不为零 C.D 的任意两列元素之间不成比例D.以D 为系数行列式的线性方程组有惟一解 答案:D四.解答题(较难)1.123111111111111111(0,1,2,,)111111+++≠=+i na a a a i n a解:123111111111111111111111++++na a a a 11213111111000000+-=--na a a a a a a 112131111110000000+---na a a a a a a 11223111110000000=++=∑ni ina a a a a a 231120000100=⎡⎤=++=⎢⎥⎣⎦∑ni i n a a a a a a 111(1)===+∑∏nni i i i a a(较难)2.12323413452121-nnn 解:12323413452121-nnn =1223123411245212121++++++++++++-n n n n n n =123011113410111(1)(12)14522011111211121------++++=-----n n n n n n n n n=1111111111(1)(1)211111111+---------+---------n n n n n n n n =11000(1)(1)20001111+-+----n n n nn n n=12000(1)(1)(1)2n nn n n n n n+-+--=(1)(4)11322(1)(1)(1)(1)(1)(1)(1)22-++--++----=-n n nn n n n n n n n(较难)3.-=------n x a a a a a xa a a D a axa a a a aax解:00--=+-------n xa a x a a a axaaxaa D a a a x aa a aa=111000()()()0000---+-+--+=-+++---n n n x a a x x a a x x a D x a D a x a x aaaaa由递推关系有1()()2⎡⎤=++-⎣⎦n n n D x a x a (较难)4.111111-=--n n D n n解:10100111001011111+----==+------n nnn nDn n n n=111(1)(1)01010+---------n n n n n=121(1)(1)(1)(1)010111+------------n n n n n n n=254113112(1)(1)(1)(1)(1)(1)(1)(1)+-+----------=-+n n n n n n n n n=222(1)1122(1)(1)(1)(1)(1)++-----+=-+n nn n n n n n n(中等)5. 写出四阶行列式23740101201035--=D 中元素4,13323=-=a a 的代数余子式,并求其值.解: 23701135)1(3223-⨯-=+A 237013430---.96102623343=+-=--=2015)1()2(23020135)1(223333++-⨯-=--⨯-=A .2010)2(-=⨯-=.176)20(4960033332323-=-⨯+-=+++=A a A a D(中等)6. 计算行列式7325254346323214-----解:7325254346323214----- =13723103419503100010------1373103195010)1(121----⨯=+137231031500-----.310625)697(5723315=⨯=+-=--=(中等)7. 计算(2)≥n n 阶行列式000100000001000aa D a a = 解: 按第一行展开,得()1000000000001000010na aa a D aa a+=+-.再将上式等号右边的第二个行列式按第一列展开,则可得到()()()()1112222111nn n n n n n D a a a a a a +-+---=+--=-=-(中等)8.计算行列式ab b b ba b b D bb a b bbba= 解: D =()()()()1111a n b b b b a n ba b b a n bb a b a n bbba+-+-+-+- []11(1)11b b ba b ba nb b a b bba=+-=[]1(1)b b ba ba nb a ba b-+---(较容易)9.计算行列式 .2143000012009687843415089715032-=D 解:231509750821001414437896823034(83)0340210141021020003400102141111(412)1116176.34D --===+⋅--=⋅=+=⨯=(较容易)10. k 取何值时,下列齐次线性方程组有非零解:⎪⎩⎪⎨⎧=+-=++-=++.02,0,0321321321x x x x kx x kx x x 解: 方程组有非零解的必要条件是系数行列式等于零.2111111--=kk D kkk k --++2211011kk k --+2201111)1(11(1)011004k k k+-).4)(1(k k -+=即 .0)4)(1(=-+k k所以当1-=k 或4=k 时,齐次线性方程组可能有非零解.(中等)11. 计算行列式1314211311023351-----=D .解: 1192101110160551003351-----=D 1113200112033515----=112320011103351)5(-----=1300320011103351)5(------=211000320011103351)5(-----=55-=(中等)12. 计算行列式x a a a x a aa x D n=.解: xa a a x a a n x D n r r r n111])1([)(21-+=+++ax a x a n x ---+=00111])1([1)]()1([---+=n a x a n x(中等)13. 计算行列式的值1118101711101325--=D解:10113-D=1181107113521101--0217015501101---==8200712055100111---8201790055100111--410017900551001112--=1794100551001112---=38194100551001112-=----=(难)4. 计算n 阶行列式的值52 (00)35...000... 00 (5200) (35)200...035=n D解 按第一行展开,得:21116552 (00)35...000..................00...52000 (350)00 (0323)5-----=-=n n n n n D D D D 按第一列展开得到递推式:2165---=n n n D D D写作)(211232----=-n n n n D D D D ,可得)(1221232D D D D n n n -=--- 写作)(211323----=-n n n n D D D D ,可得)(1221323D D D D n n n -=---而195235,521===D D⎪⎩⎪⎨⎧=-=-∴--nn n nn n D D D D 233211 解之得1123++-=n n n D (中等)15. 计算n 阶行列式xyy x y x yxy x D 0 (00)...0000 00 (000) (00)00...00=的值解 按照第一列展开nn n n n n n n n y x y y x x y y xy x y y x x y x y xx D 111111111)1()1(...000 0...00...00...00)1(...000 0...00...00...0)1(+-+--+-+-+=⨯-⨯+⨯=-⨯+-⨯=(较容易)16. 问λ,μ取何值时,齐次线性方程组 1231231230020x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩有非零解?解:齐次方程组有非零解的必要条件是系数行列式等于零,故11011111111(1)012200λλμλλμλμμμλμμμ----===--即0μ=或1λ=齐次线性方程组有非零解。

高中数学 行列式 试题及解析

高中数学 行列式 试题及解析

高中数学行列式试题一.选择题(共12小题)1.定义:,若复数z 满足,则z等于()A.1+i B.1﹣i C.3+i D.3﹣i2.下列以行列式表达的结果中,与sin(α﹣β)相等的是()A .B .C .D .3.三阶行列式中,元素9的代数余子式的值为()A.38B.﹣38C.360D.﹣3604.定义行列式运算,将函数的图象向左平移n (n>0)个单位,所得图象关于y轴对称,则n的最小值为()A .B .C .D .5.行列式中,元素7的代数余子式的值为()A.﹣15B.﹣3C.3D.126.定义行列式运算:=a1a4﹣a2a3,函数f(x )=,则要得到函数f(x)的图象,只需将y=2cos2x的图象()A .向左平移个单位B .向左平移个单位C .向右平移个单位D .向右平移个单位7.=()A.cos2θB.sin2θC.1D.﹣118.定义运算,则满足的复数z为()A.1﹣2i B.﹣1﹣i C.﹣1+i D.1﹣i9.设直线l1与l2的方程分别为a1x+b1y+c1=0与a2x+b2y+c2=0,则“”是“l1∥l2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.下列四个算式:①;②;③a1b2c3+a2b3c1+a3b1c2﹣a1b3c2﹣a2b1c3﹣a3b2c1;④其中运算结果与行列式的运算结果相同的算式有()A.1个B.2个C.3个D.4个11.展开式为ad﹣bc的行列式是()A .B .C .D .12.若规定=ad﹣bc 则不等式≤0的解集()A.{x|x≤﹣2或x≥1}B.{x|﹣2<x<1}C.{x|﹣2≤x≤1} D.∅二.填空题(共23小题)13.若=0,则锐角x =.14.已知,则λ=.15.已知行列式中的元素a n+j(j=1,2,3,…,9)是等比数列{a n}2的第n+j 项,则此行列式的值是.16.若行列式中(x≠1),元素1的代数余子式大于0,则x满足的条件是.17.把表示成一个三阶行列式是18.若行列式的第1行第2列的元素1的代数余子式﹣1,则实数x的取值集合为.19.行列式的最大值为.20.行列式的元素﹣3的代数余子式的值为10,则的模为.21.行列式中x的系数是22.行列式的元素π的代数余子式的值等于.23.三阶行列式中,元素1的代数余子式的值为.24.若行列式,则m的值是.25.三阶行列式中,元素4的代数余子式的值为26.若行列式的展开式的绝对值小于6的解集为(﹣1,2),则实数a等于.27.函数的最小正周期T=.28.已知矩阵A=,B=,C=,且A+B=C,则x+y的值为.29.方程,x∈(3,4)实数解x为.30.方程组的增广矩阵是.331.若行列式=0,则x =.32.对于下列四个命题①若向量,,满足,则与的夹角为钝角;②已知集合A=正四棱柱,B=长方体,则A∩B=B;③在直角坐标平面内,点M(|a|,|a﹣3|)与N(cosα,sinα)在直线x+y﹣2=0的异侧;④对2×2数表定义平方运算如下:=,则=其中真命题是(将你认为的正确命题的序号都填上).33.设A为3×4矩阵,则A的列向量组必线性(相关、无关)34.规定运算,则=.35.已知矩阵A=,B=,则A+B=.4参考答案与试题解析一.选择题(共12小题)1.定义:,若复数z 满足,则z等于()A.1+i B.1﹣i C.3+i D.3﹣i【分析】化简行列式,再计算.【解答】解:复数z 满足=iz+i,则z ==1﹣i.故选:B.【点评】本题考查行列式,复数,属于基础题.2.下列以行列式表达的结果中,与sin(α﹣β)相等的是()A .B .C .D .【分析】根据行列式的运算法则对四个选项一一进行化简运算得结果.【解答】解:∵sin(α﹣β)=sinαcosβ﹣cosαsinβ,对于A :=sinαcosβ+cosαsinβ;故错;对于B :=cosαcosβ﹣sinαsinβ,故错;对于C :=sinαcosβ﹣cosαsinβ,正确;对于D :=cosαcosβ﹣sinαsinβ,故错.故选:C.【点评】本题考查行列式的运算,三角函数的变换公式、和角及二倍角的公式等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.3.三阶行列式中,元素9的代数余子式的值为()5A.38B.﹣38C.360D.﹣360【分析】根据行列式的展开A32=﹣(8×7﹣6×3),即可得出结论.【解答】解:行列式中元素9的代数余子式的A32=﹣(8×7﹣6×3)=﹣38,故选:B.【点评】本题考查行列式的展开,考查行列式的展开式,考查计算能力,属于基础题.4.定义行列式运算,将函数的图象向左平移n (n>0)个单位,所得图象关于y轴对称,则n的最小值为()A .B .C .D .【分析】函数==2sin(x +),从而y=2sin[(x+n)+]的图象关于y轴对称,n>0,由此能出n的最小值.【解答】解:∵,∴函数==2sin(x +),∵f(x)的图象向左平移n(n>0)个单位,所得图象关于y轴对称,∴y=2sin[(x+n)+]的图象关于y轴对称,n>0,∴n +=+kπ,k∈Z,即n=k,k∈Z,n>0.∴当k=1时,n 取最小值.故选:D.【点评】本题考查实数值的最小值的求法,考查二阶行列式、三角函数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.5.行列式中,元素7的代数余子式的值为()A.﹣15B.﹣3C.3D.126【分析】利用代数余子式的定义和性质求解.【解答】解:∵行列式,∴元素7的代数余子式为:D13=(﹣1)4=2×6﹣5×3=﹣3.故选:B.【点评】本题考查余子式的值的求法,是基础题,解题时要认真审题,注意余子式的性质的合理运用.6.定义行列式运算:=a1a4﹣a2a3,函数f(x )=,则要得到函数f(x)的图象,只需将y=2cos2x的图象()A .向左平移个单位B .向左平移个单位C .向右平移个单位D .向右平移个单位【分析】由二阶行列式的性质得:f(x )=,再由三角函数恒等式和诱导公式得到f(x)=2cos(2x ﹣),由此利用三角函数图象的平移变换能求出结果.【解答】解:f(x )===2sin(2x ﹣)=2cos[﹣(2x ﹣)]=2cos(2x ﹣),∴要得到函数f(x)的图象,只需将y=2cos2x的图象y=2cos2x 的图象向右平移个单位.故选:D.【点评】本题考查三角函数的图象的平移变换,是中档题,解题时要认真审题,注意二阶行列式、三角恒等式、三角函数图象的平移变换诱导公式等知识的合理运用.7.=()A.cos2θB.sin2θC.1D.﹣1【分析】本题可根据二阶行列式的定义算法进行计算,然后根据三角函数计算公式可得结果.【解答】解:由题意,可知:=cosθ•cosθ﹣sinθ•(﹣sinθ)=cos2θ+sin2θ=1.7故选:C.【点评】本题主要考查二阶行列式的定义计算,以及三角函数计算.本题属基础题.8.定义运算,则满足的复数z为()A.1﹣2i B.﹣1﹣i C.﹣1+i D.1﹣i【分析】直接利用新定义,求出z的表达式,通过复数的基本运算,求出复数z即可.【解答】解:因为,所以=zi+z=2.所以z ===1﹣i.故选:D.【点评】本题考查复数的基本运算,行列式的应用,考查计算能力.9.设直线l1与l2的方程分别为a1x+b1y+c1=0与a2x+b2y+c2=0,则“”是“l1∥l2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】若,则a1b2﹣a2b1=0,若a1c2﹣a2c1=0,则l1不平行于l2;若“l1∥l2”,则a1b2﹣a2b1=0,所以,故可得结论【解答】解:若,则a1b2﹣a2b1=0,若a1c2﹣a2c1=0,则l1不平行于l2,故“”是“l1∥l2”的不充分条件;若“l1∥l2”,则a1b2﹣a2b1=0,∴,故“”是“l1∥l2”的必要条件所以“”是“l1∥l2”的必要而不充分条件故选:B.【点评】本题重点考查四种条件的判定,解题的关键是理解行列式的定义,掌握两条直线平行的条件.810.下列四个算式:①;②;③a1b2c3+a2b3c1+a3b1c2﹣a1b3c2﹣a2b1c3﹣a3b2c1;④其中运算结果与行列式的运算结果相同的算式有()A.1个B.2个C.3个D.4个【分析】根据余子式的定义可知,在行列式中按照第一列展开后所余下的元素的代数余子式的和,即知①正确;同理,在行列式中按照第一行展开后所余下的元素的代数余子式的和,即得②正确;对于③,按照行列式展开的运算法则即得a1b2c3+a2b3c1+a3b1c2﹣a1b3c2﹣a2b1c3﹣a3b2c1;对于④,按照行列式展开的运算法则后与原行列式不相同.【解答】解:根据余子式的定义可知,在行列式中按照第一列展开后所余下的元素的代数余子式的和,即为.故①正确;同理,在行列式中按照第一行展开后所余下的元素的代数余子式的和,即为.故②正确;对于③,按照行列式展开的运算法则即得a1b2c3+a2b3c1+a3b1c2﹣a1b3c2﹣a2b1c3﹣9a3b2c1;故正确;对于④故选:C.【点评】本题主要考查了二阶行列式的实际应用以及根据二阶行列式的定义,属于基础题.11.展开式为ad﹣bc的行列式是()A .B .C .D .【分析】根据叫做二阶行列式,它的算法是:ad﹣bc,再根据所给的式子即可得出答案.【解答】解:根据叫做二阶行列式,它的算法是:ad﹣bc,由题意得,=ad﹣bc.故选:B.【点评】本题考查的是二阶行列式与逆矩阵,根据题意二阶行列式的意义得出所求代数式是解答此题的关键.12.若规定=ad﹣bc 则不等式≤0的解集()A.{x|x≤﹣2或x≥1}B.{x|﹣2<x<1}C.{x|﹣2≤x≤1}D.∅【分析】按照新的运算=ad﹣bc ,则不等式≤0,可化为:2x•x+2(x ﹣2)≤0,解此二次不等式即可得出答案.【解答】解:由题意可知:不等式的解集≤0可化为2x•x+2(x﹣2)≤0即x2+x﹣2≤0,求得x的解集﹣2≤x≤1.故选:C.【点评】本题考查其他不等式的解法,解答关键是理解行列式的计算方法,是基础题.二.填空题(共23小题)1013.若=0,则锐角x=.【分析】直接利用矩阵知识的应用和三角函数关系式的变换的应用求出结果.【解答】解:由于=0,所以2cos2x﹣sin2x=0,由于x为锐角,所以sin x=cos x,解得x=.故答案为:【点评】本题考查的知识要点:矩阵知识的应用,三角函数关系式的变换的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.14.已知,则λ=3.【分析】由行列式的公式化简求解.【解答】解:=(λ﹣4)+2λ=5,解之得λ=3,故答案为:3.【点评】本题考查行列式,属于基础题.15.已知行列式中的元素a n+j(j=1,2,3,…,9)是等比数列{a n}的第n+j项,则此行列式的值是0.【分析】根据题意等比关系代入求解.【解答】解:因为元素a n+j(j=1,2,3,…,9)是等比数列{a n}的第n+j项,所以设等比数列的公比为q,则a n+2=qa n+1,,,…,,∴===0,(两列(或行)相同的行列式值为0),故答案为:0【点评】本题考查行列式,等比数列,属于基础题.16.若行列式中(x≠1),元素1的代数余子式大于0,则x满足的条件是.【分析】先求出代数余子式,再进行化简,求解.【解答】解:元素1的代数余子式为=8x﹣45>0,故,故答案为:【点评】本题考查代数余子式,属于基础题.17.把表示成一个三阶行列式是【分析】本题根据行列式第一列进行展开的逆运算即可得到结果.【解答】解:根据行列式按第一列展开式,可知:2++3=2•(﹣1)1+1•+(﹣1)•(﹣1)2+1•+3•(﹣1)3+1•=.故答案为:.【点评】本题主要考查行列式按列展开的相关概念.本题属基础题.18.若行列式的第1行第2列的元素1的代数余子式﹣1,则实数x的取值集合为{x|x=π+2kπ,k∈Z}.【分析】本题先根据行列式代数余子式的定义写出第1行第2列的元素1的代数余子式,然后根据二阶行列式的计算法则进行计算,再化简三角函数,即可得到实数x 的取值集合.【解答】解:由题意,第1行第2列的元素1的代数余子式为:(﹣1)1+2•.(﹣1)1+2•=﹣1,则=1,即﹣sin(π+x)﹣cos(﹣x)=1.sin x﹣(cos cos x+sin sin x)=1,整理,得:cos x=﹣1.∴x=π+2kπ,k∈Z.故答案为:{x|x=π+2kπ,k∈Z}.【点评】本题主要考查行列式的代数余子式及二阶行列式的定义计算能力,三角函数知识.本题属基础题.19.行列式的最大值为13.【分析】先写出行列式结果,再用三角函数知识求解最大值.【解答】解:原式=,所以当时,行列式的最大值为13.故答案为:13【点评】本题考查行列式与三角函数的综合应用,属于基础题.20.行列式的元素﹣3的代数余子式的值为10,则的模为10.【分析】直接求代数余子式,求出k,再代入求向量的模.【解答】解:元素﹣3对应的行列式为,∴k=6,∴,∴,所以向量的模为为10.故答案为:10.【点评】此题考查行列式的代数余子式,向量的模的公式.21.行列式中x的系数是﹣3【分析】利用行列式展开式能求出行列式中x的系数.【解答】解:行列式=35﹣2x﹣4﹣7﹣x﹣40=﹣3x﹣16.∴行列式中x的系数是﹣3.故答案为:﹣3.【点评】本题考查行列式中未知数的系数的求法,考查行列式展开式等基础知识,考查运算求解能力,是基础题.22.行列式的元素π的代数余子式的值等于7.【分析】利用代数余子式的定义和性质直接求解.【解答】解:行列式的元素π的代数余子式的值为:(﹣1)2+1=﹣(4cos﹣9sin)=﹣(2﹣9)=7.故答案为:7.【点评】本题考查行列式的元素的代数余子式的值的求法,考查代数余子式的定义和性质等基础知识,考查运算求解能力,是基础题.23.三阶行列式中,元素1的代数余子式的值为4.【分析】利用代数余子式的定义、行列式的展开法则直接求解.【解答】解:三阶行列式中,元素1的代数余子式的值为:(﹣1)1+1=0﹣(﹣4)=4.故答案为:4.【点评】本题考查代数余子式的求法,考查代数余子式、行列式展开法则等基础知识,考查运算求解能力,是基础题.24.若行列式,则m的值是0.5.【分析】利用行列式展开法则直接求解.【解答】解;∵行列式,∴2﹣1﹣2m=0,解得m=0.5.∴m的值为0.5.故答案为:0.5.【点评】本题考查实数值的求法,考查行列式展开法则等基础知识,考查运算求解能力,是基础题.25.三阶行列式中,元素4的代数余子式的值为6【分析】利用代数余子式的定义直接求解.【解答】解:三阶行列式中,元素4的代数余子式的值为:(﹣1)3=﹣(18﹣24)=6.故答案为:6.【点评】本题考查三阶行列式中元素的化数余子式的求法,考查代数余子式等基础知识,考查运算求解能力,是基础题.26.若行列式的展开式的绝对值小于6的解集为(﹣1,2),则实数a等于4.【分析】推导出|ax﹣2|<6的解集为(﹣1,2),从而﹣4<ax<8解集为(﹣1,2),由此能求出a的值.【解答】解:∵行列式的展开式的绝对值小于6的解集为(﹣1,2),∴|ax﹣2|<6的解集为(﹣1,2),∴﹣6<ax﹣2<6,即﹣4<ax<8解集为(﹣1,2),解得a=4.故答案为:4.【点评】本题考查实数值的求法,考查行列式展开法则、不等式的性质等基础知识,考查运算求解能力,是基础题.27.函数的最小正周期T=π.【分析】利用行列式的计算方法化简f(x)解析式,再利用二倍角的余弦函数公式化为一个角的余弦函数,找出ω的值,即可求出最小正周期.【解答】解:f(x)=cos2x﹣sin2x=cos2x,∵ω=2,∴T=π.故答案为:π【点评】此题考查了二倍角的余弦函数公式,三角函数的周期性及其求法,以及二阶行列式与逆矩阵,化简函数解析式是解本题的关键.28.已知矩阵A=,B=,C=,且A+B=C,则x+y的值为6.【分析】由题意,,求出x,y,即可得出结论.【解答】解:由题意,,∴x=5,y=1,∴x+y=6.故答案为6.【点评】本题考查矩阵的加法,考查学生的计算能力,比较基础.29.方程,x∈(3,4)实数解x为.【分析】通过二阶行列式的定义,利用二倍角的余弦函数及同角公式,求出tan2x=,再结合x的范围,求出结果即可.【解答】解:因为,所以cos x cos x﹣sin x cos x=,即×﹣sin2x=,∴tan2x=,∵x∈(3,4)∴2x=,∴x=故答案为:.【点评】本题考查二阶行列式的定义、三角函数的同角公式,二倍角公式的应用,考查计算能力.30.方程组的增广矩阵是.【分析】理解方程增广矩阵的涵义,即可由二元线性方程组,写出增广矩阵.【解答】解:由题意,方程组的增广矩阵为其系数及常数项构成的矩阵故方程组的增广矩阵是.故答案为:.【点评】本题的考点是二元一次方程组的矩阵形式,主要考查二元线性方程组的增广矩阵的涵义,计算量小,属于较容易的题型.31.若行列式=0,则x=1.【分析】先根据行列式的计算公式进行化简,然后解指数方程即可求出x的值.【解答】解:∵=0,∴2×2x﹣4=0,即2x=2,∴x=1.故答案为:1.【点评】本题主要考查了行列式的基本运算,同时考查了指数方程,属于基础题.32.对于下列四个命题①若向量,,满足,则与的夹角为钝角;②已知集合A=正四棱柱,B=长方体,则A∩B=B;③在直角坐标平面内,点M(|a|,|a﹣3|)与N(cosα,sinα)在直线x+y﹣2=0的异侧;④对2×2数表定义平方运算如下:=,则=其中真命题是③④(将你认为的正确命题的序号都填上).【分析】①根据向量夹角的范围和钝角的范围可以判断①的真假;②利用长方体包含正四棱柱,进行判断;③把点M(|a|,|a﹣3|)与N(cosα,sinα)分别代入x+y﹣2,判断x+y﹣2是否异号;④利用已知定义进行代入计算验证.【解答】解:①当向量夹角为π时,满足,但不是钝角,故①错误;②∵长方体底是长方形,正四棱柱底是正方形,∴A∩B=A,故②错误;③∵|a|+|a﹣3|>2,cosα+sinα≤<2,∴|a|+|a﹣3|﹣2>0,cosα+sinα﹣2<0,∴点M(|a|,|a﹣3|)与N(cosα,sinα)在直线x+y﹣2=0的异侧,故③正确;④对2×2数表定义平方运算如下:∴===故答案为:③④.,【点评】此题考查的知识点比较多,有向量的计算,正四棱柱和长方体定义,集合之间的关系,以及矩阵的计算.33.设A为3×4矩阵,则A的列向量组必线性相关(相关、无关)【分析】利用矩阵的列向量的性质直接求解.【解答】解:A为3×4矩阵,三行四列矩阵,也就是4个3维列向量,故A的列向量组必线性相关.故答案为:相关.【点评】本题考查A的列向量组是否线性相关的判断,考查矩阵的列向量的性质等基础知识,考查运算求解能力,是基础题.34.规定运算,则=1.【分析】根据新运算可知该运算式表示了两对角相乘的差,注意a、b、c、d的位置.再利用复数的运算法则计算即可.【解答】解:根据题目的新规定知,=1×2﹣(﹣i)i=2+i2=2﹣1=1.故答案为:1.【点评】本题考查了二阶行列式,解题的关键是根据题目信息列出算式.35.已知矩阵A=,B=,则A+B=.【分析】利用矩阵的加法法则及其意义进行求解,即可得到答案.【解答】解:∵矩阵A=,B=,则A+B==.故答案为:.【点评】本题主要考查了矩阵的加法的意义,是一道考查基本运算的基础题.。

第一章 行列式答案详解

第一章 行列式答案详解

第一章行列式习题1.1二阶和三阶行列式1.计算下列二阶行列式.()12112-=4(1)5--=()222111x x x x -++22(1)(1)x x x x =-++-321x x =--【分析】考查二阶行列式的计算公式2.计算下列三阶行列式.()1251312204--1301113113123024204===()2a bcb c a c a b 11()1()011b c b ca b c c a a b c c b a ca b a b b c=++=++----333()3c b a c a b c abc a b c a b b c --=++=-----【分析】考查三阶行列式的计算公式或者行列式性质计算三阶行列式3.当x 取何值时,3140010x x x¹.【解析】31210214040(24)0241010x x x x x x xxxx x且===-【分析】考查三阶行列式的计算公式或者行列式性质计算三阶行列式习题1.2排列1.求下列排列的逆序数,并确定它们的奇偶性.()14132;()41324t =,为偶排列()2542316;()5423169t =,为奇排列()3()()246213521n n -L L .()()()(1)2462135212n n n n t +-=L L ,4142443n k k n k k =++⎧⎨=+⎩或时,为奇排列或时,为偶排列【分析】考查逆序数的计算及奇偶排列的概念*2.设排列12n i i i L 的逆序数为k ,求排列121n n i i i i -L 的逆序数.【解析】考虑第m 个数(m=1,2,...,n-1),它与后面n-m 个数的每一个数都有一个“序”,这个序要么是“顺序”,要么是“逆序”。

这样全部的“序”共有:(n-1)+(n-2)+...+2+1=n(n-1)/2个。

12n i i i L 逆序数是k ,那么排列121n n i i i i -L 的逆序是n(n-1)/2-k 【分析】考查逆序概念习题1.3n 阶行列式1.写出四阶行列式中含有因子1123a a 的项.【解析】1123344211233244;a a a a a a a a +-【分析】行列式的定义2.在5阶行列式中,下列各项应取什么符号?()11523314254a a a a a ;()152********,+a a a a a 取“”t =()22132441355a a a a a ;()21324413552,+a a a a a 取“”t =()34153122435a a a a a .()41531224355,a a a a a 取“-”t =【分析】行列式的定义3.设一个n 阶行列式中等于零的元素的个数大于2n n -,试证明该行列式为零.【解析】N 阶行列式共有2n 个元素,等于零的元素的个数大于2n n -,则非零元素个数小于n 个,即一定出现一个0行,则行列式值为0.【分析】行列式的定义4.用行列式的定义计算下列行列式.()1010000200001000n n -L LM M M LML L (23(1)1)112231,11(1)(1)!n n n n n a a a a n τ----=-=- ()2()()1111121211000n n n n a a a a a a --L L MLM M L(1)((1)21)212(1)112(1)1(1)(1)n n n n n n n n n n a a a a a a τ----=-=- 【分析】行列式的定义和主次对角线行列式的结论5.设()11121314212223243132333441424344x a a a a a x a a a f x a a x a a a a a x a --=--,求()f x 中3x 的系数.【解析】根据行列式的定义,3x 系数只能来自于一项11223344()()()()x a x a x a x a ----,即11223344()a a a a -+++【分析】行列式的定义习题1.4n 阶行列式的性质1.用行列式的性质计算下列行列式.()1a x x x x b x xx x c x+++000000a x x x x x x b x xb x x x b x x a x b xc xx c x x x c x x c +=+++=++++2()()()a b x c x x bcx abc ab ac bc x=++-+=+++【分析】各行或各列元素之和相等的行列式+展开定理+三角化方法()22464273271014543443342721621-1321122331299001003279001003270100327190010044310000116100001169001006210029400294c c r r c c c c r r +----===121000011601003272940000000294r r «=-=-【分析】行列式性质+行列式性质+三角化方法()3ab ac aebd cd debf cf ef---1111111111110020204111020002abcdef abcdef abcdef abcdef---=-==-=-【分析】各行或各列元素之和相等的行列式+行列式性质+三角化方法2.将下列行列式化为上三角形行列式,并计算其值.()1111111111111022281111002211110002-==-----【分析】三角化方法的计算()222401120112011204135413505550111221031233123048304832051205102110211----------=-=-=---------112011201120111011101111010102500047001800180031003100025---------=-=-=-=----------【分析】三角化方法的计算3.计算下列行列式.()111100[(1)][(1)]100x a a aa a a a x a x a x a x n a x n a a a x ax x a-=+-=+--L LL L L L M M L M M M L M M M L M L LL 1[(1)]()n x n a x a -=+--10111011120201600022002200220004----=-=-=-----()33312()02()2()0x y x y y x yx yy x y x x y x y x y x y x y xx yxy x yx++-+=+-=+=-+--+--【分析】各行或各列元素之和相等的行列式的计算4.计算下列行列式()112311110010010na a a a L L LM M M LM L ,其中0,2,3,,.i a i n ¹=L 122123211111000110000nn n n a a a a a a a a a a a ---ç==---ççL L L L L LM M M LML 【分析】箭型行列式计算()212111111111111na a a +++L LM M M LML ,其中0,1,2,,.i a i n ¹=L 111121211212211111111100000100000n n n nna aa a a a a a a a a a a a a a a a a +++++-ç===++++çç-L LL L L L L M M M LMM M M L M L L 【分析】利用性质变换为箭型行列式计算5.证明()33by az bz ax bx ayx y z bx ayby az bz ax a b zx y bz ax bx ay by azyzx++++++=++++.【证明】左边by az bz ax bx ayby bz ax bx ay azbz ax bx aybx ayby az bz ax bx by az bz ax ay by az bz axbz ax bx ay by az bz bx ay by az ax bx ay by az+++++++=+++=++++++++++++y bz ax bx ay zbz ax bx ayb x by az bz ax a y by az bz axzbx ay by azx bx ay by az ++++=+++++++++22y bz ax bx zax bx ay y bz ax x z x bx ay b x by az bz a yazbz ax b x by azz a yz bz ax zbx ay by x ay by az z bx ay y xy by az++++=+++=+++++++()223333y bz x z x ay y z x z x y x y z b x byz a y z ax b xy z a yz x a b zx y z bx y x y az z xyxyzy zx=+=+=+【分析】拆项性质+行列式性质6.证明121211221100001000000001n n n n nn n x x x a x a x a x a xa a a a a -------=++++-L L L L M M M L M M LL .【证明】11c n n nD xD a 展开-=+()22121n n n n n n x xD a a x D a x a ----=++=++()3232123232312312121n n n n n n n n n n n n n nx D a x a x a x D a x a x a x a a x a a x a x a x a ----------=+++==+++=++++=++++L L L L 【分析】展开定理+递推发习题1.5行列式的展开1.求行列式30453221--中元素2和2-的代数余子式.【解析】2的代数余子式:313104(1)003A +=-=;2-的代数余子式:323234(1)2953A +-=-=【分析】余子式、代数余子式的概念2.用降阶法计算下列行列式【分析】拉普拉斯展开定理()211122200000000000000=0000000111111231n n na a a a a a a a a nn ------+L L LL MM M L M M MM M L M M L L LL12(1)(1)n nn a a a =+- 【分析】行列式性质+展开定理3.计算下面行列式222244441111a b c d a b c d a b c d .【解析】4D 中各列元素均缺少3次方幂的元素,在4D 中添加3次方幂的一行元素,则产生5阶范德蒙行列式,再适当添加一列得:22222333334444411111()ab c d x f x a b c d x a b c d x a b c d x =按最后一列展开,得2341525354555()f x A xA x A x A x A =++++,因为()()()()0f a f b f c f d ====,所以,,,a b c d 为()f x 的四个根,则()()()()()f x k x a x b x c x d =----由根与系数关系有4555Aa b c d A +++=-,而4545(1)A D D +=-=-,55()()()()()()A b a c a d a c b d b d c =------,则()()()()()()()D a b c d b a c a d a c b d b d c =+++------.【分析】克莱姆法则+展开定理4.已知四阶行列式D 中第1行的元素分别为1,2,0,4-,第3行的元素的余子式依次为6,,19,2x ,试求x 的值.【解析】313233346,,19,2A A x A A ==-==-,由展开定理得:162()019(4)(2)0x ⨯+⨯-+⨯+-⨯-=,解得7x =【分析】代数余子式、余子式+展开定理求11121314及11213141.【解析】1112131411111111016110500164241313042463524130635A A A A -----+++===----------1201048428(1)(1)46136313+--=-=--=---11213141112131411521110513131413M M M M A A A A ---+++=-+-=----152142412000424812812081291210912-----==-=-=------【分析】代数余子式、余子式+展开定理的逆运用习题1.6克莱姆法则1.用克莱姆法则求解下列方程组的解12341234123412342326223832242328x x x x x x x x x x x x x x x x ì++-=ïïïï---=ïíï+-+=ïïï-++=-ïî.【解析】1234324,324,648,324,648D D D D D ====-=-,则12341,2,1,2x x x x ===-=-【分析】克莱姆法则2.设1a ,2a ,3a 互不相同,证明方程组123112233222112233000x x x a x a x a x a x a x a x ì++=ïïï++=íïï++=ïïî只有零解.【解析】系数行列式时范德蒙行列式,因为1a ,2a ,3a 互不相同,则系数行列式非零;再由克莱姆法则可知,该齐次方程组只有零解.【分析】克莱姆法则3.当l 为何值时,齐次线性方程组123122334000x x x x x x x l l ì++=ïïï-+=íïï+=ïïî()1只有零解;()2有非零解.当11λλ≠≠-且时,只有零解;当=1=1λλ-或时,有非零解【分析】克莱姆法则自测题1.填空题(每小题10分,共20分)()1行列式103100204199200395301300600=___2000____.()2已知11111111111111D x---=---,则D 中x 的系数是___4-____.2.计算下列行列式:(每小题15分,共30分)()11(1)(1)(2)220000(1)(1)000000n n n n c nn n D αβαββααββα---==-+-展开()212312323411341(1)3452145221211121n n n n n D n n n +==--(1)(1)1231111101111111101111(1)(1)2211110111111111111n n n n n n nnn n n n n n n n-⨯------++==----(1)(2)1122(1)(1)100100(1)(1)(1)(1)(1)221001000n n n n n n n nn n n n n n n ------⨯-++=⋅-=⋅-⋅-⋅(1)12(1)(1)2n n n n n n --+=-⋅⋅(本题15分)已知2231122D yx=,且1112133M M M +-=,1112131A A A ++=,其中ij M 是D 中元素ij a 的余子式,(1)i j ij ij A M +=-,试求D 的值.【解析】1112133235M M M x y +-=⇒-=111213114A A A y x ++=⇒=⇒=则行列式的值为14.(本题15分)解线性方程组231234231234231234231234x ax a x a x e x bx b x b x ex cx c x c x e x dx d x d x e⎧+++=⎪+++=⎪⎨+++=⎪⎪+++=⎩,其中,,,a b c d 互异.【解析】系数行列式非零,由克莱姆法则可知1234,0,0,0x e x x x ====5.(本题20分)证明:11000100,010001n n a b ab a b ab a b a b a b a ba b++++-=¹+-+L L L M M M L M M L .【解析】上课做为例题已讲过。

行列式习题解答

行列式习题解答
④ 1 c b c 1 a ba 1
111 (b) c a b(a)(c) (b)1 b 1 (a) a 1 (c) c a2abc abc 0
b c 0
⑥0 1 1 1 0 1 11 2 110 a a2 a3
⑦ b b2 b3 c c2 c3
f ( x) 中旳常数项是(1) 2 31 (1) 3 31 3
x 030 15.已知 0 0 0 2 1, 求 x
0 x00 4 000
x 030

0 0
0 x
0 0
2 0
24 x
1, 所以
x
1 24
4 000
16.用行列式性质证明下列等式
证明 ①
a1 kb1 a2 kb2 a3 kb3
00
解 ②此行列式刚好只有处于不同旳行与不同旳列旳
n个非零元素 a12 , a23 , a(n 1)n , an1 ,故非零项只有一项 a12a23 a(n 1)n an1 ,该项所带旳符号为 (1) 23 n1 (1)n1 , 所以 D (1)n11 2 (n 1) n (1)n1 n!
解 ① (38162754) 2 3 0 4 3 1 1 14
所以 38162754 为偶排列
② (3712456) 2 2 0 1 1 1 7
所以 3712456 为奇排列
③ 246 (2n)135 (2n 1)
n (n 1) 2 1 n(n 1) 2
所以当 n 4k 或 n 4k 3 时为偶排列;当n 4k 1
或 n 4k 2 时为奇排列.
6.选择 i, j, k,使排列 21i36 jk97为偶排列.
解 当 i 4, j 8, k 5 时, (214368597 6), 为 为偶排列,当 i 5, j 4, k 8时, (215364897 6), 为偶排列,当 i 8, j 5, k 4时, (218365497 10),

矩阵与行列式练习题及解析

矩阵与行列式练习题及解析

矩阵与行列式练习题及解析矩阵与行列式是线性代数的重要内容之一,对于理解和运用线性代数的基本概念和方法具有重要作用。

本文将为读者提供一些矩阵与行列式的练习题,并对其解析过程进行详细讲解,帮助读者掌握相关知识。

练习题一:已知矩阵A=⎡⎣⎢123456⎤⎦⎥,求A的转置矩阵AT。

解析:矩阵的转置是指将矩阵的行与列进行对调。

根据定义,矩阵AT的第i行第j列元素等于矩阵A的第j行第i列元素。

因此,可以得到矩阵A的转置矩阵AT=⎡⎣⎢143256⎤⎦⎥。

练习题二:已知矩阵B=⎡⎣⎢112233⎤⎦⎥,求B的逆矩阵B-1。

解析:矩阵的逆是指与之相乘得到单位矩阵的矩阵。

对于2×2的矩阵而言,可以通过下面的公式求得逆矩阵:B-1 = 1/(ad-bc) * ⎡⎣⎢dd-bb-cc-aa⎤⎦⎥,其中a、b、c、d分别代表B的对应元素。

根据此公式,可以得到矩阵B的逆矩阵B-1=⎡⎣⎢-1/3-2/30.5-1⎤⎦⎥。

练习题三:已知矩阵C=⎡⎣⎢100010001⎤⎦⎥,求C的行列式|C|。

解析:行列式是用来表征矩阵性质的量,对于3×3的矩阵而言,行列式的计算公式如下:|C| = a(ei-hf) - b(di-hg) + c(dg-ge),其中a、b、c、d、e、f、g、h、i分别代表矩阵C的对应元素。

带入矩阵C的值,可以得到|C|=0。

练习题四:已知矩阵D=⎡⎣⎢123456789⎤⎦⎥,求D的特征值和特征向量。

解析:特征值和特征向量是矩阵在线性变换过程中的重要指标,特征值是矩阵对应特征向量的线性变换因子。

首先,求解特征值需要解特征方程Det(D-λI)=0,其中λ为特征值,I为单位矩阵。

通过计算得到特征值λ1=0,λ2=15,λ3=-15。

然后,根据特征值求解对应的特征向量,即求解方程组(D-λI)X=0,其中X为特征向量。

求解过程中,可以得到特征向量X1=⎡⎢⎣-1-101⎤⎥⎦,X2=⎡⎢⎣111⎤⎥⎦,X3=⎡⎢⎣100-11⎤⎥⎦。

第一章 行列式--习题解答

第一章   行列式--习题解答

第一章 行列式3.求2111242233634448=D . 【分析】本行列式的特点是第2、3、4行元素均有公因子,可先提出公因子再计算行列式.解 21111211234=120.11211112=⨯⨯D 【注意 “行和相等的行列式的计算方法”】4.求121212--=-n n n n x mx x x x m x D x x x m.【分析】本行列式的特点是各行(列)元素之和相同,故可把第2列至第n 列加到第一列后,提取公因子12()++- n x x x m ,然后化为三角形行列式.【参见同辅P5—例4】解 1221221212211()1---==++---n n n n n n n n x mx x x x x x m x x m x D x x x m x x x m x x m211212100()()()00--=++-=++--- nn n n x x mx x x m x x x m m m.5.求112011111001+=n na D a a,其中120≠n a a a .【分析】本行列式称为箭型行列式,通常可化为三角形行列式来计算.【参见同辅P5—例5.】解 11111212()(2,3,,1)1111100010000=-=-=+-=-∑∑j nj j nj nn j jnc c j n a a a D a a a a a a .6.求2111131111411117=D . 【分析】本行列式可将第一列拆分成两项之和. 解2111111111111131111111311311311020014136+414111411411410030117171711171171170006114136302361854=108.111210101010101001706==+=+=+=++=++D7.求1122334400000000=a b a b D b a b a . 【分析】本行列式各行(列)零元素足够多,可按第一列(行)将行列式展开.【沿边展开】 解1122122114113342233433440000000(1)0(1)00000++==⋅-+⋅-a b a b b a b D a b a b a b b a a b a b a 14142323()().=--a a b b a a b b8.证明121211221100001000000001-------=++++-n n n n nn n x x x a x a x a x a x a a a a a.【分析】考察本题的行列式,n D 与1n D -的结构相同,故可以用递推的方法证明. 证明 按第一列展开212121()-----=+=++=++n n n n n n n n n D xD a x xD a a x D a x a1212121121------==++++=++++ n n n n n n n n x D a x a x a a x a x a x a9.已知4阶行列式2323231211232234334144=D , 求12223242+++A A A A ,其中2(1,2,3,4)=i A i 为D 中第i 行,第2列元素的代数余子式. 【分析】直接计算12223242,,,A A A A 的值,工作量大且容易出错,这类题目可根据行列式的展开性质求解较简单.解 构造新的行列式2323123232323111111112122122212()3133133341441444==-=-范德蒙行列式D10.解方程组212321232123,,.⎧++=⎪++=⎨⎪++=⎩x ax a x d x bx b x d x cx c x d 其中,,a b c 互异.【分析】本题考核克莱姆法则及范德蒙行列式.解 因为系数行列式 22211()()()01==---≠a a D bb b ac a c b cc ,所以方程组有唯一解. 又因为 2212==da a D db b dD dc c , 22221101==d a D db dc , 31101==a dD b d c d ,故由克莱姆法则得 11==D x d D ,220==D x D , 330==Dx D.11.当λ取何值时,齐次线性方程组1231231230,0,0.++=⎧⎪++=⎨⎪++=⎩x x x x x x x x x λλλ有非零解?【分析】本题考查克莱姆法则的推论及含参数的行列式的计算.解 系数行列式 21111(2)(1)11λλλλλ==+-D ,故当210λλ=-=⇔=⇔或时D 齐次线性方程组有非零解.。

《线性代数》第一章行列式精选习题及解答

《线性代数》第一章行列式精选习题及解答

(C)0, 2
(D)0,1
解 按 三 阶 行 列 式 的 对 角 线 法 则 得 D1 = (λ + 1)(λ − 1)2 , D2 = 0 . 若 D1 = D2 , 则
(λ + 1)(λ −1)2 = 0 ,于是 λ = 1,−1,故正确答案为(B).
例 1.5
方程组 ⎪⎨⎧λx1x1++λxx22
故逆序数为 1;于是这个排列的逆序数为 t=0+0+2+4+1=7,故正确答案为(B).
例 1.2 下列排列中( )是偶排列.
(A)54312 (B)51432
(C) 45312
(D) 654321
解 按照例 1 的方法计算知:排列 54312 的逆序数为 9;排列 51432 的逆序数为 7;排列
例17分析如果行列式的各行列数的和相同时一般首先采用的是将各列行加到第一列行提取第一列行的公因子简称列行加法这个行列式的特点是各列4个数的和为10于是各行加到第一行得10101010分析此类确定系数的题目首先是利用行列式的定义进行计算
第一章 行列式
1.1 目的要求
1.会求 n 元排列的逆序数; 2.会用对角线法则计算 2 阶和 3 阶行列式; 3.深入领会行列式的定义; 4.掌握行列式的性质,并且会正确使用行列式的有关性质化简、计算行列式; 5.灵活掌握行列式按(列)展开; 6.理解代数余字式的定义及性质; 7.会用克拉默法则判定线性方程组解的存在性、唯一性及求出方程组的解.
(2) A34 + A35 = ( ), (3) A51 + A52 + A53 + A54 + A55 = ( ).
分析 此类题目一般不宜算出表达式里每一项的值,而是注意观察要求的表达式的结构,

第一章 行列式试题及答案备课讲稿

第一章 行列式试题及答案备课讲稿

第一章 行列式试题及答案一 选择题 (每小题3分,共30分)⑴ n 元排列 i 1 i 2… i n 经过相邻对换,变为i n … i 2 i 1,则相邻对换的次数为( )(A) n (B) n /2 (C) 2n(D) n (n -1)/2⑵ 在函数()xx x x x x f 2142112---=中,x 3的系数是( )(A) -2 (B) 2 (C) -4 (D) 4⑶ 若D n =det(a ij )=1,则det(-a ij ) = ( )(A) 1 (B) -1 (C) (-1)n (D) (-1)n(n -1)/2⑷ 设nn λλλλλλNO2121=,则n 不可取下面的值是( )(A)7 (B) 2k+1(k ≥2) (C) 2k(k ≥2) (D) 17⑸ 下列行列式等于零的是( )(A)100123123- (B) 031010300- (C) 100003010- (D) 261422613-⑹ 行列式D 非零的充分条件是( ) (A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例(D)以D 为系数矩阵的非齐次线性方程组有唯一解 ⑺=+++111222c bc acbc b ab acaba ( ) (A) 100010001222+c bc ac bc b ab ac ab a (B) 1111122222+++++c bc ac bc b ab acab c bc ac bc b ab ac ab a(C) 101011122222+++++c bc bc b acab c bc ac bc b ab ac ab a (D) 111222bc ac bc ab acab c bc ac bc b ab acab a +⑻ 设a ,b ,c 两两不同,则0222=+++c b a c b a ba a c cb 的充要条件是( )(A) abc =0 (B) a+b+c =0 (C) a =1, b =-1, c =0 (D) a 2=b 2, c =0⑼ 四阶行列式=44332211a b a b b a b a ( )(A) (a 1a 2- b 1b 2) (a 3a 4- b 3b 4) (B) (a 1a 4- b 1b 4) (a 2a 3- b 2b 3) (C) (a 1b 2- a 2b 1) (a 3b 4- a 4b 3) (D) (a 1b 4- a 4b 1) (a 2b 3- a 3b 2)⑽ 齐次线性方程组⎪⎩⎪⎨⎧=-+=+-=-+0302022321321321x x x x x x x x x λ只有零解,则λ应满足的条件是( )(A) λ=0 (B) λ=2 (C) λ=1 (D) λ≠1二 填空 (每小题3分,共15分)⑴ 在五阶行列式中,3524415312a a a a a 的符号是_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行列式试题库1一. 判断题(易)1、n 阶行列式111212122212n nn n nna a a a a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅是由2n 个数构成的n 行n 列的数表( ).答案:×(较容易)2、62162100000000λλλ=λλλΛΛM M MM M ΛΛ.( ).答案:×(较容易)3、821821000000000k k k k k k ΛΛM M M M M ΛΛ=.( ).答案: √(较容易)4.若方阵A 的各行元素之和为零,则0A = ( ) 答案: √ 二.填空题(中等)1.设1234577733324523332246523=A ,313233++=A A A _________,3435+=A A ________答案:0,0(中等)2.1234243141321432=D , 求11213141+++A A A A =________答案:0(较容易)3. 5阶行列式D 的第2列元素依次为1,1,0,2,1它们对应的余子式分别为-1,3,-2,0,1,则=D ________. 答案:3(较容易)4.dba cd b c a b d c a b da c = .答案:0(较容易)5. yx yx x y x yx y x x yx 323222 +++++=. 答案:)(2y x xy +-(较容易)6. 6217213424435431014327427246-=答案:510294⨯-(中等)7.已知三阶行列式 987654321 =D ,它的元素ij a 的代数余子式为ijA (3,2,1,3,2,1==j i ),则与232221cA bA aA ++对应的三阶行列式为.答案: 987321 c b a(中等)8. 设行列式30402222,075322D =-- 则第四行各元素余子式之和的值为 .答案:–28(较容易)9.111100111100y yyx x x --= .答案:22x y(中等)10. 行列式1111111111111111--+---+---x x x x = .答案:4x(较容易)11. 当λ= 或μ= 时,齐次方程组⎪⎩⎪⎨⎧=+μ+=+μ+=++λ0200321321321x x x x x x x x x 有非零解.答案:1,0(较容易)2. 设222233331111a bcdD ab c da b c d =,则D=______________答案:()()()()()()d c d b d a c b c a b a ------(较容易)13. 已知四阶行列式D 的第二行元素分别为3, 1, -1, 2, 他们对应的余子式分别为1, 2, 2, -1, 则行列式=D ______ 答案:-1(较容易)14. 设A 是三阶方阵, 且3||=A , 则|)2(|1-A =_______ 答案:124(容易)15. A 为正交矩阵, 则=||A _____________ 答案:1或-1(较容易)16. 已知四阶行列式D 的第3列元素分别为1,3,-2,2,他们对应的余子式分别为3,-2,1,1,则行列式D=________ 答案:5(容易)17. 行列式25613412a 中元素a 的代数余子式 = _________答案:-4(较容易)18.四阶行列式D 的第二行的元素都是2,且第二行元素的代数余子式都是3,则D= _________ 答案:0(较容易)19.设A 是三阶行列式,且1A =,则2A A =______ 答案:512(较容易)20.设五阶矩阵A 的行列式2A =-,则其伴随矩阵*A 的行列式*A = ____ 答案:16(容易)21. 已知三阶行列式251102321-=D , 则第3行第2列元素的代数余子式32A =_____________答案:7(容易)22. 按自然数从小到大为标准顺序,排列4132的逆序数为 .. 答案:1(容易)23. 当=i =k 时排列1274i 56k 9为偶排列. 答案:8,3(容易)24. 排列1 3 …(12-n )2 4…(n 2)的逆序数为 _______ .答案:(1)2n n - (容易)25. 在五阶行列式中项5541322413a a a a a 前面应冠以 号(填正或负). 答案:负(容易)26. 四阶行列式中含有因子2311a a 且带负号的项为_____ 答案:44322311a a a a -(容易)27. 设A 为n 阶矩阵,且T A A E =,则必有________A = 答案:1 或-1(容易)28. 设A 为n 阶可逆矩阵,如果2A =,则*A =________ 答案:12n -(容易)29. 设A 为n 阶可逆矩阵,如果 2A =- ,则*A =________ 答案:1(2)n --(容易)30. 设A 为n 阶矩阵,且T A A E =,则必有TA =________ 答案:1 或-1(容易)31.设A 是n 阶方阵, *A 为其伴随矩阵, 若a A =||, 则||*A =__________ 答案:1n a -(容易)32.若2||44-=⨯A , 则=||*A _________ 答案:8(容易)33.设3211111410D -=-,则313233A A A ++=_____ 答案:0(较容易)34. 若0x a aa x a a a x=,则a =_____答案:2a -或0(较容易)35.已知3021111x y z=,则33332222xyzx y z x y z ++=+++_____答案:2(较容易)36.设12234000000000a a D a a =121340000200003004a a D a a =,则1D =_____2D 答案:24(容易)37.120034000054045D --==-- ____答案:-18(容易)38.1200340000130051D ==- ____答案:32(较容易)39.1111001100111001D == ____答案:0(较容易)40.若齐次线性方程组03030x y z x y z x y z λ+-=⎧⎪-+=⎨⎪-+=⎩有非零解,则λ=____答案:12λ=-(容易)41.行列式A 中元素ij a 的代数余子式ij A 与余子式ij M 之间的关系____答案:(1)i j ij ij A M +=-(较容易)42.若n 阶方阵A 的秩为n-1,在A =____ 答案:0(较容易)43.设A,B 是两个三阶的方阵,且1A =-,2B =,那么133()T A B -=____ 答案:278-(容易)44.设三阶方阵A 的不同特征值为-1,2,4 ,则A =____ 答案:-8(较容易)45.若A,B 为n 阶方阵,且1,32A B ==-,则*12A B --=____答案:12(1)3n +-(容易)46.A 为三阶方阵,2A =,则12A =____ 答案:14(较容易)47.设行列式2345246812035643D =,则414243442468A A A A +++=____答案:0(较容易)48.若3022111xy z=-,则413111111x y z ---=____答案:2(较容易)49.8276412549162523451111= ____答案:12(较容易)50. 如果3333231232221131211==a a a a a a a a a D ,则11121321222331323332623a a a a a a a a a ---= ____ 答案:-18(较容易)51. 如果3333231232221131211==a a a a a a a a a D ,则111213212223313233222222222a a a a a a a a a = ____ 答案:24(容易)52.已知三阶方阵A 的三个特征值为1,-2,3 ,则A =____ 答案:-6(容易)53. 0100002000001000n D n n ==-L LM M M OL L答案:1(1)!n n +-(容易)54. 0x yD xz y z=---= 答案:0(容易)55.已知125328401390216D ----=,23A =答案:-9(容易)56. efcfbf de cdbd aeacab ---= 答案:4abcdef(较容易)57. 33221111110011001b b b b b b D ------== 答案:1(较容易)行列式2001021*********=答案:9 三.选择题(容易)1. 如果⎩⎨⎧=-+=+-0)1(202)1(2121x k x x x k 仅有零解,则( ).A. 1≠k ,B. 1-≠k 或3≠k ,C. 3=k ,D. 1-≠k 且3≠k . 答案:D(较容易)2. 设,,D αβγ=, ,,αβγ分别表示行列式D 的三个列,则D =( )A. ,,γβαB. ,,αββγγα+++C. ,,αβγ---D. ,,ααβαβγ+++答案:D(较容易)3.四阶行列式D=1122334400000a b a b b a b a 的值等于( ) A. 12341234a a a a b b b b - B. 12341234a a a a b b b b +C. 12123434 ()()a a b b a a b b --D. 23231414()()a a b b a a b b --答案:D(容易)4.如果1112132122233132332a a a a a a a a a =,则111213212223313233222222222a a a a a a a a a =( ) A. 2 B. 4 C. 12 D. 16 答案:D(较容易)5.已知4阶方阵A ,其第三列元素分别为1,3,-2,2,它们的余子式的值分别为3,-2,1,1则行列式A =( )A. 5B. -5C. -3D. 3 答案:A(中等)6.设231111111()114118x f x x x -=-,则方程()0f x =的三个根分别为( )A. 1,-1,2B. 1,1,4C. 1,-1,8D. 2,4,8 答案: A(较容易)7.行列式112233110a ba ca b a c a b a c ++++++=( )A. 0B. b c -C. 21()()c b a a --D. 21()b a a - 答案:C(容易)8.行列式132520103D -=--中元素32a 的代数余子式为( )A. 0B. -10C. 10D. 3 答案:B(容易)9.行列式21312201D -=中元素32a 的代数余子式为( ) A. 4 B. -4 C. 0 D. 2答案:A(较容易)10.若1112132122233132331a a a a a a a a a = 则313233212223111213222333a a a a a a a a a ---=( ) A. -5 B. 6 C. -1 D. 1 答案: B(较容易)11.设22115()114723f x x x =+-,则方程()0f x =的根分别为( ) A. 1,1,3,3 B. -1,-1,3,3 C. -1,-1,-3,-3 D. 1,-1,3,-3 答案:D (较容易)12.已知111213212223313233a a a a a a d a a a =,则行列式313233111213211122122313333232323a a a a a a a a a a a a ---=+++( )A. 6d -B. 6dC. 3d -D.3d 答案:A(较容易)13.1231231233a a a b b b c c c ⨯=( ) A. 123123123333a a a b b b c c c B. 123123123333333333a a a b b b c c c C. 123123123333a a a b b b c c c - D. 123123123333a a a b b b c c c 答案:D(较容易)14.行列式0003001002000100000002D -==--( ) A. -12 B. 12 C. -6 D. 6答案:A(较容易)15.设det()n ij D a =,则0n D =的充分必要条件是( ) A. n D 中有两行(列)元素对应成比例 B. n D 中有一行(列)的元素均为零 C.11220()i j i j in jn a A a A a A i j ++⋅⋅⋅+== D. 11220()i j i j in jn a A a A a A i j ++⋅⋅⋅+=≠ 答案:C(中等)16.1223()71043171xx x x f x x--=--是( )次多项式A. 4B. 3C. 2D. 1 答案:C(较容易)17.四阶行列式D 的某行元素依次为-1,0,k,6, 它们的代数余子式分别为3,4,-2,0,且9D =-,则k =( )A. 0B. 3C. 1D. -1 答案:B(较容易)18.若1112132122233132331a a a a a a a a a =,则131112112321222133313231454545a a a a a a a a a a a a --=-( ) A. 5 B. -5 C. 20 D. -20 答案:A(容易)19.222a ab acab b bc ac bc c =( )A. abcB. 1C. 0D. 222a b c 答案:C(较容易)20. 设*1,A A -分别为n 阶方阵A 的伴随矩阵和逆矩阵,则*1A A -=( )A. nA B. 1n A - C. 2n A- D. 3n A-答案:C(较容易)21.已知A 为三阶矩阵,其第三行元素分别为1,3,-2,它们的余子式分别为3,-2,1,则A =( )A. 5B. -5C. 7D. -7 答案:C(较容易)22.如果1112132122233132331a a a a a a a a a =,则111112132121222331313233423423423a a a a a a a a a a a a --=-( ) A. 8 B. -12 C. 24 D. -24 答案:B(较容易)23.行列式103100204199200395301300600=( )A. 1000B. -1000C. 2000D.-2000 答案:C(较容易)24.行列式40105022*********D =的值为( )A. -12B. -24C. -36D. -72 答案:D(较容易)25.设A 为n 阶方阵,且0=A ,则( ) A. A 中必有两行(列)的对应元素成比例;B. A 中任意一行(列)向量是其余行(列)向量的线性组合;C. A 中必有一行(列)向量是其余行(列)向量的线性组合;D. A 中至少有一行(列)向量为零向量答案:C(较容易)26. 已知三阶矩阵A 的特征值为1,2,3,则行列式2A =( )A. 0B. 1C. 6D. 36 答案:D(较容易)27. 如果m a a a a a a a a a D ==333231232221131211,1312112322213332311333333333a a a a a a a a a D = 那么=1D ( ).A.m 3;B.m 3-;C. m 9;D. m 27-. 答案:D(较容易)28.已知0001001010********1D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅,则D =( )A. 1B. -1C. (1)2(1)n n -- D. (1)(2)2(1)n n ---答案:D29.行列式D 非零的充要条件是( ) A.D 的所有元素都不为零 B.D 至少有2n n -个元素不为零C.D 的任意两列元素之间不成比例D.以D 为系数行列式的线性方程组有惟一解 答案:D四.解答题(较难)1.123111111111111111(0,1,2,,)111111+++≠=+LL L L M M M M Li na a a a i n a 解:123111111111111111111111++++LL L M M M M Lna a a a 11213111111000000000+-=--L L LMM M M M M L na a a a a a a 112131111110000000+---L L LM M M M M ML na a a a a a a 11223111110000000=++=∑L LL MM M M M MLni inaa a a a a 231120000100=⎡⎤=++=⎢⎥⎣⎦∑L L L L L Lni i na a a a a a 111(1)===+∑∏nni i i i a a (较难)2.12323413452121-L L L L L L L L Ln nn解:12323413452121-L L L L L L L L L n nn =1223123411245212121++++++++++++-L L L L L L L L L L L L L n n n n n n =123011113410111(1)(12)14522011111211121------++++=-----L L L L L L LLLL L L L L L L Ln n n n n n n n n=1111111111(1)(1)211111111+---------+---------L LLL L L Ln n n n n n n n =11000000(1)(1)20001111+-+----L LL LLL Ln n n n n n n=1200(1)(1)(1)2n nn n n n n n+-+--L L L L L L L=(1)(4)11322(1)(1)(1)(1)(1)(1)(1)22-++--++----=-L n n n n n n n n n n n(较难)3.-=------L L LL L L L L L Ln x a a a a a xaa a D a axaa a a a a x解:00--=+-------L L L L LLLLL LLLLL L Ln xa a x a a a a x a a x a a D a a a x aa a a a=11100()()()0000---+-+--+=-+++---L L LL L L L Ln n n x a a xx a a x x a D x a D a x a x a aaaa由递推关系有1()()2⎡⎤=++-⎣⎦n n n D x a x a (较难)4.111111-=--LL LL L L Ln n D n n 解:10100111001011111+----==+------L L L L L L L L L L L L LLn nn n n D n n n n=111(1)(1)010100+---------LL L LL L Ln n n n n=121(1)(1)(1)(1)010111+------------L L L L L L Ln n n n n n n=254113112(1)(1)(1)(1)(1)(1)(1)(1)+-+----------=-+L n n n n n n n n n=222(1)1122(1)(1)(1)(1)(1)++-----+=-+n nn n n n n n n(中等)5. 写出四阶行列式20374010*******--=D 中元素4,13323=-=a a 的代数余子式,并求其值.解: 230701135)1(3223-⨯-=+A 237013430--- .96102623343=+-=--=2015)1()2(230020135)1(223333++-⨯-=--⨯-=A.2010)2(-=⨯-=.176)20(4960033332323-=-⨯+-=+++=A a A a D(中等)6. 计算行列式7325254346323214-----解:7325254346323214----- =13723103419503100010------1373103195010)1(121----⨯=+137231031500-----.310625)697(5723315=⨯=+-=--=(中等)7. 计算(2)≥n n 阶行列式0001000000001000aaD a a =L L L L L L L L L L解: 按第一行展开,得()100000000000010000100naaaaD aa a+=+-LLL L L L LL L L LL L LL LL. 再将上式等号右边的第二个行列式按第一列展开,则可得到()()()()1112222111nn n n n n n D a a a a a a +-+---=+--=-=-(中等)8.计算行列式ab b b ba b b D bb a b bbba=L L L L L L L L L解: D =()()()()1111a n b b b b a n bab b a n b ba b a n b bba+-+-+-+-L L L L L L L L L[]11(1)11b b ba b ba nb b a b bba =+-L L L L L L L L L=[]1(1)b b b a ba nb a ba b-+---L O(较容易)9.计算行列式 .2143000012009687843415089715032-=D 解:231509750821001414437896823034(83)0340210141021020003400102141111(412)1116176.34D --===+⋅--=⋅=+=⨯=(较容易)10. k 取何值时,下列齐次线性方程组有非零解:⎪⎩⎪⎨⎧=+-=++-=++.02,0,0321321321x x x x kx x kx x x 解: 方程组有非零解的必要条件是系数行列式等于零.2111111--=kk D kk k k --++2211011kk k --+2201111)1(11(1)011004k k k+-).4)(1(k k -+=即 .0)4)(1(=-+k k所以当1-=k 或4=k 时,齐次线性方程组可能有非零解.(中等)11. 计算行列式1314211311023351-----=D .解: 1192101110160551003351-----=D 1113200112033515----=112320011103351)5(-----=1300320011103351)5(------=211000320011103351)5(-----=55-= (中等)12. 计算行列式x a a a x aa a x D n ΛMM M ΛΛ=. 解: xa a a x aa n x D n r r r nΛM M M ΛΛΛ111])1([)(21-+=+++ax a x a n x ---+=ΛM MM ΛΛ00111])1([1)]()1([---+=n a x a n x(中等)13. 计算行列式的值1118101711101325--=D解: 111810171101325--=D =)1()2(1181107113521101-⨯-⨯--217155111---==21251111---=82179551111--411795511112--=179415511112---=3819415511112-=----=(难)4. 计算n阶行列式的值52...35........................52...352...35=nD解按第一行展开,得:21116552...35........................52...35...3235-----=-=nnnnnDDDD按第一列展开得到递推式:2165---=nnnDDD写作)(211232----=-nnnnDDDD,可得)(1221232DDDD nnn-=---写作)(211323----=-nnnnDDDD,可得)(1221323DDDD nnn-=---而195235,521===DD⎪⎩⎪⎨⎧=-=-∴--nnnnnnDDDD233211解之得1123++-=nnnD(中等)15. 计算n 阶行列式xyy x y x yxy x D 0 (00)...0000 00 (000) (00)00...00=的值解 按照第一列展开nn n n n n n n n y x y y x x y y x y x y y x x y x y xx D 111111111)1()1( (00)...............0...00...00...00)1( (00)...............0...000...00...0)1(+-+--+-+-+=⨯-⨯+⨯=-⨯+-⨯=(较容易)16. 问λ,μ取何值时,齐次线性方程组 1231231230020x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩有非零解?解:齐次方程组有非零解的必要条件是系数行列式等于零,故11011111111(1)012200λλμλλμλμμμλμμμ----===--即0μ=或1λ=齐次线性方程组有非零解。

相关文档
最新文档