ds18b20汇编设计报告(附电路图和程序)

合集下载

DS18B20原理及程序编写

DS18B20原理及程序编写

DS18B20原理及程序编写(一)概述DS18B20为单总线12位(二进制)温度读数。

内部有64位唯一的ID编码。

工作电压从3.0~5.5V。

测量温度范围从-55℃~125℃。

最高±0.0625℃分辩率。

其内部结构如下图所示。

DS18B20的核心功能是直接数字温度传感器。

温度传感器可以配置成9、10、11和12位方式。

相应的精度分别为:0.5℃、0.25℃、0.125℃和0.0625℃。

默认的分辨率为12位。

DS18B20在空闲低功耗状态下加电(寄生电源工作方式)。

主机必须发出Convert T [44h]命令使其对测量温度进行A-D转换。

接下来进行采集转换,结果存于两字节高速温度寄存器并返回到空闲低功耗状态。

如果DS18B20在外部VDD供电方式下,单片机可以在发出Convert T 命令并总线为1时(总线为0表示正在转换)发出“read time slots”命令。

DS18B20芯片内部共有8字节的寄存器,其中地址编号0,1为温度寄存器,里面存储着DS18B20温度转换后的AD值,其格式如表1所示。

地址编号2,3为温度报警寄存器,里面为报警设定值,地址编号4为配置寄存器(这三个寄存器在读取之前请使用“重新调入EEPROM”命令将存储在EEPROM里的内容调出,同样,在向温度报警寄存器里写入内容后,也要使用“复制到存储器”命令48H将温度报警寄存器内的内容存入EEPROM当中,以免掉电丢失数据)。

DS18B20内部寄存器映射如下图所示。

配置寄存器的格式如表2和表3所示。

DS18B20内部寄存器映射表1 温度寄存器的格式表2 配置寄存器的格式表3 温度分辨率配置DS18B20使用单总线工作方式,其通信协议以电平的高平时间作为依据,其基本时序有复位时序,写时序、读时序。

//********************************************************************** //** 文件名:DS18B20.c//** 说明:DS18B20驱动程序文件//----------------------------------------------------------------------//** 单位://** 创建人:张雅//** 创建时间:2010-01-20//** 联系方式:QQ:276564402//** 版本:V1.0//----------------------------------------------------------------------//**********************************************************************//----------------------------------------------------------------------//** 芯片:AT89S52//** 时钟:11.0592MHz//** 其它:这个文档为18B20的驱动程序,引用了数码管的驱动。

DS18B20单片机数码管显示原理图和程序

DS18B20单片机数码管显示原理图和程序

最近天气热了,想要是做个能显示温度的小设备就好了,于是想到DIY个电子温度计,网上找了很多资料,结合自己的材料,设计了这个用单片机控制的实时电子温度计。

作为单片机小虾的我做这个用了2天时间,当然是下班后,做工不行见谅了。

主要元件用到了单片机STC89C54RD+,DB18B20温度传感器,4为共阳数码管,PNPS8550三极管等。

先上原理图:洞洞板布局图:然后就是实物图了:附上源程序:程序是别人写的,我只是自己修改了下,先谢谢原程序者的无私奉献。

#include"reg52.h"#define uchar unsigned char#define uint unsigned intsbit DQ=P3^4; //温度数据口sbit wx1=P2^0; //位选1sbit wx2=P2^1; //位选2sbit wx3=P2^2; //位选3sbit wx4=P2^3; //位选4unsigned int temp, temp1,temp2, xs;uchar code table[]={0xc0,0xf9,0xa4,0xb0,0x99, //共阳数码管0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6};/******延时程序*******/void delay1(unsigned int m){unsigned int i,j;for(i=m;i>0;i--)for(j=110;j>0;j--);}void delay(unsigned int m) //温度延时程序{while(m--);}void Init_DS18B20(){unsigned char x=0;DQ = 1; //DQ复位ds18b20通信端口delay(8); //稍做延时DQ = 0; //单片机将DQ拉低delay(80); //精确延时大于480usDQ = 1; //拉高总线delay(4);x=DQ; //稍做延时后如果x=0那么初始化成功x=1那么初始化失败delay(20);}/***********ds18b20读一个字节**************/uchar ReadOneChar(){unsigned char i=0;unsigned char dat = 0;for (i=8;i>0;i--){DQ = 0; // 高电平拉成低电平时读周期开始dat>>=1;DQ = 1; // 给脉冲信号if(DQ)dat|=0x80; //delay(4);}return(dat);}/*************ds18b20写一个字节****************/void WriteOneChar(unsigned char dat){unsigned char i=0;for (i=8; i>0; i--){DQ = 0; //从高电平拉至低电平时,写周期的开始DQ = dat&0x01; //数据的最低位先写入delay(5); //60us到120us延时DQ = 1;dat>>=1; //从最低位到最高位传入}}/**************读取ds18b20当前温度************/void ReadTemperature(){unsigned char a=0;unsigned b=0;unsigned t=0;Init_DS18B20();WriteOneChar(0xCC); // 跳过读序号列号的操作/WriteOneChar(0x44); // 启动温度转换delay(5); // this message is wery importantInit_DS18B20();WriteOneChar(0xCC); //跳过读序号列号的操作WriteOneChar(0xBE); //读取温度存放器等〔共可读9个存放器〕前两个就是温度/ delay(5);a=ReadOneChar(); //读取温度值低位/b=ReadOneChar(); //读取温度值高位/temp1=b<<4; //高8位中后三位数的值temp1+=(a&0xf0)>>4; //低8位中的高4位值加上高8位中后三位数的值temp1室温整数值temp2=a&0x0f; //小数的值temp=((b*256+a)>>4); //当前采集温度值除16得实际温度值zhenshuxs=temp2*0.0625*10; //小数位,假设为0.5那么算为5来显示xs小数xiaoshu }void wenduxianshi(){wx1=0;P0=table[temp/10]; //显示百位delay1(5);wx1=1;wx2=0;P0=table[temp%10]+0x80; //显示十位加上0x80就显示小数点了。

DS18B20温度传感器设计原理图及c程序代码

DS18B20温度传感器设计原理图及c程序代码

/*******************代码部分**********************//*************** writer:shopping.w ******************/ #include <reg52.h>#include <intrins.h>#define uint unsigned int#define uchar unsigned char#define delayNOP() {_nop_();_nop_();_nop_();_nop_();}sbit DQ = P3^3;sbit LCD_RS = P2^0;sbit LCD_RW = P2^1;sbit LCD_EN = P2^2;uchar code Temp_Disp_Title[]={"Current Temp : "};uchar Current_Temp_Display_Buffer[]={" TEMP: "};uchar code Temperature_Char[8] ={0x0c,0x12,0x12,0x0c,0x00,0x00,0x00,0x00};uchar code df_Table[]=0,1,1,2,3,3,4,4,5,6,6,7,8,8,9,9};uchar CurrentT = 0;uchar Temp_Value[]={0x00,0x00}; uchar Display_Digit[]={0,0,0,0};bit DS18B20_IS_OK = 1;void DelayXus(uint x){uchar i;while(x--){for(i=0;i<200;i++);}}bit LCD_Busy_Check(){bit result;LCD_RS = 0;LCD_RW = 1;LCD_EN = 1;delayNOP();result = (bit)(P0&0x80);LCD_EN=0;return result;}void Write_LCD_Command(uchar cmd) {while(LCD_Busy_Check());LCD_RS = 0;LCD_RW = 0;LCD_EN = 0;_nop_();_nop_();P0 = cmd;delayNOP();LCD_EN = 1;delayNOP();LCD_EN = 0;}void Write_LCD_Data(uchar dat){while(LCD_Busy_Check());LCD_RS = 1;LCD_RW = 0;LCD_EN = 0;P0 = dat;delayNOP();LCD_EN = 1;delayNOP();LCD_EN = 0;}void LCD_Initialise(){Write_LCD_Command(0x01);DelayXus(5);Write_LCD_Command(0x38);DelayXus(5);Write_LCD_Command(0x0c);DelayXus(5);Write_LCD_Command(0x06);DelayXus(5);}void Set_LCD_POS(uchar pos){Write_LCD_Command(pos|0x80); }void Delay(uint x){while(--x);}uchar Init_DS18B20(){uchar status;DQ = 1;Delay(8);DQ = 0;Delay(90);DQ = 1;Delay(8);DQ = 1;return status;}uchar ReadOneByte(){uchar i,dat=0;DQ = 1;_nop_();for(i=0;i<8;i++){DQ = 0;dat >>= 1;DQ = 1;_nop_();_nop_();if(DQ)dat |= 0X80;Delay(30);DQ = 1;}return dat;}void WriteOneByte(uchar dat) {uchar i;for(i=0;i<8;i++){DQ = 0;DQ = dat& 0x01;Delay(5);DQ = 1;dat >>= 1;}}void Read_Temperature(){if(Init_DS18B20()==1)DS18B20_IS_OK=0;else{WriteOneByte(0xcc);WriteOneByte(0x44);Init_DS18B20();WriteOneByte(0xcc);WriteOneByte(0xbe);Temp_Value[0] = ReadOneByte();Temp_Value[1] = ReadOneByte();DS18B20_IS_OK=1;}}void Display_Temperature(){uchar i;uchar t = 150, ng = 0;if((Temp_Value[1]&0xf8)==0xf8){Temp_Value[1] = ~Temp_Value[1];Temp_Value[0] = ~Temp_Value[0]+1;if(Temp_Value[0]==0x00)Temp_Value[1]++;ng = 1;}Display_Digit[0] = df_Table[Temp_Value[0]&0x0f];CurrentT = ((Temp_Value[0]&0xf0)>>4) | ((Temp_Value[1]&0x07)<<4);Display_Digit[3] = CurrentT/100;Display_Digit[2] = CurrentT%100/10;Display_Digit[1] = CurrentT%10;Current_Temp_Display_Buffer[11] = Display_Digit[0] + '0';Current_Temp_Display_Buffer[10] = '.';Current_Temp_Display_Buffer[9] = Display_Digit[1] + '0';Current_Temp_Display_Buffer[8] = Display_Digit[2] + '0';Current_Temp_Display_Buffer[7] = Display_Digit[3] + '0';if(Display_Digit[3] == 0)Current_Temp_Display_Buffer[7] = ' ';if(Display_Digit[2] == 0&&Display_Digit[3]==0)Current_Temp_Display_Buffer[8] = ' ';if(ng){if(Current_Temp_Display_Buffer[8] == ' ')Current_Temp_Display_Buffer[8] = '-';else if(Current_Temp_Display_Buffer[7] == ' ')Current_Temp_Display_Buffer[7] = '-';elseCurrent_Temp_Display_Buffer[6] = '-';}Set_LCD_POS(0x00);for(i=0;i<16;i++){Write_LCD_Data(Temp_Disp_Title[i]);}Set_LCD_POS(0x40);for(i=0;i<16;i++){Write_LCD_Data(Current_Temp_Display_Buffer[i]);}Set_LCD_POS(0x4d);Write_LCD_Data(0x00);Set_LCD_POS(0x4e);Write_LCD_Data('C');}void main(){LCD_Initialise();Read_Temperature();Delay(50000);Delay(50000);while(1){Read_Temperature();if(DS18B20_IS_OK)Display_Temperature();DelayXus(100);}}。

DS18B20的报告(附带程序)..

DS18B20的报告(附带程序)..

DS18B20温度传感器数字温度传感器DS18B20是由Dallas半导体公司生产的,它具有耐磨耐碰,体积小,使用方便,封装形式多样(如图1.1.1),适用于各种狭小空间设备数字测温和控制领域。

图1.1.1引脚说明:GND为接地引脚;DQ为数据输入输出脚。

用于单线操作,漏极开路;VCC接电源正;单总线通常要求接一个约4.7K左右的上拉电阻,这样,当总线空闲时,其状态为高电平。

如图1.1.2是温度传感器DS18B20的接线图图1.1.2温度传感器DS18B20的参数:●适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电●温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃●可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温●在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快●被测温度用符号扩展的16位数字量方式串行输出●有两种供电方式既可以直接加 3.0~5.5V的电源,也可以采用寄生电源方式由数据线供电DS18B20内部结构及功能:DS18B20的内部结构如图1.1.3所示。

主要包括:寄生电源,温度传感器,64位ROM和单总线接口,存放中间数据的高速暂存器RAM,用于存储用户设定温度上下限值的TH和TL触发器,存储与控制逻辑,8位循环冗余校验码(CRC)发生器等7部分。

开始8位是产品类型的编号,接着共有48 位是DS18B20 唯一的序列号。

最后8位是前面56 位的CRC 检验码,这也是多个DS18B20 可以采用一线进行通信的原因。

高速暂存存储器:高速暂存存储器由9个字节组成,其分配如图所示。

高速暂存存储器字节0~1 温度寄存器当DS18B20接收到温度转换命令后,开始启动转换。

转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1,2字节。

DS18B20汇编程序(完整版)

DS18B20汇编程序(完整版)

DS18B20汇编程序;实验目的:熟悉DS18B20的使用;六位数码管显示温度结果,其中整数部分2位,小数部分4位;每次按下RB0键后进行一次温度转换。

;硬件要求:把DS18B20插在18B20插座上; 拨码开关S10第1位置ON,其他位置OFF; 拨码开关S5、S6全部置ON,其他拨码开关全部置OFF;*****************以下是暂存器的定义*****************************#INCLUDE<P16F877A.INC>#DEFINE DQ PORTA,0 ;18B20数据口__CONFIG_DEBUG_OFF&_CP_ALL&_WRT_HALF&_CPD_ON&_LVP_OFF&_BODEN_OFF&_PWRTE_ON&_WDT_OFF&_HS _OSCCBLOCK 20HDQ_DELAY1DQ_DELAY2TEMPTEMP1TEMP2 ;存放采样到的温度值TEMP3COUNTCOUNT1ENDCTMR0_VALUE EQU 0AH ;寄存器初值为6,预分频比1:4,中断一次时间为4*(256-6)=1000usDQ_DELAY_VALUE1 EQU 0FAHDQ_DELAY_VALUE2 EQU 4H;**********************以下是程序的开始************************ ORG 00HNOPGOTO MAIN ;入口地址ORG 04HRETFIE ;在中断入口出放置一条中断返回指令,防止干扰产生中断TABLEADDWF PCL,1RETLW 0C0H ;0的编码(公阳极数码管)RETLW 0F9H ;1的编码RETLW 0A4H ;2的编码RETLW 0B0H ;3的编码RETLW 99H ;4的编码RETLW 92H ;5的编码RETLW 082H ;6RETLW 0F8H ;7RETLW 080H ;8RETLW 090H ;9;***************************主程序******************************* MAINCLRF PORTACLRF PORTBBANKSEL TRISACLRF TRISA ;A口所有先设置为输出CLRF TRISDMOVLW 01HMOVWF TRISB ;B0口为输入,其他为输出MOVLW 06HMOVWF ADCON1 ;关闭所有A/D口MOVLW 01HMOVWF OPTION_REG ;分频比1:4,定时器,内部时钟源BCF STATUS,RP0CLRF TEMPCLRF TEMP1CLRF TEMP2 ;清零临时寄存器MOVLW 8HMOVWF COUNTMOVLW 38HMOVWF FSRCLRF INDFINCF FSR,1DECFSZ COUNT,1GOTO $-3;****************************循环处理部分************************;先启动18B20温度转换程序,在判断温度转换是否完成(需750us);未完成则调用显示子程序,直到完成温度转换;完成后读取温度值;送LCD显示LOOPBTFSC PORTB,0 ;判断温度转换按键是否按下GOTO LOOP1 ;否,转显示CALL DELAY ;消抖BTFSC PORTB,0 ;再次判断GOTO LOOP1CALL RESET_18B20 ;调用复位18B20子程序MOVLW 0CCHMOVWF TEMPCALL WRITE_18B20 ;SKIP ROM命令MOVLW 44HMOVWF TEMPCALL WRITE_18B20 ;温度转换命令CLRF STATUSCALL DELAY_750MS ;调用温度转换所需要的750MS延时NOPCALL RESET_18B20MOVLW 0CCHMOVWF TEMPCALL WRITE_18B20 ;SKIP ROM命令MOVLW 0BEHMOVWF TEMPCALL WRITE_18B20 ;读温度命令CALL READ_18B20 ;调用读温度低字节MOVFW TEMPMOVWF TEMP1 ;保存到TEMP1CALL READ_18B20 ;调用读温度高字节MOVFW TEMPMOVWF TEMP2 ;保存到TMEP2CALL RESET_18B20LOOP1CALL TEMP_CHANGE ;调用温度转换程序CALL DISPLAY ;调用LCD显示程序GOTO LOOP ;循环工作;*********************复位DS18B20子程序************************** RESET_18B20;根据DATASHEET介绍,写数据时应遵照如下规定:;主控制器把总线拉低至少480us,;18B20等待15-60us后,把总线拉低做为返回给控制器的应答信号BANKSEL TRISABCF TRISA,0BCF STATUS,RP0BCF DQMOVLW 0A0HMOVWF COUNT ;160USDECFSZ COUNT,1GOTO $-1 ;拉低480usBSF DQ ;释放总线MOVLW 14HMOVWF COUNTDECFSZ COUNT,1GOTO $-1 ;等待60usBANKSEL TRISABSF TRISA,0 ;DQ设置为输入BCF STATUS,RP0BTFSC DQ ;数据线是否为低GOTO RESET_18B20 ;否则继续复位MOVLW 4HMOVWF COUNTDECFSZ COUNT,1 ;延时一段时间后再次判断GOTO $-1BTFSC DQGOTO RESET_18B20MOVLW 4BHMOVWF COUNTDECFSZ COUNT,1GOTO $-1BANKSEL TRISABCF TRISA,0 ;DQ设置为输出BCF STATUS,RP0RETURN;*********************写DS18B20子程序**************************** WRITE_18B20;根据DATASHEET介绍,写数据时应遵照如下规定:;写数据0时,主控制器把总线拉低至少60us;写数据1时,主控制器把总线拉低,但必须在15us内释放MOVLW 8HMOVWF COUNT ;8位数据BANKSEL TRISABCF TRISA,0BCF STATUS,RP0BCF STATUS,CWRITE_18B20_1BSF DQ ;先保持DQ为高MOVLW 5HMOVWF COUNT1BCF DQ ;拉低DQ15usDECFSZ COUNT1,1GOTO $-1RRF TEMP,1BTFSS STATUS,C ;判断写的数据为0还是1GOTO WRITE_0BSF DQ ;为1,立即拉高数据线GOTO WRITE_ENDWRITE_0BCF DQ ;继续保持数据线为低WRITE_ENDMOVLW 0FHMOVWF COUNT1 ;保持45msDECFSZ COUNT1,1GOTO $-1BSF DQ ;释放总线DECFSZ COUNT,1 ;是否写完8位数据GOTO WRITE_18B20_1RETURN;**********************读DS18B20子程序**************************** READ_18B20;根据DATASHEET介绍,读数据时应遵照如下规定:;读数据0时,主控制器把总线拉低后,18B20再把总线拉低60us;读数据1时,主控制器把总线拉低后,保持总线状态不变;主控制器在数据线拉低后15us内读区数据线上的状态。

DS18B20数字温度计设计实验报告(1)【范本模板】

DS18B20数字温度计设计实验报告(1)【范本模板】

单片机原理及应用课程设计报告书题目:DS18B20数字温度计姓名: 李成学号:133010220指导老师:周灵彬设计时间: 2015年1月目录1. 引言 (3)1。

1.设计意义31.2。

系统功能要求32。

方案设计 (4)3. 硬件设计 (4)4. 软件设计 (8)5。

系统调试106. 设计总结 (11)7. 附录 (12)8. 参考文献 (15)DS18B20数字温度计设计1.引言1.1. 设计意义在日常生活及工农业生产中,经常要用到温度的检测及控制,传统的测温元件有热电偶和热电阻。

而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,需要比较多的外部硬件支持。

其缺点如下:●硬件电路复杂;●软件调试复杂;●制作成本高.本数字温度计设计采用美国DALLAS半导体公司继DS1820之后推出的一种改进型智能温度传感器DS18B20作为检测元件,测温范围为—55~125℃,最高分辨率可达0。

0625℃。

DS18B20可以直接读出被测温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的热点。

1.2. 系统功能要求设计出的DS18B20数字温度计测温范围在0~125℃,误差在±1℃以内,采用LED数码管直接读显示.2. 方案设计按照系统设计功能的要求,确定系统由3个模块组成:主控制器、测温电路和显示电路.数字温度计总体电路结构框图如4。

1图所示:图4.13。

硬件设计温度计电路设计原理图如下图所示,控制器使用单片机AT89C2051,温度传感器使用DS18B20,使用四位共阳LED 数码管以动态扫描法实现温度显示。

AT89C51 主 控制器 DS18B20 显示电路 扫描驱动主控制器单片机AT89C51具有低电压供电和小体积等特点,两个端口刚好满足电路系统的设计需要,很适合便携手持式产品的设计使用.系统可用两节电池供电。

AT89C51的引脚图如右图所示:VCC:供电电压。

单片机DS18B20数字温度计课程设计报告

单片机DS18B20数字温度计课程设计报告

通信工程学院课程设计任务书题目DS18B20数字温度计设计课程名称单片机原理及应用B专业班级学生姓名学号设计地点指导教师设计起止时间:年月日至年月日目录一、绪论 (2)1.1 设计目的 (2)1.2设计内容 (2)1.3设计要求 (2)二、基本设计 (3)2.1 基本思路 (3)2.2系统设计原理…………………………………………………………………………….,32.3系统组成 (3)三、系统硬件设计 (6)3.1系统电路接线图 (6)3.2 主系统 (6)3.3 显示电路LM016L (9)3.4 蜂鸣器报警 (10)3.5 DS18B20传感器 (10)四、系统软件设计 (14)4.1具体步骤和设计内容 (14)4.1程序流程图................................................................................................. ..1234.2源程序清单.................................................................................................... 16.五、结果验证5.1测试结果 (23)5.2仿真结果 (23)六、学习小结错误!未定义书签。

、参考文献……………………………………………………………绪论1.1 设计目的1.掌握单总线协议的基本特点及通信过程;2. 掌握数字温度传感器DS18B20的基本特点及单总线控制协议;3. 掌握单片机IO端口模拟单总线时序控制程序的编写方法;4.掌握LCD液晶显示器的显示驱动方法。

1.2设计内容(1)基本内容:在nKDE51单片机实验教学系统上,利用DS18B20数字温度传感器连续测试环境温度,对测试数据进行处理计算,在RT-1602字符点阵LCD上实时显示环境温度值;(2)附加内容:实现环境温度越限告警功能。

DS18B20介绍、流程图和程序源代码

DS18B20介绍、流程图和程序源代码

DS18B20单线数字温度传感器DALLAS半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器,体积更小、适用电压更宽、更经济。

一线总线独特而且经济的特点,使用户可轻松地组建温度传感器网络,为测量系统的构建引入全新概念。

DS18B20、DS1822 “一线总线”数字化温度传感器同DS1820一样,支持“一线总线”接口,测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C,而DS1822的精度较差为± 2°C 。

现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性,适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。

DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C,分辨率设定,以及用户设定的报警温度存储在EEPROM中,掉电后依然保存。

DS1822与DS18B20软件兼容,是DS18B20的简化版本。

省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。

继“一线总线”的早期产品后,DS1820开辟了温度传感器技术的新概念。

DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。

1、 DS18B20性能特点DS18B20的性能特点:①采用单总线专用技术,既可通过串行口线,也可通过其它I/O口线与微机接口,无须经过其它变换电路,直接输出被测温度值(9位二进制数,含符号位),②测温范围为-55℃-+125℃,测量分辨率为0.0625℃,③内含64位经过激光修正的只读存储器ROM,④适配各种单片机或系统机,⑤用户可分别设定各路温度的上、下限,⑥内含寄生电源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于AT89C51单片机和DS18B20的数字温度计1课题说明随着现代信息技术的飞速发展和传统工业改造的逐步实现,能够独立工作的温度检测和显示系统应用于诸多领域。

传统的温度检测以热敏电阻为温度敏感元件。

热敏电阻的成本低,但需后续信号处理电路,而且可靠性相对较差,测温准确度低,检测系统也有一定的误差。

这里设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。

本设计选用AT89C51型单片机作为主控制器件,DS18B20作为测温传感器,通过LCD1602实现温度显示。

通过DS18B20直接读取被测温度值,进行数据转换,该器件的物理化学性能稳定,线性度较好,在0℃~100℃最大线性偏差小于0.01℃。

该器件可直接向单片机传输数字信号,便于单片机处理及控制。

另外,该温度计还能直接采用测温器件测量温度,从而简化数据传输与处理过程。

2 实现方法采用数字温度芯片DS18B20 测量温度,输出信号全数字化。

采用了单总线的数据传输,由数字温度计DS18B20和AT89C51单片机构成的温度测量装置,它直接输出温度的数字信号,也可直接与计算机连接。

采用AT89C51单片机控制,软件编程的自由度大,可通过编程实现各种各样的算术算法和逻辑控制,而且体积小,硬件实现简单,安装方便。

该系统利用AT89S51芯片控制温度传感器DS18B20进行实时温度检测并显示,能够实现快速测量环境温度,并可以根据需要设定上下限温度。

该系统扩展性非常强。

该测温系统电路简单、精确度较高、实现方便、软件设计也比较简单。

系统框图如图1所示。

图1 DS18B20温度测温系统框图3 硬件设计3.1 单片机最小系统设计3.1.1 电源电路VCC图2 电源电路3.1.2 振荡电路与复位电路图3 振荡电路图4 复位电路3.2 DS18B20与单片机的接口电路图5 DS18B20与单片机的接口电路3.3 PROTEUS仿真电路图图6 PROTEUS仿真电路图4 软件设计系统程序主要包括主程序、读取温度子程序、数据转换子程序、显示数据子程序等。

4.1 程序流程4.1.1 主程序流程图主程序的主要功能是负责温度的实时显示、读出并处理DS18B20的测量的当前温度值,温度测量每1s进行一次。

这样可以在一秒之内测量一次被测温度,其程序流程见图7所示。

图7 主程序流程图4.1.2 各子程序流程图1、初始化程序所有操作都必须由初始化脉冲开始,波形如图,单片机先输出一个480~960us低电平到DQ引脚,再将DQ引脚置高电平,过15~60us后检测DQ引脚状态,若为低电平则DS18B20工作正常,否则初始化失败,不能正常测量温度。

2、读取温度子程序读取温度子程序的主要功能是读出RAM中的9字节,在读出时需进行CRC校验,校验有错时不进行温度数据的改写。

主要包括以下三个命令:(1)写暂存器命令【4EH】这个命令为由TH寄存器开始向DS18B20暂存器写入数据,4EH命令后的3字节数据将被保存到暂存器的地址2、3、4(TH、TL、CONFIG)三个字节。

所有数据必须在复位脉冲前写完。

即如果只想写一个字节的数据到地址2,可按如下流程:1、初始化;2、写0CCH,跳过ROM检测;3、写4EH;4、写1字节数据;5、复位,即向DQ输出480~960us低电平(2)读暂存命令【BEH】这个命令由字节0读取9个暂存器内容,如果不需要读取所有暂存内容,可随时输出复位脉冲终止读取过程(3)转换温度命令【44H】这个命令启动温度转换过程。

转换温度时DS18B20保持空闲状态,此时如果单片机发出读命令, DS18B20将输出0直到转换完成,转换完成后将输出1。

图8 读取温度子程序3、写流程图写时隙:写时隙由DQ引脚的下降沿引起。

18B20有写1和写0两种写时隙。

所有写时隙必须持续至少60μs,两个时隙之间至少有1μs的恢复时间。

DS18B20在DQ下降沿后15μs~60μs间采样DQ引脚,若此时DQ为高电平,则写入一位1,若此时DQ为低电平,则写入一位0,如图9所示。

所以,若想写入1,则单片机应先将DQ置低电平,15us后再将DQ置高电平,持续45μs;若要写入0,则将DQ置低电平,持续60μs。

图9 写流程图4、读流程图读时隙:读时隙由DQ下降沿引起,持续至少1μs的低电平后释放总线(DQ置1)DS18B20的输出数据将在下降沿15μs后输出,此时单片机可读取1位数据。

读时隙结束时要将DQ置1。

所有读时隙必须持续至少60μs,两个时隙之间至少有1μs的恢复时间。

图10 读流程图4.4 汇编语言程序源代码DATA_BUS BIT P3.3FLAG BIT 00HTEMP_L EQU 30H TEMP_H EQU 31H TEMP_DP EQU 32H TEMP_INT EQU 33H TEMP_BAI EQU 34H TEMP_SHI EQU 35H TEMP_GE EQU 36H DIS_BAI EQU 37H DIS_SHI EQU 38H DIS_GE EQU 39H DIS_DP EQU 3AH DIS_ADD EQU 3BHORG 0000HAJMP STARTORG 0050H START:MOV SP, #40HMAIN: LCALL READ_TEMP LCALL PROCESSAJMP MAIN;读温度程序READ_TEMP:LCALL RESET_PULSEMOV A, #0CCHLCALL WRITEMOV A, #44HLCALL WRITELCALL DISPLAYLCALL RESET_PULSEMOV A, #0CCHLCALL WRITEMOV A, #0BEHLCALL WRITELCALL READRET;复位脉冲程序RESET_PULSE:RESET: SETB DATA_BUSNOPNOPCLR DATA_BUSMOV R7, #255DJNZ R7, $SETB DATA_BUSMOV R7, #30DJNZ R7,$JNB DATA_BUS, SETB_FLAG CLR FLAGAJMP NEXTSETB_FLAG:SETB FLAGNEXT: MOV R7, #120DJNZ R7, $SETB DATA_BUSJNB FLAG, RESETRET;写命令WRITE: S ETB DATA_BUSMOV R6, #8CLR CWRITING:CLR DATA_BUSMOV R7, #5DJNZ R7, $RRC AMOV DATA_BUS, CMOV R7, #30HDJNZ R7, $SETB DATA_BUSNOPDJNZ R6, WRITINGRET;循环显示段位DISPLAY:MOV R4, #200DIS_LOOP:MOV A, DIS_DPMOV P2, #0FFHMOV P0, ACLR P2.7LCALL DELAY2MSMOV A, DIS_GEMOV P2, #0FFHMOV P0, ASETB P0.7CLR P2.6LCALL DELAY2MSMOV A, DIS_SHIMOV P2, #0FFHMOV P0, ACLR P2.5LCALL DELAY2MSMOV A, DIS_BAIMOV P2, #0FFHMOV P0, AMOV A, TEMP_BAICJNE A, #0,SKIPAJMP NEXTT SKIP: CLR P2.4LCALL DELAY2MSNEXTT: NOPDJNZ R4, DIS_LOOPRET;读命令READ: SETB DATA_BUS MOV R0, #TEMP_LMOV R6, #8MOV R5, #2CLR C READING:CLR DATA_BUSNOPNOPSETB DATA_BUSNOPNOPNOPNOPMOV C, DATA_BUSRRC AMOV R7, #30HDJNZ R7, $SETB DATA_BUSDJNZ R6, READINGMOV @R0, AINC R0MOV R6, #8SETB DATA_BUSDJNZ R5, READINGRET;数据处理PROCESS:MOV R7, TEMP_LMOV A, #0FHANL A, R7MOV TEMP_DP,AMOV R7, TEMP_LMOV A, #0F0HANL A, R7SWAP AMOV TEMP_L, AMOV R7, TEMP_HMOV A, #0FHANL A, R7SWAP AORL A, TEMP_LMOV B, #64HDIV ABMOV TEMP_BAI,AMOV A, #0AHXCH A, BDIV ABMOV TEMP_SHI,AMOV TEMP_GE,BMOV A, TEMP_DP MOV DPTR, #TABLE_DPMOVC A, @A+DPTRMOV DPTR, #TABLE_INTER MOVC A, @A+DPTR MOV DIS_DP, AMOV A, TEMP_GEMOV DPTR, #TABLE_INTER MOVC A, @A+DPTRMOV DIS_GE, AMOV A, TEMP_SHIMOV DPTR, #TABLE_INTER MOVC A, @A+DPTRMOV DIS_SHI, AMOV A, TEMP_BAIMOV DPTR, #TABLE_INTER MOVC A, @A+DPTRMOV DIS_BAI ,ARET DELAY2MS:MOV R6, #3LOOP3: MOV R5, #250DJNZ R5, $DJNZ R6, LOOP3RETTABLE_DP:DB00H,01H,01H,02H,03H,03H,04H,04H,05 H,06HDB 06H,07H,08H,08H,09H,09HTABLE_INTER:DB 03FH,006H,05BH,04FH,066HDB 06DH,07DH,07H,07FH,06FHEND5 DS18B20简单介绍DALLAS 最新单线数字温度传感器DS18B20是一种新型的“一线器件”,其体积更小、更适用于多种场合、且适用电压更宽、更经济。

DALLAS 半导体公司的数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器。

温度测量范围为-55~+125 摄氏度,可编程为9位~12 位转换精度,测温分辨率可达0.0625摄氏度,分辨率设定参数以及用户设定的报警温度存储在EEPROM 中,掉电后依然保存。

被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可以在远端引入,也可以采用寄生电源方式产生;多个DS18B20可以并联到3 根或2 根线上,CPU只需一根端口线就能与诸多DS18B20 通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。

相关文档
最新文档