卡氏第二定理

合集下载

材料力学能量法第3节 卡式定理

材料力学能量法第3节 卡式定理

q 2 M ( x) (l x) M e 2
M 1 M e
(2)计算 B 截面转角 B
M q 2 1 M ( x) (l x) M e M e 2 M ( x) M ( x) Bq M e dx EI M e 1 l q 2 [ ( l x ) M ] ( 1 ) d x e EI 0 2 3 l ql 顺时针转向 Me EI 6 ql 3 顺时针转向 B 令 Me 0 6 EI
2
1 dFi dyi U dFi yi 2
(3)
比较(2)(3)式
1 dFi dyi U dFi yi (3) 2 U ( F1 , F2 , Fn ) yi i 1,2,3,... Fi
U U dFi Fi
(Hale Waihona Puke 2)梁的变形能对某一载荷 Fi 的偏导数,等于 在该载荷处沿载荷方向的位移,这就是卡氏定理, 也称卡氏第二定理。由意大利工程师 A 卡斯蒂利亚 诺(1847-1884)于1873年提出的。卡氏定理对其他 线弹性结构也是适用的。
广义力的函数:设在如图所示梁上,作用有 n 个力 y2 , , yn 。 F1, F2 , , Fn ,其相应位移分别为 y1, 在载荷施加过程中,外力所做的功转变成梁的变形 能。这样,变形能应为广义力 Fi 的函数
U f ( F1, F2 ,, Fn )
若 Fi
(1) ( 2)
Fi dFi , 则 U
U U dFi Fi
卡式定理的推导 —— 改变加力的次序 (1)先施加 dFi :在施加 dFi 时,其作用点沿 dFi 方向的 1 dF dy 位移为 dyi ,梁的变形能为 i i;

44卡氏第二定理

44卡氏第二定理

Mechanics of Materials卡氏第二定理d d E A I N Δl l ii x xF GI F E F M ++∂∂⎰⎰T T P N ()()()()d ()()i l i x F x x EA M x M x x M x F ∂=∂∂∂⎰22F M EIEI 2NTεP ()()()d d d 222x M x x V x x x EA GI =++⎰⎰⎰F xk N 1Δnj j Nj i j j j iF l F E A F =∂=∂∑桁架结构N ()F x T ()M x ()M x N ()F x T ()M x ()M x S S ()()d 2ix F x GA F ∂+∂⎰组合变形构件图示外伸梁抗弯刚度为EI,只考虑弯曲变形,试求外伸端C的挠度wC 和截面B 的转角θB 。

解:⑴求支座约束力解得:-=AyFa F l=AyFaFl⑵求梁各段的弯矩方程及对载荷的偏导数【例题】AB段BC段(0)x l≤≤()==AyFaM x F x xl()∂=∂M x axF l()l x l a≤≤+()()=+-M x F l a x()∂=+-∂M xl a xF⑶ 求载荷作用点相应的位移0()()()()d d +∂∂=+∂∂⎰⎰ll a C l M x M x M x M x w x xEI F EI F 231()33=+Fa l Fa EI 011d ()()d +=⋅++-⋅+-⎰⎰l l a lFa a x x x F l a x l a x x EI l l EI AB 段BC 段(0)x l ≤≤()==Ay Fa M x F x xl ()∂=∂M x ax F l()l x l a ≤≤+()()=+-M x F l a x ()∂=+-∂M x l aF⑶ 求载荷作用点相应的位移11221200()()()()d d ∂∂=+∂∂⎰⎰la C M x M x M x M x w x x EI F EI F 231()33=+Fa l Fa EI 1112220011d d =⋅+⋅⎰⎰l a Fa a x x x Fx x x EI l l EI AB 段BC 段1(0)≤≤x l 111()==Ay FaM x F x x l11()∂=∂M x a x F l 2(0)≤≤x a 22()=M x Fx 22()∂=∂M x xFlM x F x x Fa M Ay a ==-()111M lM x x a ∂=-∂()11M x Fx =()22M M x a∂=∂0()2⑵ 求梁各段的弯矩方程及对载荷的偏导数AB 段BC 段≤≤x l (0)1x a ≤≤(0)2⑴ 求支座约束力 解得:∑=MB0:Fa F l M Ay a --=0lF Fa M Aya =-↑()有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)1122120()()()()d d θ∂∂=+∂∂⎰⎰la B a a M x M x M x M x x x EI M EIM 11122011()d 0d a a laa M M Fa M x x x Fx x EIl lEI ==-=⋅-+⋅⎰⎰-Fal11()-=aFa M M x x l⑵ 求梁各段的弯矩方程及对载荷的偏导数 AB 段BC 段⑶ 求载荷作用点相应的位移结果负值说明位移方向与对应载荷方向相反3EI =【讨论】图示情况 含义FV ∂∂εFV B D ∂∂ε求 B 处 F 有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)1. 建立内力方程【总结】卡氏第二定理求位移的解题步骤()()d ∂∂⎰l i M x M x x EI F ()[()]d -∂-∂⎰l iM x M x x EI F 2. 内力方程对 F i 求偏导3. 将内力方程及偏导代入积分表达式求位移各段内力方程坐标原点可以不一样 若所求位移处无对应载荷,可虚设对应载荷,偏导后才能令该虚载荷等于 0若所求位移为正,说明实际位移方向与对应载荷方向一致,否则与对应载荷方向相反内力正负规定不会影响计算结果 内力方程不要用约束力表示。

材料力学卡式定理

材料力学卡式定理

l
(2)
于是(1)式改写为
y / l
(3)
3
梁内任一点处的比能
u
1 2
E 2
1 2
E 2
l2
y2
(4)
梁的应变能
l
U VudV 0 (AudA)dx
l 1 E 2
( 02
l2
y2dA)dx 1 EI 2
A
2l
(5)
由卡氏第一定理
m U 1 EI (2 ) EIθ
(6)
2 lx)
2
dx
1 ( 5PL3 RC L3 ) 0
EI 48
3
RC
5P 16
能量法求解超静定结构,适 用任意荷载作用下、线性或 非线性弹性杆系、刚架或曲 杆等超静定系统。
14
2.求 wB
① 求内力
M
AB ( x)
5P 16
(L
x)
P(0.5L
x)
M BC ( x)
5P 16
Px L EI Px
1 EI
x 0
P(L
x1 ) ( x1
x)dx1
P
x3 [
(L
x)x2
Lx 2 ]
EI 3
2
12
例6 等截面梁如图,用卡氏定理求B 点的挠度。
P 0.5 L
B
A
L
解:1.依 wC 0 求多余反力,
卡氏定理解 ① 取静定基如图 C 超静定结构
② 求内力
M AB ( x) RC (L x) P(0.5L x)
L x1
O
x
w
①求内力 M AB ( x1) P(L x1) Px ( x x1) M BC ( x1) P(L x1)

材料力学第8章-能量法3-1

材料力学第8章-能量法3-1

d
FN dx d(l) = EA
0 N
Mdx d EI
0
Tdx d GI p
0 S 0
1 F d l M d F d T d
F FN T T M M dx dx dx EA EI GI p
0 N 0 0
2.力和位移应理解为广义力和广义位移。
能量法/虚功原理 单位力法 图乘法
上节回顾
1、可能内力,可能位移,虚位移 2、虚功原理
在外力作用下处于平衡的结构,任意给它一个虚位移, 则外力在虚位移上所做的虚功,等于结构内力在虚变形上所 作的功。
W Wi
* e
e

*
外力虚功
内力虚功

l
W
Fi
5 M a 3
0 1c
2 Fa a
M
0 2c
3 a 2
Fa a 3 2 2 0 M 3c a 3
能量法/虚功原理 单位力法 图乘法
A
EI1
a
C
EI 2
a
F B
1
2Fa Fa

1

2a 5a/3
2
3a/2
-

2a/3
3
根据图乘法,自由端的挠度为:
1 1 0 0 yB 1M1c 2 M 2c EI 3M 30c EI1 2 1 Fa a 5 3 1 Fa a 2a a Fa a a EI1 2 3 2 EI 2 2 3
能量法/超静定问题 力法 例 如图超静定梁, EI为常数,试求B点的约束反力。
第八章
一、杆件的应变能

卡氏第二定理

卡氏第二定理

F3
F1
3 1
1 , 2 , , i ,
结构的变形能
11 1 V ε W 2 F 1 δ 1 2 F 2 δ 2 2 F 3 δ 3
只给 Fi 一个增量 Fi .
引起所有力的作用点沿力方向的位
移增量为 Δ1,δ Δ2,δ Δ3,δ
在作用Fi 的过程中, Fi 完成 F1
的功为
1 2
ΔFi
氏定理)(Castigliano’s Theorem)
说明 (Directions):
(1)卡氏第二定理只适用于线性弹性体( Applying only to linearly elastic bodies)
δi
Vε Fi
(2)Fi 为广义力(generalized force) i为相应的位移
(displacement corresponding to force Fi )
一个力
一个力偶
一对力
一对力偶
一个线位移
一个角位移
相对线位移 相对角位移
(3)卡氏第二定理的应用 ( Application of castigliano’s second theorem ) (a) 轴向拉,压(Axial tension and compression)
δ i V F ε i F i F N 2 2 ( E x )x d A F E N (x )A F N F ( ix )d x
Δδi
原有的所有力完成的功为
2
F2
F3
3 1
F 1 Δ 1 F 2 δ Δ 2 δ F iΔ i δ
结构应变能的增量为
Δ ε 1 2 V Δ iΔ i F F δ 1 Δ 1 F δ 2 Δ 2 δ F iΔ i δ

材料力学卡氏第二定理

材料力学卡氏第二定理

卡氏第二定理的重要性
总结词
卡氏第二定理在材料力学中具有重要意义,它为分析和预测材料的应力分布提供了理论基础。
详细描述
卡氏第二定理是材料力学中一个重要的基本定理,它为解决复杂弹性体的应力分析问题提供了重要的理论依据。 通过卡氏第二定理,可以推导出许多其他的弹性力学公式和定理,从而更好地理解和预测材料的力学行为。
多学科交叉
加强与其他学科的交叉融合, 如物理学、化学、生物学等, 拓展卡氏第二定理在跨学科 领域的应用价值。
THANKS FOR WATCHING
感谢您的观看
04 卡氏第二定理的扩展与应 用
卡氏第二定理在弹性力学中的应用
总结词
卡氏第二定理在弹性力学中具有广泛的应用,它为解决复杂的弹性问题提供了重要的理 论支持。
详细描述
卡氏第二定理在弹性力学中主要用于求解弹性体的位移、应力和应变分布。通过应用卡 氏第二定理,可以建立各种弹性问题的基本方程,如弹性力学中的平衡方程、应变-位
02 卡氏第二定理的公式与推 导
公式展示
公式
(W = DeltaOmega + Delta K)
描述
该公式表示外力功((W))等于变形能((DeltaOmega))和动能((Delta K))之和。
公式推导过程
第一步
根据牛顿第二定律,外力对物体所做的功等 于物体动能的增量,即 (W = Delta K)。
弯曲梁的实例
总结词
卡氏第二定理在弯曲梁分析中起到关 键作用。
详细描述
弯曲梁在受到外力作用时会产生弯曲 变形,卡氏第二定理可以用来计算梁 内部的应力分布,确保梁的稳定性与 安全性。
扭转轴的实例
总结词
卡氏第二定理在分析扭转轴时具有重 要应用。

材料力学第27讲 Chapter3-2第三章 能量法(卡氏定理)

材料力学第27讲  Chapter3-2第三章 能量法(卡氏定理)

1
Ax
450
2
l2
l1 Ay
变形协调关系
Ax l1; A ysin4 5 0 A xco s4 5 0 l2
450
V
FN21l1 FN22l2 2EA 2EA
E2lA1 l12 E2lA2 l22
l FNl EA
E 2 lA 1 A x2 E 2 lA 2 A ysin 4 5 0 A xc o s4 5 02
变能V数值上等于余能Vc,则余能定理此时可改写为: Nhomakorabeai
V
(F1,F2 Fi
Fn)
卡氏第二定理
卡氏第二定理只适用于线性弹性情况。
19
例2 求简支梁中点作用集中力F作用时中点处的挠度。
(梁的弯曲刚度为EI,长为l)。
EI
F
A
C
l
2
l
解: 先求应变能
B
V
l M 2(x) d x 2
l 2
(
F 2
x)2 dx
Fn
1 2 i
n
图示梁(材料为线性,也可为非线性)
作用n个集中载荷Fi (i=1,2…n),
相应位移为i (i=1, 2…n)
5
F1 F2 Fi
Fn
1 2 i
n
梁内的应变能: V W
n
i 0
fid i
i 1
可见,最终梁内的应变能应是关于i (i=1,2…n)的函数,即
V V (1,2 n)
15
F1 F2 Fi
Fn
1 2 i 梁内的余能:Vc Wc
n
n
F i
0
id
fi
i 1
可见,最终梁内的余能应是关于Fi (i=1,2…n)的函数,即

04-13005卡氏第二定理(1)

04-13005卡氏第二定理(1)
C
F 2
例:弯曲刚度为EI,拉伸刚度为EA。不计剪力的影响,试计算A截面的挠度。
3F/2
D
解: CD段轴力:FNCD
3F 2
AC段弯矩:M
x1
Fx1
0
x1
l 2
B x2
F/2
l
2l/3
C
A
x1
l/2 F
分析:CD段发生轴向拉伸变
BC段弯曲矩:M
x2
F 2
x2
0
x2
l
V
F2 NCD
i
V Fi
式中:Fi为广义力,Δi为与广义力Fi对应的广义位移。i为正表示与Fi方向相同,
为负表示与Fi方向相反,Vε 是整个结构的应变能。
广义力:可以是一个力、一个力偶、一对力、一对力偶
广义位移:对应为一个线位移、一个角位移、相对线位移、相对角位移
F
m
F
F
AB
mm AB
C
D
wC
V F
D
V m
AB
第十三章 能量法
§13-3 卡氏第二定理(1)
一、卡氏第二定理
i
V Fi
卡氏第二定理
线弹性杆件或杆系的应变能对于作用在该杆件或杆系上的某一
荷载的变化率,就等于与该荷载相应的位移。
卡氏第二定理适用于一切受力状态下的线弹性体。
卡氏第二定理的含义:
结构的应变能为内力的函数,为荷载的复合函数。若结构的
应变能 V 表示为荷载F1、F2 …Fi …的函数,则应变能对任一荷载 Fi的偏导数等于Fi作用点沿Fi方向位移。
V F
AB
V m
例:试用卡氏第二定理求图示梁中点C的挠度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

卡氏第二定理
卡氏第二定理(KummerSecondTheorem)又称为卡氏二元定理,它是由德国数学家卡氏于1852年提出的一种数论定理,是多个古老定理的总结,是一个重要的代数结构之一。

卡氏第二定理涉及了几何射影以及椭圆曲线的投影,是一项重要的数学理论,被广泛应用在数论、组合数学、多元代数和特殊函数的研究中。

卡氏第二定理的主要原理可以归结为三点:
(1)设f(x)为一种单个变量的多项式,一般地,一个多项式具有n次不同的根,不论是实根还是复根,他们出现的次数总是n次。

(2)设P(x,y)为一个二元多项式,其中x和y是连续变量,该多项式的根是一个椭圆曲线E上的点的坐标。

若F(x,y)是P(x,y)的一个不可约因子,那么F(x,y)在E上的根也是E上的点的坐标,而且出现次数等于P(x,y)的根的出现次数。

(3)对于任意的二元多项式P(x,y),如果F(x,y)是P(x,y)的一个不可约因子,则P(x,y)的根总是满足如下条件:P(x,y)是一个整数关系。

卡氏第二定理在数论、组合数学、多元代数研究和计算数学中有着重要的应用价值。

它不仅用于解决多变量多项式的求根问题,而且还可以用来寻找椭圆曲线上有趣点的坐标,以及在数论中研究质素数和平方数等问题。

此外,在数据加密领域,卡氏第二定理的应用也是非常广泛的。

其中,最重要的应用是RSA加密算法,它是目前世界上最常用的公钥
加密算法,而RSA算法的安全性完全依赖于卡氏第二定理的应用。

因此,卡氏第二定理的研究可以说是数学的“金矿”,在数学领域有着重要的应用价值,且极具前景。

现代数学家们仍一直在探索和研究卡氏第二定理,并发现了它具有良好的应用价值,为世界各地的科研人员提供了难以估量的帮助。

卡氏第二定理的研究不仅对数学的发展至关重要,而且对实际的应用也具有极大的意义,是数学巨人卡氏的一项重要成就。

相关文档
最新文档