荧光和磷光的产生过程
荧光与磷光的基本原理

荧光与磷光的基本原理荧光和磷光是物质光致发光过程中常见的两种现象。
它们可以被用来检测材料的性质、追踪物质在生物体内的分布,以及在科学研究和工业中扮演着至关重要的角色。
本文将讨论荧光和磷光的基本原理,以及它们的应用。
一、荧光的基本原理荧光是一种光致发光现象。
当某些物质被激发时,它们会吸收能量,并在吸收后发射光子。
这个过程可以被描述为:M +hυ(excited state) → M* → M + hυ(emission) 。
其中M为物质,hυ为光子,excited state和emission分别表示激发态和发射态。
荧光在荧光检测和生物学研究中被广泛使用。
它可以用于探测药物、发现病毒、细菌和细胞,以及跟踪DNA和RNA等生物大分子。
荧光还有广泛的应用,如流式细胞仪、荧光显微镜等。
二、磷光的基本原理磷光是一种光致发光现象,与荧光相似。
它的过程可以被描述为:M + hυ(excited state) → M* → M + hυ(emission) 。
在此过程中,“excited state”可以分为单重态和三重态。
单重态和三重态分别对应于分子的不同电子的自旋状态。
在很多情况下,荧光和磷光都可以同时存在。
磷光通常比荧光持久,因为在它的发生过程中,光子被释放的能量不是来自分子的振动能,而是来自分子的旋转能。
在这种情况下,分子释放出的能量被分散到周围的基体中,而不是以光子的形式释放。
因此,磷光可以从几纳秒持续到数百微秒。
三、荧光和磷光的应用荧光和磷光的应用非常广泛,从材料科学到医学和环境科学。
在材料科学中,荧光和磷光被广泛用于表面分析、光辐射测量和固体物性等方面。
在医学中,荧光和磷光能够帮助识别肿瘤和病原体,优化药物筛选和治疗方法。
在环境科学中,荧光和磷光可以用于监测水体和土壤中的有机物和无机物质的分布和迁移。
值得注意的是,荧光和磷光的应用通常需要结合化学、光学、电子学和计算机学等多个领域的知识。
例如,荧光和磷光分析需要分析样品中的存在物种和激发条件,并根据荧光和磷光的特性来选择合适的检测设备和荧光染料。
荧光和磷光

荧光和磷光荧光和磷光是一对相辅相成的光学现象。
这对现象都是由光子和原子因素造成的,荧光源可以是天然现象,也可以是人造的,而磷光则主要是人工合成的。
两种光学现象有着不同的来源和用途,但在某些方面也存在类似之处。
荧光是紫外线照射物体表面后释放的可见光,是一种自发辐射现象,可以使物体显得特别耀眼。
它的主要原理是激发态经过一段时间,从激发态向某一较低能态转变,释放出可见光。
像耀斑、流星、火星、月牙等天然现象都能够产生荧光效果,同时也可以通过有机荧光染料等进行人工合成。
此外,荧光还广泛用于衣服上的发光图案,常用的物质有荧光染料和发光粉,可以使衣服发出荧光,从而增添色彩和魅力。
磷光则是微小的化学物质由于能够激发而发出的放射性光,主要由磷原子放射出来。
它是一种计划激发态,只有在做精确控制的情况下,原子才能被激发,并发出有节律的可见光。
磷光主要用于生物学检测,如蛋白质、抗原、抗体等检测,还可以用于全息成像、光照明和能量转换等领域。
荧光和磷光的共性有:首先,它们都需要能够激发原子,以及原子经历一段时间后才能释放出特定的可见光。
其次,它们均可以适用于光学仪器和设备,提升其精度和灵敏度,帮助科学家更好地研究宇宙构成。
最后,它们都能够给人视觉上的享受,使人们觉得惊叹不已。
在总结荧光和磷光的特点之后,不难看出,它们的独特性质给科学家和大众带来令人难以置信的视觉感受,而它们的相似之处在于都是一种使得物体发出可见光的光学现象。
此外,它们也为研究宇宙的构成提供了重要的帮助,在光子学行业中发挥着重要作用。
但无论是荧光还是磷光,它们共同拥有一个重要特征,即扩大我们对宇宙的认识,引领我们进入一个更大的宇宙,探索一个新的世界。
7.1 荧光和磷光光谱的产生

发生振动弛豫的时间10 -12 s
内转换:相同多重度电子能级间的无辐射能量传递过程。
通过内转换和振动弛豫,高激发单重态的电子跃回第一激发单重态的最低振动能级
7.1 荧光和磷光光谱的产生
内转换
振动弛豫
内转换
S2
系间窜跃
S1 能
T1 T2
量
荧
磷
吸
光
外转换
光
收
S0
l1
l 2 l 2
l3
外转换:激发分子与溶剂或其它分子之间产生相互作用而转移能量的非辐射跃迁
荧光激发和发射光谱
7.1 荧光和磷光光谱的产生
Summary of the Key Points
物质吸收光后会被激发到激发态,激发态不稳定,会释放能量返回基态 若发生第一激发单重态的最低振动能级至基态的辐射跃迁,产生荧光 若发生第一激发三重态的最低振动能级至基态的辐射跃迁,产生磷光
如果某物质吸收光的波长为l 1,荧光波长为l 2,磷光波长为l 3,则三者的大小关系为 l 1<l 2<l 3
图中谱线(I)为激发光谱,谱线(II)为荧光光谱,谱线(III)为磷光光谱
7.1 荧光和磷光光谱的产生 练习2
判断题
通常情况,荧光光谱的最大发射波长随激发波长的改变而改变。 (X)
一般来说,改变激发波长,发射波长不变,因为荧光发射通常由S1最低振动能级 跃迁至基态。合成荧光材料时,一般希望激发光谱较宽,发射光谱较窄
延时荧光:某些物质的分子经系间窜跃至T1后,可能因相互碰撞或其他作用又回到S1 态 再发射荧光(T1 → S1 → S0跃迁)
7.1 荧光和磷光光谱的产生 练习1
左图为萘的荧光激发光谱,荧光发射光谱及磷光光谱,试指出对应关系。 荧光激发光谱是激发光(入射光,吸收光)的波长连续变化时,固定发射 波长,荧光强度随激发波长变化的谱图 荧光(发射)光谱指固定激发波长,荧光强度随发射波长变化得到的谱图
荧光和磷光解析

一、基本原理
(1)螯合物中配位体的发光
不少有机化合物虽然具有共轭双键,但由于不是刚性结构, 分子处于非同一平面,因而不发生荧光。若这些化合物和金 属离子形成螯合物,随着分子的刚性增强,平面结构的增大, 常会发生荧光。
如8-羟基喹啉本身有很弱的荧光,但 其金属螯合物具有很强的荧光
一、基本原理
(2)螯合物中金属离子的特征荧光 这类发光过程通常是螯合物首先通过配位体的跃迁激发, 接着配位体把能量转给金属离子,导致dd 跃迁和ff 跃迁, 最终发射的是d*d跃迁和f *f 跃迁光谱。
一、基本原理
单重态分子具有抗磁性,其激发态的平均寿命大约为10-8s, 而三重态分子具有顺磁性,其激发态的平均寿命为10-4 ~ 1s 以上(通常用S和T分别表示单重态和三重态)。
一、基本原理
1.2 激发态分子退激 辐射跃迁方式 无辐射跃迁方式
辐射跃迁主要涉及到荧光、延迟荧光或磷光的发射
无辐射跃迁则是指以热的形式辐射其多余的能量,包括振动弛 豫(VR)、内部转移(IR)、系间窜跃(IX)及外部转移 (EC)等
一、基本原理
(3)镜像规则
通常荧光发射光谱和它的吸收光谱呈镜像对称关系。
S2
S1 T1
S0
吸光1
吸光2
荧光3
一、基本原理
(3)镜像规则 通常荧光发射光谱和它的吸收光谱呈镜像对称关系。 吸收光谱是物质分子由基态激发至第一电子激发态的各振动能 级形成的。其形状决定于第一电子激发态中各 振动能级的分布 情况。
激发波长的选择与发射波长的判断
一、基本原理
2.3 荧光发射光谱的普遍特性: (1)Stokes位移 在溶液中,分子荧光的发射相对于吸收位移到较长的波长, 称为Stokes位移。这是由于受激分子通过振动弛豫而失去能 量,也由于溶液中溶剂分子与受激分子的碰撞,也会有能量 的损失。因此,在激发和发射之间产生了能量损失。
第七章 分子发光-荧光与磷光解读

激发光谱
发射光谱
l
荧光激发光谱
荧光发射光谱
200
250
300
350
400
450
蒽的激发光谱和荧光光谱
500 nm
三、荧光光谱的特征—激发光谱与发射光谱的关系
1、Stokes位移 在溶液中,分子的荧光发射波长总是比其相应的吸收(或激 发)光谱的波长长,荧光发射这种波长位移的现象称为Stokes 位移。 处于激发态的分子一方面由于振动弛豫等损失了部分能量,
T1
紫 外 可 见 吸 收 光 谱
紫 外 可 见 共 振 荧 光 S0 光 谱
S1
迟 滞 荧 光
振动弛豫: Vr 10-12sec 外 转 移:无辐射跃迁 回到基态 内 转 移:S2~S1能级 之间有重叠 系间窜跃: S2~T1能级 之间有重叠 反系间窜跃:由外部获 取能量后 T1 ~ S2
磷 光
外转移
蒽的发射光谱
蒽的三维等高线光谱图
蒽的三维等荧光强度光谱
VB1和VB2的三维荧光光谱
3.三维共振光散射光谱
ADS ATS ADS ATS RLS DS TS
RLS
DS
TS 散射片三维共振光散射光谱
固定lex=270nm
共振光散射 瑞利散射 拉曼光 二级共振光散射 三级共振光散射
500 550 600 650 700 750 800 850 900
2.电子激发态的多重度
电子激发态的多重度:M=2S+1 S为电子自旋量子数的代数和(0或1); 平行自旋比成对自旋稳定(洪特规则),三重态能级比相应单 重态能级低;
大多数有机分子的基态处于单重态;
S0→T1 禁阻跃迁;
通过其他途径进入
荧光,热激活延迟荧光,磷光机理和各自优点

荧光,热激活延迟荧光,磷光机理和各自优点荧光、热激活延迟荧光和磷光是三种不同的发光机理,它们各自具有独特的优点。
以下是对这三种机理的详细介绍:1. 荧光:定义:荧光是一种常见的发光现象,发生在某些物质吸收光能后。
当特定波长的光线照射到某些物质上时,物质内部的电子从基态跃迁至激发态,然后从激发态返回到基态,释放出光子,产生荧光。
优点:荧光材料具有高亮度、低能耗、长寿命等优点,因此在显示器、照明、生物成像等领域得到广泛应用。
此外,荧光材料还可以通过不同的颜色和标记技术进行定制,具有较高的灵活性和可调性。
2. 热激活延迟荧光:定义:热激活延迟荧光(TADF)是一种特殊的荧光现象,发生在某些具有较低的单线态和三线态能隙的有机分子中。
这些分子在受到光激发后,能够将部分激发能以热量形式散失,避免非辐射衰减,从而提高荧光量子效率。
热激活延迟荧光材料通常需要较高的温度或光照射条件才能激发,但一旦激发,它们可以持续发出亮丽的荧光。
优点:TADF材料具有高荧光量子效率、低成本、易于合成等优点。
此外,TADF材料在蓝光和绿光区域的发射光谱较窄,有利于实现高色纯度和高显色指数的照明和显示应用。
由于这些优点,TADF材料在有机电致发光器件(OLED)等领域具有广阔的应用前景。
3. 磷光:定义:磷光是一种长寿命的发光现象,发生在某些具有多重最低激发态的物质中。
当这些物质受到光激发后,电子通过不同的能级跃迁进入不同的激发态,然后通过自旋轨道耦合作用返回到基态,释放出磷光。
磷光的寿命通常较长,可以达到毫秒级别,因此可以用于时间分辨实验和生物成像等应用。
优点:磷光材料具有高亮度和长寿命等优点,因此在显示器、生物成像和传感器等领域得到广泛应用。
此外,磷光材料还可以通过不同的掺杂技术进行定制,实现高性能和多功能的应用。
由于磷光材料在长波长区域具有较强的吸收和发射能力,因此它们在红外光谱区域的应用也备受关注。
综上所述,荧光、热激活延迟荧光和磷光各自具有独特的优点,可以应用于不同的领域。
分子荧光和磷光光谱讲解ppt课件

GFP
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
Generation of Molecular Fluorescence and Phosphorescence
原理
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
荧光和磷光的产生过程
• 分子能级和跃迁
– 电子能级、振动能级和转动能级 – 基态(S0)→激发态(S1、S2、激发态振动能
级):吸收特定频率的辐射;量子化;跃迁一 次到位; – 激发态→基态:多种途径和方式(见能级图); 速度最快、激发态寿命最短的途径占优势;
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
500
nm
蒽的激发光谱和荧光光谱
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
分子产生荧光的条件
• 分子产生荧光必须具备的条件
– 具有合适的结构(强的紫外可见吸收) – 具有一定的荧光量子产率
荧光量子产率()
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
内容(contents)
• 原理
– 分子荧光与磷光产生过程 – 激发光谱与荧光光谱 – 荧光的产生与分子结构关系 – 影响荧光强度的因素
荧光和磷光的产生过程

1.荧光和磷光(de)产生过程荧光:处于基态(de)分子吸收光子能量,跃迁至电子激发态,然后通过内转换和振动弛豫回到第一激发单重态(de)最低振动能级,最后跃迁回基态时发射(de)光激发态振动弛豫内转换振动弛豫发射荧光S磷光:处于基态(de)分子吸收光子能量,跃迁至电子激发态,然后通过内转换和振动弛豫和系间窜越到了第一激发三重态,最后回到基态时发射(de)光激发态振动弛豫内转换系间跨越振动弛豫S发射荧光2.激发光谱和发射光谱概念,有何异同(1)激发光谱:固定发射光(de)波长,测量激发光(de)波长与发射光强度之间(de)关系(选择最佳激发波长)(2)发射光谱:固定激发波(de)波长,测定发射光强度与发射光波长(de)关系(选择最佳发射波长)同:都是给样品能量使之发光测量发光强度异:控制(de)变量不同.3.化合物荧光与结构(de)关系a.具有一定(de)荧光量子产率b.具有合适(de)结构如:大(de)共轭π键、刚性平面结构、最低(de)单重电子激发态为S1 为ππ型、取代基为给电子基团4.荧光量子产率、荧光猝灭、系间跨越、振动弛豫A.荧光量子产率Q:量子产率表示物质将吸收(de)光能转化为荧光(de)本领,是荧光物质发出光子数与吸收光子数(de)比值.B.荧光猝灭:指荧光物质与溶剂分子之间相互作用,导致荧光强度下降(de)现象,荧光猝灭分为静态猝灭、动态猝灭等.C.系间跨越:处于激发态分子(de)电子发生自旋反转而使分子(de)多重性发生变化(de)过程;分子由激发单重态跨越到激发三重态.D.振动弛豫:同一电子能级内异热交换形式由高振动能级至地振动能级间(de)跃迁.时间为10-12s5.实时定量PCR与普通PCR(de)区别所谓实时荧光定量PCR技术[1],是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析(de)方法.实时荧光定量PCR技术是起点检测,实现了每一轮循环均检测一次荧光信号(de)强度,并记录在之中,通过对每个Ct值(de)计算,根据获得定量结果.具有重现性,误差小(de)特点.传统PCR技术是终点检测,即PCR到达平台期后进行检测,而PCR经过扩增到达平台期时,检测重现性.同一个模板在96孔PCR仪上做96次重复实验,所得结果有很大差异,因此无法直接从终点产物量推算出起始模板量.加入内标后,可部分消除终产物定量所造成(de)不准确性.但即使如此,传统(de)定量方法也都只能算作半定量、粗略定量(de)方法.6.简述影响荧光效率(de)主要因素1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
荧光和磷光的产生过程 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】
1.荧光和磷光的产生过程
荧光:处于基态的分子吸收光子能量,跃迁至电子激发态,然后通过内转换和振动弛豫回到第一激发单重态的最低振动能级,最后跃迁回基态时发射的光
激发态振动弛豫内转换振动弛豫发射荧光S
磷光:处于基态的分子吸收光子能量,跃迁至电子激发态,然后通过内转换和振动弛豫和系间窜越到了第一激发三重态,最后回到基态时发射的光
激发态振动弛豫内转换系间跨越振动弛豫S
发射荧光
2.激发光谱和发射光谱概念,有何异同
(1)激发光谱:固定发射光的波长,测量激发光的波长与发射光强度之间的关系(选择最佳激发波长)
(2)发射光谱:固定激发波的波长,测定发射光强度与发射光波长的关系(选择最佳发射波长)
同:都是给样品能量使之发光测量发光强度
异:控制的变量不同。
3.化合物荧光与结构的关系
a.具有一定的荧光量子产率
b.具有合适的结构
如:大的共轭π键、刚性平面结构、最低的单重电子激发态为S1 为π * π型、取代基为给电子基团
4.荧光量子产率、荧光猝灭、系间跨越、振动弛豫
A.荧光量子产率Q:量子产率表示物质将吸收的光能转化为荧光的本领,是荧光物质发出光子数与吸收光子数的比值。
B.荧光猝灭:指荧光物质与溶剂分子之间相互作用,导致荧光强度下降的现象,荧光猝灭分为静态猝灭、动态猝灭等。
C.系间跨越:处于激发态分子的电子发生自旋反转而使分子的多重性发生变化的过程;分子由激发单重态跨越到激发三重态。
D.振动弛豫:同一电子能级内异热交换形式由高振动能级至地振动能级间的跃迁。
时间为10-12s
5.实时定量PCR与普通PCR的区别
所谓实时荧光定量PCR技术[1],是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。
实时荧光定量PCR技术是起点检测,实现了每一轮循环均检测一次荧光信号的强度,并记录在之中,通过对每个Ct值的计算,根据获得定量结果。
具有重现性,误差小的特点。
传统PCR技术是终点检测,即PCR到达平台期后进行检测,而PCR经过扩增到达平台期时,检测重现性。
同一个模板在96孔PCR仪上做96次重复实验,所得结果有很大差异,因此无法直接从终点产物量推算出
起始模板量。
加入内标后,可部分消除终产物定量所造成的不准确性。
但即使如此,传统的定量方法也都只能算作半定量、粗略定量的方法。
6.简述影响荧光效率的主要因素
1.。