kmeans 算法

合集下载

k-means算法

k-means算法

k-means算法k-means算法是无监督学习领域最为经典的算法之一。

接触聚类算法,首先需要了解k-means算法的实现原理和步骤。

本文将对k-means算法的基本原理和实现实例进行分析。

希望对喜欢机器学习的童鞋们,有一定的帮助和启发。

首先看看wiki上对k-means算法的基本阐述。

k-means clustering is a method of vectorquantization, originally from signalprocessing, that is popular for clusteranalysis in data mining. k-means clusteringaims to partition n observations into kclusters in which each observation belongs tothe cluster with the nearest mean, serving asa prototype of the cluster.可以看出,k-means算法就是将 n 个数据点进行聚类分析,得到 k 个聚类,使得每个数据点到聚类中心的距离最小。

而实际上,这个问题往往是NP-hard的,以此有许多启发式的方法求解,从而避开局部最小值。

值得注意的是,k-means算法往往容易和k-nearest neighbor classifier(k-NN)算法混淆。

后者是有监督学习的分类(回归)算法,主要是用来判定数据点属于哪个类别中心的。

A simple example for k-means clusteringk-means算法有很多应用:•图像分割(Image Segmentation)•基因分割数据聚类分析(Clustering GeneSegementation Data)•新闻聚类分析(News Article Clustering)•语言聚类分析(Clustering Languages)•物种分析(Species Clustering)•异常检测(Anomaly Detection)•\cdots数学描述给定数据集 X=\{x^{(1)},x^{(2)},\cdots,x^{(n)}\} ,其中每个数据样本 x^{(i)}\in \mathbb{R}^d . k-mean算法旨在将 n 个数据点划分为 k(k\leq n) 个聚类集合\bm{S}=\{S_1,S_2,\cdots,S_k\} ,使得每个聚类集合中的样本点与聚类中心的距离平方和最小(WCSS, within-cluster sum of squares),i.e. 方差最小。

k-means算法步骤及原理

k-means算法步骤及原理

k-means算法是一种基础的聚类算法,其原理和步骤如下:
原理:
k-means算法的主要目标是将n个数据点划分为k个簇,并使每个数据点与所属簇的中心点(即质心)的距离最小化。

其基本思路为先随机选择k个质心,然后迭代地执行以下两个步骤:
1. 簇分配:对于每个数据点,计算其与k个质心的距离,将其分配到距离最近的簇;
2. 更新质心:对于每个簇,计算其中所有数据点的均值,将其作为新的质心。

重复执行以上两个步骤,直到簇不再发生变化或达到最大迭代次数。

最终的簇划分结果即为算法的输出。

步骤:
1. 选择簇数k和数据集;
2. 初始化k个质心,可以随机选择或手动指定;
3. 对于每个数据点,计算其与k个质心的距离,将其分配到距离最近的簇;
4. 对于每个簇,重新计算质心,即将所有数据点的坐标求平均值;
5. 重复执行第3和第4步,直到簇不再发生变化或达到最大迭代次数;
6. 输出簇划分结果。

需要注意的是,k-means算法的结果可能会受到初始质心的影响。

因此,为了得到更好的结果,可以多次运行算法并选择最佳的簇划分结果。

同时,k-means算法要求数据点之间的距离可计算,因此对于某些非欧式距离的情况,需要进行适当的转换或修改算法。

kmeans聚类算法原理与步骤

kmeans聚类算法原理与步骤

kmeans聚类算法原理与步骤K-means聚类算法原理与步骤K-means聚类算法是一种常用的无监督学习算法,用于将数据集划分成不同的类别。

该算法的原理和步骤如下:一、算法原理1. 初始化:选择K个初始的聚类中心点,可以是随机选择或者根据领域知识进行选择。

2. 数据分配:根据欧氏距离等度量方式,将每个样本点分配到与其最近的聚类中心点所代表的类别。

3. 聚类中心更新:根据当前分配的聚类结果,重新计算每个类别的聚类中心点。

4. 重复步骤2和步骤3,直到聚类中心点不再发生变化或达到预设的迭代次数。

5. 输出最终的聚类结果。

二、算法步骤1. 选择聚类的数量K:根据问题的具体要求和领域知识,确定聚类的数量K。

2. 初始化聚类中心点:从数据集中随机选择K个样本点作为初始的聚类中心点。

3. 计算样本点到聚类中心点的距离:对于每个样本点,计算其与各个聚类中心点之间的距离,常用的距离度量方式是欧氏距离。

4. 将样本点分配到最近的聚类中心点所代表的类别:将每个样本点分配到与其最近的聚类中心点所代表的类别,形成初始的聚类结果。

5. 更新聚类中心点:根据当前的聚类结果,重新计算每个类别的聚类中心点,通常是计算类别内样本点的均值。

6. 重复步骤3和步骤5,直到聚类中心点不再发生变化或达到预设的迭代次数。

如果聚类中心点不再发生变化,则算法收敛;如果达到预设的迭代次数,但聚类中心点仍在发生变化,则可以考虑增加迭代次数或调整聚类的数量K。

7. 输出聚类结果:将最终的聚类结果输出,每个样本点属于某个类别。

三、算法优缺点1. 优点:- K-means算法简单易实现,计算效率高。

- 对大规模数据集有较好的可扩展性。

- 聚类结果具有较好的可解释性。

2. 缺点:- 对初始聚类中心点的选择敏感,可能会得到不同的聚类结果。

- 对噪声和异常点较为敏感,可能会影响聚类结果的准确性。

- 需要提前确定聚类的数量K,如果选择不当可能会影响聚类结果。

K-均值聚类算法

K-均值聚类算法
3.确定中心: 用各个聚类的中心向量作为新的中心;
4.重复分组和确定中心的步骤,直至算法收敛;
2.算法实现
输入:簇的数目k和包含n个对象的数据库。 输出:k个簇,使平方误差准则最小。
算法步骤:
1.为每个聚类确定一个初始聚类中心,这样就有K 个初始 聚类中心。
2.将样本集中的样本按照最小距离原则分配到最邻近聚类
给定数据集X,其中只包含描述属性,不包含 类别属性。假设X包含k个聚类子集X1,X2,„XK;各 个聚类子集中的样本数量分别为n1,n2,„,nk;各个 聚类子集的均值代表点(也称聚类中心)分别为m1, m2,„,mk。
3.算法实例
则误差平方和准则函数公式为:
k
2
E p mi
i 1 pX i
单个方差分别为
E1 0 2.52 2 22 2.5 52 2 22 12.5 E2 13.15
总体平均误差是: E E1 E2 12.5 13.15 25.65 由上可以看出,第一次迭代后,总体平均误差值52.25~25.65, 显著减小。由于在两次迭代中,簇中心不变,所以停止迭代过程, 算法停止。
示为三维向量(分别对应JPEG图像中的红色、绿色 和蓝色通道) ; 3. 将图片分割为合适的背景区域(三个)和前景区域 (小狗); 4. 使用K-means算法对图像进行分割。
2 015/8/8
Hale Waihona Puke 分割后的效果注:最大迭代次数为20次,需运行多次才有可能得到较好的效果。
2 015/8/8
例2:
2 015/8/8
Ox y 102 200 3 1.5 0 450 552
数据对象集合S见表1,作为一个 聚类分析的二维样本,要求的簇的数 量k=2。

kmeans 聚类算法

kmeans 聚类算法

kmeans 聚类算法Kmeans聚类算法Kmeans聚类算法是一种基于距离的无监督机器学习算法,它可以将数据集分为多个类别。

Kmeans算法最初由J. MacQueen于1967年提出,而后由S. Lloyd和L. Forgy独立提出。

目前,Kmeans算法已经成为了机器学习领域中最常用的聚类算法之一。

Kmeans算法的基本思想是将数据集划分为k个不同的簇,每个簇具有相似的特征。

簇的数量k是由用户指定的,算法会根据数据集的特征自动将数据集分成k个簇。

Kmeans算法通过迭代的方式来更新每个簇的中心点,以此来不断优化簇的划分。

Kmeans算法的步骤Kmeans算法的步骤可以概括为以下几个步骤:1. 随机选择k个点作为中心点;2. 将每个数据点与离它最近的中心点关联,形成k个簇;3. 对于每个簇,重新计算中心点;4. 重复2-3步骤,直到簇不再变化或达到最大迭代次数。

Kmeans算法的优缺点Kmeans算法的优点包括:1. 算法简单易实现;2. 能够处理大规模数据集;3. 可以处理多维数据。

Kmeans算法的缺点包括:1. 需要用户指定簇的数量;2. 对于不规则形状的簇,效果不佳;3. 对于包含噪声的数据集,效果不佳。

Kmeans算法的应用Kmeans算法在机器学习和数据挖掘中有着广泛的应用。

以下是Kmeans算法的一些应用:1. 图像分割:将图像分为多个不同的区域;2. 文本聚类:将文本数据划分为多个主题;3. 市场分析:将消费者分为不同的群体,以便进行更好的市场分析;4. 生物学研究:将生物数据分为不同的分类。

总结Kmeans聚类算法是一种基于距离的无监督机器学习算法,它可以将数据集分为多个类别。

Kmeans算法的步骤包括随机选择中心点、形成簇、重新计算中心点等。

Kmeans算法的优缺点分别是算法简单易实现、需要用户指定簇的数量、对于不规则形状的簇效果不佳等。

Kmeans算法在图像分割、文本聚类、市场分析和生物学研究等领域有着广泛的应用。

kmeans算法实现原理

kmeans算法实现原理

kmeans算法实现原理K-Means算法是一种聚类算法,旨在将一组数据对象分为多个不同的簇,使得同一簇内的对象之间相似度较高,簇间的不相似度较大。

该算法由J. MacQueen于1967年提出,其基本思想是把已有的n个数据对象分成k个簇,使得簇内对象的相似性较高,而簇间对象的相似性较低。

K-Means属于无监督学习算法,没有给定训练数据集的输出,只有输入数据。

一、算法原理KMeans算法采用的是迭代优化的方法,其步骤如下:1. 初始化: 从n个数据对象中随机选择k个作为初始的聚类中心。

2. 计算每个样本到每个簇中心的距离,并将其分配到与其距离最近的那个簇中。

3. 定义新的簇中心: 对于每个簇内的所有数据对象,求其平均值并作为新的簇中心。

4. 重复2和3直到簇中心不再发生变化,或者是达到最大迭代次数。

步骤2和步骤3是迭代的核心部分,直至算法收敛即可停止迭代。

二、算法实现KMeans算法的实现有多种方式,其中一种比较常用的实现方法是传统的坐标下降法。

坐标下降法在每个迭代步骤中只更新一个维度,对整个集合进行更新的时间较长。

通常采用Lloyd算法来改进这种方法。

Lloyd算法和坐标下降法思想类似,不过每次更新是对所有维度同时进行更新,而不是对单个维度进行更新,从而使算法收敛速度加快。

三、算法应用KMeans算法广泛应用于数据挖掘、模式识别、图像分割等领域,较为常见的应用有:1. 市场营销: KMeans算法可用于进行客户聚类分析,从而根据不同聚类的客户需求和行为,制定相应的市场策略。

2. 模式识别: KMeans算法可用于文本分类,根据文本的内容,进行分类和归纳,进而分析文本的分布规律。

3. 图像分割: KMeans算法可用于图像分割,对图像中的不同区域进行划分,达到分离目标物体的目的。

四、算法局限性虽然KMeans算法具有较好的聚类效果,但是其也存在一些局限性。

1. 聚类数目k的确定: 聚类数目k是算法的参数,其有时需要通过经验调整合适的数值。

K-means聚类算法

K-means聚类算法

K-means聚类算法1. 概述K-means聚类算法也称k均值聚类算法,是集简单和经典于⼀⾝的基于距离的聚类算法。

它采⽤距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越⼤。

该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独⽴的簇作为最终⽬标。

2. 算法核⼼思想K-means聚类算法是⼀种迭代求解的聚类分析算法,其步骤是随机选取K个对象作为初始的聚类中⼼,然后计算每个对象与各个种⼦聚类中⼼之间的距离,把每个对象分配给距离它最近的聚类中⼼。

聚类中⼼以及分配给它们的对象就代表⼀个聚类。

每分配⼀个样本,聚类的聚类中⼼会根据聚类中现有的对象被重新计算。

这个过程将不断重复直到满⾜某个终⽌条件。

终⽌条件可以是没有(或最⼩数⽬)对象被重新分配给不同的聚类,没有(或最⼩数⽬)聚类中⼼再发⽣变化,误差平⽅和局部最⼩。

3. 算法实现步骤1、⾸先确定⼀个k值,即我们希望将数据集经过聚类得到k个集合。

2、从数据集中随机选择k个数据点作为质⼼。

3、对数据集中每⼀个点,计算其与每⼀个质⼼的距离(如欧式距离),离哪个质⼼近,就划分到那个质⼼所属的集合。

4、把所有数据归好集合后,⼀共有k个集合。

然后重新计算每个集合的质⼼。

5、如果新计算出来的质⼼和原来的质⼼之间的距离⼩于某⼀个设置的阈值(表⽰重新计算的质⼼的位置变化不⼤,趋于稳定,或者说收敛),我们可以认为聚类已经达到期望的结果,算法终⽌。

6、如果新质⼼和原质⼼距离变化很⼤,需要迭代3~5步骤。

4. 算法步骤图解上图a表达了初始的数据集,假设k=2。

在图b中,我们随机选择了两个k类所对应的类别质⼼,即图中的红⾊质⼼和蓝⾊质⼼,然后分别求样本中所有点到这两个质⼼的距离,并标记每个样本的类别为和该样本距离最⼩的质⼼的类别,如图c所⽰,经过计算样本和红⾊质⼼和蓝⾊质⼼的距离,我们得到了所有样本点的第⼀轮迭代后的类别。

此时我们对我们当前标记为红⾊和蓝⾊的点分别求其新的质⼼,如图d所⽰,新的红⾊质⼼和蓝⾊质⼼的位置已经发⽣了变动。

K-means算法详解

K-means算法详解

算法实例
O x y
1
2 3 4 5Βιβλιοθήκη 00 1.5 5 5
2
0 0 0 2
数据对象集合S见表1,作为一个聚类分析的二 维样本,要求的簇的数量k=2。 O (1)选择 O1 0,2 , 2 0,0 为初始的簇中心, 即 M 1 O1 0,2 , M 2 O2 0,0 。 (2)对剩余的每个对象,根据其与各个簇中心的 距离,将它赋给最近的簇。 对 O3 : 2 2

0 5
0 5
2

2 2
2
2
5
29
1
5
5
2



0 2

• 因为 d M 1 , O 5 d M 2 , O 5 所以将 O 5分配给 C
• 更新,得到新簇
E1 0 0
2 2
C1 O1 ,O5

2
C 2 O 2 , O 3 , O 4
xi1,xi2,„xid和xj1,xj2,„xjd分别是样本xi和xj对应d个描 述属性A1,A2,„Ad的具体取值。 • 样本xi和xj之间的相似度通常用它们之间的距离d(xi,xj) 来表示,距离越小,样本xi和xj越相似,差异度越小;距
离越大,样本xi和xj越不相似,差异度越大。
欧式距离公式如下:
d xi , x j
x
d k 1
ik
x jk
2
平均误差准则函数
• K-means聚类算法使用误差平方和准则函数来评价聚类 性能。给定数据集X,其中只包含描述属性,不包含类别
属性。假设X包含k个聚类子集X1,X2,„XK;各个聚类子集
中的样本数量分别为n1,n2,„,nk;各个聚类子集的均值代 表点(也称聚类中心)分别为m1,m2,„,mk。 • 误差平方和准则函数公式为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

kmeans 算法
K-Means算法,也称为K均值聚类算法,是一种无监督机器学习方法,用于将数据集分成K个簇群。

该算法的核心思想是将数据点划分为不同的簇群,使得同一簇群内的点相似度尽可能高,而不同簇群之间的相似度尽可能低。

该算法可用于许多领域,如计算机视觉、医学图像处理、自然语言处理等。

1.工作原理
K-Means算法的工作原理如下:
1. 首先,从数据集中随机选择K个点作为初始簇群的中心点。

2. 接下来,计算每个数据点与K个中心点之间的距离,并将它们归入距离最近的簇群中。

这个过程称为“分配”。

3. 在所有数据点都被分配到簇群后,重新计算每个簇群的中心点,即将簇群中所有数据点的坐标取平均值得出新的中心点。

这个过程称为“更新”。

4. 重复执行2-3步骤,直到簇群不再发生变化或达到最大迭代次数为止。

2.优缺点
1. 简单易懂,实现方便。

2. 可用于处理大量数据集。

1. 随机初始化可能导致算法无法找到全局最优解。

2. 结果受到初始中心点的影响。

3. 对离群值敏感,可能导致簇群数量不足或簇群数量偏多。

4. 对于非球形簇群,K-Means算法的效果可能较差。

3.应用场景
K-Means算法可以广泛应用于许多领域,如:
1. 机器学习和数据挖掘:用于聚类分析和领域分类。

2. 计算机视觉:用于图像分割和物体识别。

3. 自然语言处理:用于文本聚类和词向量空间的子空间聚类。

4. 财务分析:用于分析财务数据,比如信用评分和市场分析。

5. 医学图像处理:用于医学影像分析和分类。

总之,K-Means算法是一种简单有效的聚类算法,可用于处理大量数据集、连续型数据、图像和文本等多种形式数据。

但在实际应用中,需要根据具体情况选择合适的簇群数量和初始中心点,在保证算法正确性和有效性的同时,减少误差和提高效率。

相关文档
最新文档