汽车起重机伸缩臂结构有限元分析及优化
汽车起重机吊臂伸缩机构故障检查及解决方法

汽车起重机吊臂伸缩机构故障检查及解决方法汽车起重机的伸缩臂机构是其主要部件之一,可以实现提升和悬挂重量物品的功能,但由于长时间使用和操作不当等原因,机构可能会出现故障,影响车辆使用和安全性。
下面介绍伸缩臂机构故障的检查及解决方法。
一、无法伸缩1. 检查电动油泵是否正常工作。
应该检查电动油泵是否在运转,且油量是否足够。
2. 查看油缸是否堵塞。
应该检查油缸、管路、电磁阀是否可通畅。
3. 检查机械故障。
如果以上两个原因都不会导致伸缩臂无法工作,则需要检查伸缩臂机构的机械部分。
检查伸缩臂机构的接线、联轴器和减速箱等部位是否正常。
4. 检查液压系统的阀门是否有问题。
如果是液控阀出现了问题,则需要进行更换。
二、伸缩缓慢1. 油管阻塞。
可以通过排除管路中驻留的气体来解决。
2. 液压瓶内部泄漏。
检查是否存在液压泵内部的漏油口。
3. 液体温度过高。
应该检查液压油的油温是否过高,是否符合标准。
4. 液压系统密封性不好。
检查密封件是否有损伤、老化等情况。
三、伸缩中断1. 车辆欠压。
这种情况下,事先保证车辆电瓶电量充足。
2. 机械部分故障。
检查减速箱和联轴器等机械部件是否正常工作。
3. 液压系统阀门问题。
检查液压系统的阀门是否可靠地关闭。
四、伸缩卡住1. 机械部分故障。
如减速箱、联轴器等损坏或老化。
2. 液压系统问题。
尝试检查油位是否过低,油泵是否正常运转。
3. 伸缩导轨有问题。
检查导轨有无杂质、严重坑槽影响使用。
总之,对于伸缩臂机构的故障检查,要充分查明故障原因,系统排除不良现象,细心耐心去解决问题,确保汽车起重机的正常使用。
汽车起重机伸缩机构的改进设计策略

汽车起重机伸缩机构的改进设计策略摘要大型汽车起重机的伸缩机构通常采用单缸插销伸缩技术实现吊臂伸缩。
起重机使用插销将吊臂逐级的固定,这种机构对吊臂截面形状和尺寸做出了改善,减小了吊臂自身重量,增强了起重机的起重能力。
文章简要分析了大吨位汽车起重机的伸缩机构和起重原理,针对使用过程中的不足,做出了改进分析。
关键词单缸插销伸缩机构;工作原理;改进设计随着我国经济建设的发展,大型起重机的技术也逐渐提升,为建筑工程做出了不小的贡献。
汽车起重机的承重构件是伸缩臂,伸缩臂技术能保障大型起重机的工作性能。
伸缩臂的核心技术在于起重机的伸缩机构。
大型起重机通常采用单缸插销机构的形式,这种伸缩形式结构简单,受到的局限性很小。
但在实际应用中仍存在一些问题,需要做出进一步的改进。
1 起重机单缸插销伸缩机构的工作原理该机构由吊臂、臂销、缸销、伸缩缸等多种部件组成的。
单缸插销伸缩机构液压系统由换向阀、平衡阀等组成,系统结构如图(一)。
其中,①A8V0主泵;②先导控制油泵及双联齿轮泵;③远程控制阀块;④多级溢流阀;⑤缸臂销控制阀;⑥伸缩平衡阀;⑦缸销缸;⑧臂销缸;⑨缸臂销切换控制阀;⑩主泵变量机构。
大吨位起重机伸缩机构液压系统包括卷扬系统、伸缩系统等4个系统[1]。
伸缩臂依靠液压油缸,并结合控制缸销、臂销间的切换进行伸缩,伸缩臂有七节,最粗的是一节基本臂,和伸缩缸连接。
伸臂时,七节臂会首先伸出去,七节臂上带有吊钩,之后是六节臂、五节臂、四节臂,按照顺序伸缩。
缩臂时的顺序和伸臂的顺序正好相反。
伸缩缸的动力源来自A8V0变量双泵,通过改变主轴和缸体轴线的角度,能使变量泵的排量发生改变。
液压系统中不同泵的作用也不一样,卷扬泵是为液压系统当中主、副卷扬供油。
伸变泵是为变幅系统和伸缩系统供油。
单缸插销伸缩臂依靠臂销切换的配合,供油泵结合电磁阀使得缸销、臂销在不同工况下完成动作切换,系统中安装应急控制阀块以防止系统失灵[2]。
2 伸缩机构的不足和原因该伸缩机构在运行时容易出现一些故障,如插销、拔销困难、伸臂速度比较慢、不能完全伸展、效率较低等。
起重机伸缩臂有限元参数化分析

3 !载荷计算与模型加载
伸缩臂上作用的载荷有’ 吊重$ 自重$ 风 载 及机构起制动运行的惯性力% 按受力分析可将其
上半月刊" ! " # " $ " %!
! #
截面伸缩臂所受最大应力达到! #其等效应力 ! ) I % 9 分布图如图’所示%
图4 !矩形截面伸缩臂的等效应力云图
图6 !沿路径应力变化
1 !起重机伸缩臂参数化建模
1 2 1 !实体建模 建立起重机伸缩臂实体模型是有限元分析的 第一步# 该 模 型 可 以 通 过 三 维 0 ! & 图直接导入 #方便快捷% 但导入后的模型图需要做有 ! " # $ # 限元分析计算的模型简化# 去除不影响计算结果 的局部微小棱角$小孔等# 否则会导致网格划分$ 求解计算失败或结果失真# 结构越复杂简化工作 量越大&另外复杂的三维 0 ! & 图导入到 ! " # $ # 有可能出现局部结构错误# 也需要修复重画% 因 此本文采用直接由 ! " # $ #的 ! % & ’ 语言实现参 数化的有限元实体模型的建立# 更加快速$ 准确 地建立满足有限元计算的模型# 从而提高有限元
图1 !伸缩臂截面形状
!
! 收稿日期" ! " " ) * # ! * ! ( ! 通讯地址" 曾成奇! 山西省太原市太原科技大学
! "
上半月刊" ! " # " $ " %!
使得原本繁杂的工作变得方便简捷% 六边形截面 伸缩臂整体有限元模型如图!所示#通过改变伸缩 臂仰角的大小和各节臂之间的搭接长度 # 可以完 成不同工况下的有限元分析# 仰角在材料参数输 入界面中输入%
起重机伸缩吊臂局部稳定性的有限元分析

OP+PQPR STURVWXPYPURV
WXRVpqr sqr.URtPRV
Z[\]^_‘a]bcdefg]_\g_h\ij_gk\dldmcdenk]\ho Zuvwkdvx_h^cyhgk]\_‘czd‘{ao
>HA9D?F9
1TXtr|Ut}~U!PtP~"r#U~XtX}|r$P|!rrQ }~%q|~q%XPRU~%q|&|%URX’U}URUt"(X)!"~TX#PRP~X XtXQXR~URUt"}P}U$$%rU|TUR)+,-.-$U|&UVXPR~TP}$U$X%*+rR}P)X%PRV~TX!rrQ |%r}},}X|~PrR U}U’TrtX*U$U%UQX~%P|#PRP~XXtXQXR~Qr)XtUR) U$U%UQX~%P|r$~PQP(U~PrR Qr)Xt#r%tr|Ut }~U!PtP~"|Ut|qtU~PrRr#U!rrQ }~%q|~q%X’X%XX}~U!tP}TX)*1U&PRVU%X|~URVqtU%|%r}},}X|~PrR !rrQ U}URX-UQ$tX*P~}|%P~P|Ut}~%X}}’U}|Ut|qtU~X)*1TX|Ut|qtU~X).UtqX|rPR|P)X}’P~T~TU~ #%rQ ~TXURUt"~P|QX~Tr)*1TXPR|%XU}X).UtqXr#~TX|%P~P|Ut}~%X}}X}#%rQ UTX-UVrRUt|%r}}, }X|~PrR|rQ$U%X)’P~TU%X|~URVqtU%rRX’U}r!~UPRX)*
整体平衡方程为
*80 <81+24 5
*=+
式 *=+中!随 着 <值 增 大 到 一 定 值!亦 即 中 面 力
起重机伸缩吊臂截面优化设计解析

确定其它节臂的壁厚。3伸缩吊臂优化设计过程QAY125伸 缩吊臂结构特点是截面为大圆角十二边形(下盖板为11 个边),具有较好的稳定性和
抗屈曲能力,能充分发挥材料的力学性能,且使用高强 度钢材,减轻了吊臂重量,提高了整机的起重性能。另 外,吊臂上下盖板仅有2道焊缝,且布置
在侧面中线附近低应力区,焊接工艺性好,传力更可靠。 这种吊臂形状代表国内外较先进的技术。因此,在进行 优化设计时,不改变此吊臂的基本形状
它使用状态变量和目标函数对设计变量的偏导数,在每 次迭代中计算梯度确定搜索方向,因而精度较高,但占 用的时间相对较多。此外,还应注意的是
由于采用梯度法搜索,可能使得搜索结果位于局部最优 解,而不是全局最优解,故对所得结果应仔细判断。优 化时,起始序列选用现有的设计产品数据
,首先确定迭代40次,得到的优化结果不理想,主要是 吹、叫比其下限值大得较多,重量减小得较少,看来结 果出现了局部最优解。为此,细化设计
板高度进一步减小,下部趋近于圆弧。3种截面的特性数 据见表d表示的是最终确定的吊臂形状。表1QAY125基本 臂优化前后截面特性比较项目
面积优化前截面第一次优化第二次优化第三次优化3.2其 余节臂截面尺寸确定在基本臂截面尺寸优化确定后,便 可根据每节臂之间的间隙(滑块厚度
尺寸)大小用作图法定出2、玉4和5节臂的尺寸。而每节 臂的厚度则根据全伸臂时的强度、刚度及局部稳定性要 求来确定。总的原则是与现有产品的
,即仍保持吊臂为12个边。3.1基本臂截面的优化设计作 为吊臂来说,总希望在不发生局部失稳的前提下,壁厚 设计得薄一点,截面设计大一些。
但由于受整机尺寸的限制,吊臂外形尺寸不能增大,因 而只能在截面总高和总竞保持不变的条件下进行截面的 优化。而由QAY125伸缩吊臂在全缩
多功能高空作业平台伸缩臂的有限元分析与优化

() 1 , 5 . 则许用应力 为 : ]331 = 3 . a ' = 3/.= 5 . 5 [ = 5/. 2 53 o ]2 51 167 1 5 MP z 5
式 中:△ } { “ —单元 8 个节点的位移向量 ;Ⅳ] [ —形函数矩阵。
任一点的应变位移的关系为 :6 I { “}e {k= N]△ ‘ "} /
重 物 惯性 阻 转矩 T=  ̄ a 1 3 I :2P  ̄ = 5 N‘ p n
() 1
( 2)
旋转轴的摩擦转矩 T=y+ T= 2 7 I :3 T 2 ̄ 6 . N。 6 n 坡度转矩 T= os a i l3 6 2 I :4P ci s  ̄ = 7 . N。 n n 9 n
21 7
3伸缩臂的有 限元分析
31接触 单元分 析及 其方 程 .
设接触单元的厚度为 e局部坐标系 ( t的原点取在单元 , mn)
f Au 1
2两种工况来研究。 ) 约束第一节立柱的底部各节点在 U 、 、 三 。
个方 向的位移 自由度和 U U 、 R 三个方 向的旋转 自由度 。 R 、R: , U
mut u c i n hg t u e pa f r lf n t ih — i d lt m i o alt o
L i-e gJA GWe,H N i u , A a — a I n fn , N iZ A G L- n G O N n n n Q I j ( c ol f ca ia E g er gJ n s nvr t o in e n eh o g , hni g2 0 , hn ) S ho o h ncl n i ei ,i guU i s y f ce c dT cn l y Z ej n 0 3 C ia Me n n a e i S a o a 1 2
起重机伸缩臂结构工况与力学设计分析

起重机伸缩臂结构工况与力学设计分析摘要:随着国内基础设施建设的不断发展, 操作便捷灵活的汽车起重机在整个工程领域中所占比重不断上升。
由于行业内部竞争激烈和施工现场不确定因素的增多, 导致需求者对汽车起重机的起重性能、承载能力和安全性要求也逐渐提高。
起重臂作为起重机的主要受力构件 , 其强度和刚度的强弱必然会对整机的性能造成一定的影响。
所以对起重机伸缩臂的强度和刚度分析以及结构的优化设计研究具有现实意义。
本文把汽车起重机伸缩臂作为研究对象,先结合起重机设计规范和相关力学知识对伸缩臂结构进行必要的力学分析。
然后据实际工程作业情况,对起重机实际工况作出分析,选择其中三种典型工况进行了相关分析研究。
关键词:伸缩臂;工况分析;力学计算引言我国城镇化建设的快速发展,促使建筑业也蓬勃发展,造就了一批高大宏伟的建筑物。
近年来,居民楼也由传统的多层发展为高层,并且外观造型新颖奇特,深受人们青睐。
对如何维护新型建筑外观的清洁与美观提出了新的要求,所以对施工作业设备在日常施工、安装以及维护有了更高的要求。
此外,在经济迅速发展,国家对基础设施建设投入也逐渐增大,在建设规模越来越大的环境下,对起重安装工程设备的需求量也随之加大,并由之前传统的半自动化作业向自动化,半机械化向机械化过渡,因此工程起重机的需求量开始快速增长,产量也是日新月异地刷新纪录。
值得一提的是,国内外有一个共通点——发展最为迅速的是汽车起重机。
而汽车起重机关键部位在于吊臂,利用吊臂卸载负荷,可以提高起重机的作业范围和作业难度。
而汽车起重机的主要承载构件是吊臂,担负着起重机的各种负荷,因而耗钢量很大。
其结构设计好坏,对起重机整体性能以及生产成本的控制将产生直接影响。
因此很有必要对汽车起重机吊臂的结构设计、力学性能等进行充分的分析与辩证。
汽车起重机的吊臂伸缩形式分类1、顺序伸缩机构–伸缩臂的各节臂以一定的先后次序逐节伸缩。
2、同步伸缩机构–伸缩臂的各节臂以相同的相对速度进行伸缩。
汽车起重机吊臂优化设计及性能分析

(2)
© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
11 4 农业工程学报 1996年
式中 x 1, x 2, x 3, x 4, x 5 ——吊臂截面长、宽、高、上下盖板及侧板厚度 (见图1) ; n —— 吊臂 节数。
3 吊臂优化设计
吊臂下盖板失稳原因是结构截面尺寸不合理, 因此, 要对吊臂进行优化设计。
3. 1 数学模型
3. 1. 1 目标函数
衡量截面参数的重要指标是其自身的质量, 以吊臂质量为目标函数, 有
n
n
∑ ∑ F (X ) = W i (X ) = Θ0 A i (X ) li
(1)
i= 1
i= 1
式中 W i (X ) ——第 i 节臂的可变质量; A i (X ) ——第 i 节臂的轴向截面面积; li ——第
第12卷 第3期 农 业 工 程 学 报 V o l. 12 N o. 3 1996年 9月 T ran saction s of the CSA E Sep t. 1996
汽车起重机吊臂优化设计及性能分析α α α
i 节臂的长度; n ——伸缩臂的节数; Θ0 ——材料的密度。
3. 1. 2 设计变量
根据使用要求及所选材料, 式 (1) 中 Θ0及 li 即可确定, 可变参数为各节臂的截面面积,
当截面结构选为矩形断面箱形结构时, 设计变量为
X = (x 1i x 2i … x 5i) ( i = 1, 2, …, n)
(7)
3. 2 优化设计程序实现
这里选用了复合形法[5]进行优化计算, 主要进行各种性能约束函数计算, 本文针对箱
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车起重机伸缩臂结构有限元分析及优化
汽车起重机伸缩臂结构有限元分析及优化
引言:
汽车起重机作为一种重要的工程机械设备,在建筑、物流等行业中起着重要的作用。
而在汽车起重机的设计中,伸缩臂结构是其关键组成部分之一。
伸缩臂结构的合理设计和优化可以提高汽车起重机的工作效率和承载能力,降低其重量和成本。
因此,对汽车起重机伸缩臂结构进行有限元分析与优化具有重要的理论意义和实际应用价值。
1. 伸缩臂结构的设计和工作原理
汽车起重机的伸缩臂结构由伸缩臂筒、伸缩臂滑块、伸缩臂大臂、伸缩臂小臂等组成。
其工作原理是通过液压系统控制伸缩臂筒的伸缩,从而实现伸缩臂的变化和起重高度的调节。
伸缩臂结构的设计直接影响汽车起重机的工作性能和稳定性。
2. 有限元分析的原理和方法
有限元分析是一种数值分析方法,通过将结构离散化为有限个小元素,利用数学和力学原理对每个小元素进行计算,最后得到整个结构的应力、应变、位移等相关信息。
有限元分析方法可以精确计算伸缩臂结构在不同工况下的受力情况,为优化设计提供基础。
3. 初始结构的有限元分析
首先,采用有限元分析方法对汽车起重机初始伸缩臂结构进行分析。
通过初始结构的有限元模型建立和边界条件的设定,计算得到伸缩臂结构在不同工况下的受力情况,包括应力、应变、变形等参数。
利用有限元分析结果,可以评估初始结构的工作性能,并确定需要改进的方向。
4. 结构优化设计与分析
基于初始结构的有限元分析结果,可以进行伸缩臂结构的优化设计。
结构优化的目标是提高结构的工作效率和承载能力,降低结构的重量和成本。
通过在有限元模型中进行参数化设计和分析,可以获得不同设计方案下的结构性能指标。
综合考虑结构的强度、刚度、轻量化等因素,选择最优设计方案。
5. 优化设计的验证与验证
对优化设计方案进行验证与评估是优化过程的重要环节。
通过将优化设计方案转化为实际工艺制造过程中的参数,并制作样件进行实际测试和评估,可以验证优化设计方案的有效性,并进一步优化设计方案。
结论:
通过有限元分析和优化设计,可以对汽车起重机伸缩臂结构进行全面的评估和改进。
通过合理的优化设计,可以提高汽车起重机的工作效率和承载能力,降低其重量和成本,提高其竞争力和市场价值。
同时,针对不同工况下的应力和变形情况,还可以引导相关工程师改进和优化结构设计,提升汽车起重机的安全性和可靠性。
因此,汽车起重机伸缩臂结构的有限元分析和优化设计具有重要的理论和实践意义
综合利用有限元分析和优化设计方法对汽车起重机伸缩臂结构进行评估和改进,能够有效提高其工作性能和承载能力,降低重量和成本,提升竞争力和市场价值。
通过合理的优化设计,可以针对不同工况下的应力和变形情况进行改进,从而提高结构的安全性和可靠性。
汽车起重机伸缩臂结构的有限元分析和优化设计在理论和实践上具有重要的意义。