七年级数学下册知识点总结

合集下载

七年级数学下册知识点归纳汇总

七年级数学下册知识点归纳汇总

七年级数学下册知识点归纳汇总一、相交线两条直线相交,形成4个角。

1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

性质是对顶角相等。

①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。

具有这种关系的两个角,互为邻补角。

如:∠1、∠2。

②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。

如:∠1、∠3。

③对顶角相等。

二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。

2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

3.垂足:两条垂线的交点叫垂足。

4.垂线特点:过一点有且只有一条直线与已知直线垂直。

5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。

1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。

如:∠1和∠5。

2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。

如:∠3和∠5。

3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF 的同侧,具有这种位置关系的两个角叫同旁内角。

如:∠3和∠6。

四、平行线及其判定平行线1.平行:两条直线不相交。

互相平行的两条直线,互为平行线。

a∥b(在同一平面内,不相交的两条直线叫做平行线。

)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3.平行公理推论:平行于同一直线的两条直线互相平行。

如果b//a,c//a,那么b//c平行线的判定:1. 两条平行线被第三条直线所截,如果同位角相等,那么这两条直线平行。

七年级数学下册知识总结

七年级数学下册知识总结

【导语】学习效率的⾼低,是⼀个学⽣综合学习能⼒的体现。

在学⽣时代,学习效率的⾼低主要对学习成绩产⽣影响。

当⼀个⼈进⼊社会之后,还要在⼯作中不断学习新的知识和技能,这时候,⼀个⼈学习效率的⾼低则会影响他(或她)的⼯作成绩,继⽽影响他的事业和前途。

可见,在中学阶段就养成好的学习习惯,拥有较⾼的学习效率,对⼈⼀⽣的发展都⼤有益处。

下⾯是为您整理的《七年级数学下册知识总结》,仅供⼤家参考。

【篇⼀】七年级数学下册知识总结 1、整式的乘除的公式运⽤(六条)及逆运⽤(数的计算)。

(1)an·am(2)(am)n=(3)(ab)n=4)am÷an(5)a0(a≠0)(6)a-p== 2、单项式与单项式、多项式相乘的法则。

3、整式的乘法公式(两条)。

平⽅差公式:(a+b)(a-b)= 完全平⽅公式:(a+b)2(a-b)2 常⽤公式:(x+m)(x+n)= 4、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。

5、互为余⾓和互为补⾓和 6、两直线平⾏的条件:(⾓的关系线的平⾏) ①相等,两直线平⾏; ②相等,两直线平⾏; ③互补,两直线平⾏. 7、平⾏线的性质:两直线平⾏。

(线的平⾏ 8、能判别变量中的⾃变量和因变量,会列列关系式(因变量=⾃变量与常量的关系) 9、变量中的图象法,注意:(1)横、纵坐标的对象。

(2)起点、终点不同表⽰什么意义(3)图象交点表⽰什么意义(4)会求平均值。

10、三⾓形 (1)三边关系:⾓的关系) (2)内⾓关系: (3)三⾓形的三条重要线段: (4)三⾓形全等的判别⽅法:(注意:公共边、边的公共部分对顶⾓、公共⾓、⾓的公共部分) (5)全等三⾓形的性质: (6)等腰三⾓形:(a)知边求边、周长⽅法(b)知⾓求⾓⽅法(c)三线合⼀: (7)等边三⾓形: 11、会判轴对称图形,会根据画对称图形,(或在⽅格中画) 12、常见的轴对称图形有: 13、(1)等腰三⾓形:对称轴,性质 (2)线段:对称轴,性质 (3)⾓:对称轴,性质 14、尺规作图:(1)作⼀线段等已知线段(2)作⾓已知⾓(3)作线段垂直平分线 (4)作⾓的平分线(5)作三⾓形 15、事件的分类:,会求各种事件的概率 (1)摸球:P(摸某种球)= (2)摸牌:P(摸某种牌)= (3)转盘:P(指向某个区域)= (4)抛骰⼦:P(抛出某个点数)= (5)⽅格(⾯积):P(停留某个区域)= 16、必然事件不可能事件,不确定事件 17、⽅法归纳:(1)求边相等可以利⽤ (2)求⾓相等可以利⽤。

七年级下册数学知识点总结与归纳

七年级下册数学知识点总结与归纳

第一章 二元一次方程组1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是一次的整式方程叫做二元一次。

方程一般形式是 ax+by=c(a ≠0,b ≠0)。

2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。

3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。

5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。

6.代入消元:把方程组里的一个方程变形,用含有一个未知数的代数式表示另一个未知数;把这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,可先求出一个未知数的值;把求得的这个未知数的值代入第一步所得的式子中,可求得另一个未知数的值,这样就得到了方程的解⎩⎨⎧==b y a x 7.加减消元法:把方程组里一个(或两个)方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数的绝对值相等;把所得到的两个方程的两边分别相加(或相减),消去一个未知数,得到含另一个未知数的一元一次方程(以下步骤与代入法相同)第二章 整式的乘法1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

bc a 22-的 系数为-2,次数为4,单独的一个非零数的次数是0。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

122++-x ab a ,项有4项,二次项为 ,一次项为 ,常数项为 ,各项次数分别为 ,系数分别为 ,叫 次 项式。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

4、同底数幂的乘法法则:m n m n a a a +=g (n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

七年级数学下册知识点归纳

七年级数学下册知识点归纳

七年级数学下册知识点归纳一、图形的认识1. 点、线、面的定义和特征2. 线段、直线、射线的区别和特征3. 角的定义和特征4. 图形的种类和特点:三角形、四边形、多边形等5. 同种图形的分类和比较二、平面图形的性质研究1. 三角形的内角和外角关系2. 三角形的分类及其性质3. 三角形内切圆和外接圆的应用4. 平行四边形的性质及其判定5. 长方形、正方形、菱形和矩形的性质及其判定三、图形的相似与全等1. 图形相似的概念和判定条件2. 相似三角形的性质及其判定3. 图形全等的概念和应用4. 证明图形全等的方法和步骤四、直角三角形的研究1. 直角三角形的定义和性质2. 勾股定理的应用3. 余弦定理和正弦定理的应用五、多边形的面积和周长1. 一般多边形的周长计算2. 三角形的面积计算和性质3. 四边形的面积计算和性质4. 多边形的面积计算和性质六、圆的研究1. 圆的定义和性质2. 圆的元素:圆心、半径、直径、弧长等的概念和关系3. 圆内角和弧度的关系及其应用4. 弧长、扇形面积和圆的面积计算七、线性方程的解法1. 一元一次方程的解方法2. 解一元一次方程的应用3. 解一元一次方程组的方法和步骤4. 一次函数及其应用八、比例与相似1. 比和比例的概念及其应用2. 相似三角形的比例关系3. 解直角三角形的比例问题4. 解平行四边形的比例问题九、数据的收集和处理1. 数据收集的方法和意义2. 数据的整理和描述3. 数据图形的绘制和解读4. 统计与概率的基本知识十、考试技巧与思维方法1. 解题方法和思维技巧的培养2. 数学解题策略与问题解决能力的提升3. 拓展数学的应用能力和创新思维。

七年级下册数学第一章知识点

七年级下册数学第一章知识点

七年级下册数学第一章知识点数学是一门非常重要的学科,我们每天都会使用到数学的相关知识。

在学习数学的过程中,第一章是非常关键的,因为它包括了七年级下册数学的基础知识点。

以下为数学第一章的知识点:一、整数与小数1、认识整数整数是指没有小数部分,可以是正数、负数和零,如:-3、0、1、2、3等。

2、认识小数小数是指整数和分数之间的数,用小数点作为整数和小数部分的分隔符,如:0.25、3.14、-1.5等。

3、整数与小数的互换将小数转化为整数的思路是将小数点向右移动相应的位数,将整数转化为小数的思路是在其后面加上一个小数点后再加上相应的零。

二、数轴与绝对值1、认识数轴数轴是一种表示数值大小和极性(正负)的直线工具,它将所有实数按大小关系有序排列。

2、认识绝对值绝对值是指一个实数的数字大小,与它所代表的数字的正负性无关。

绝对值的值永远是非负的。

三、加法原理与减法原理1、加法原理加法原理指的是,如果一个多重事件包括两个或两个以上的独立事件,则在这些事件中发生任一个事件的总次数等于每个事件发生的次数之和。

2、减法原理减法原理指的是,如果一个多重事件可以通过从总体中减去一个部分得到,则其发生的次数等于总体发生的次数减去这个部分发生的次数。

四、数的比较与大小关系1、认识数的大小关系数的大小关系是指比较两个数的大小,分别为大于、小于和等于。

2、用数轴比大小若两个数在数轴上的位置相同,则比较它们的大小时可以直接比较它们距离零点的长度。

以上为七年级下册数学第一章知识点的简单介绍,这些知识点为数学学习的基础,学好这些知识点对于以后的学习也尤为重要。

因此,希望大家能够认真学习掌握。

七年级下册数学知识点归纳

七年级下册数学知识点归纳

七年级下册第五章相交线与平行线一、知识结构图相交线相交线垂线同位角、内错角、同旁内角平行线平行线及其判定平行线的判定平行线的性质平移命题、定理二、知识定义邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

平行线:在同一平面内,不相交的两条直线叫做平行线。

同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

命题:判断一件事情的语句叫命题。

平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

三、定理与性质对顶角的性质:对顶角相等。

垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

平行线的性质:性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

平行线的判定:判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角相等,两直线平行。

第六章平面直角坐标系一、知识结构图有序数对平面直角坐标系平面直角坐标系用坐标表示地理位置坐标方法的简单应用用坐标表示平移二、知识定义有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

七年级下册数学知识点归纳

七年级下册数学知识点归纳

一、整式的加减1. 同底数幂的乘法:底数不变,指数相加。

2. 同底数幂的除法:底数不变,指数相减。

3. 幂的乘方:底数不变,指数相乘。

4. 积的乘方:等于各因式分别乘方后的积。

5. 单项式与单项式的和:系数相加,字母部分不变。

6. 单项式与单项式的差:系数相减,字母部分不变。

7. 单项式与单项式的积:系数相乘,字母部分合并。

8. 单项式与多项式的积:用单项式去乘多项式的每一项,再把所得的积相加。

9. 多项式与多项式的和:同类项的系数相加,字母部分不变。

10. 多项式与多项式的差:同类项的系数相减,字母部分不变。

11. 多项式与多项式的积:用一个多项式去乘另一个多项式的每一项,再把所得的积相加。

二、方程与不等式1. 一元一次方程:含有一个未知数,且未知数的最高次数为1的方程。

2. 一元一次不等式:含有一个未知数,且未知数的最高次数为1的不等式。

3. 一元一次方程的解法:移项、合并同类项、化系数为1。

4. 一元一次不等式的解法:移项、合并同类项、化系数为1。

5. 二元一次方程组:含有两个未知数,且未知数的最高次数为1的方程组。

6. 二元一次不等式组:含有两个未知数,且未知数的最高次数为1的不等式组。

7. 二元一次方程组的解法:消元法、代入法。

8. 二元一次不等式组的解法:消元法、代入法。

9. 分式方程:含有分母的方程。

10. 分式方程的解法:去分母、化系数为1、检验。

11. 分式不等式:含有分母的不等式。

12. 分式不等式的解法:去分母、化系数为1、检验。

三、几何图形1. 点、线、面的概念。

2. 直线的性质:无端点、无限延伸、不可度量长度。

3. 射线的性质:有一个端点、无限延伸、不可度量长度。

4. 线段的性质:有两个端点、有限长度、可度量长度。

5. 角的概念:两条射线从同一点出发所形成的图形。

6. 角的分类:锐角、直角、钝角、平角、周角。

7. 角的性质:度数大小关系、补角和余角、角的和差。

8. 三角形的概念:由三条边和三个内角组成的封闭图形。

人教版七年级下册数学知识点总结归纳

人教版七年级下册数学知识点总结归纳

人教版七年级下册数学知识点总结归纳七年级下册数学知识点1概率1.一般地,在大量重复试验中,如果事件A发生的频率n/m会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。

2.随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。

3.互斥事件:不可能同时发生的两个事件叫做互斥事件。

4.对立事件:即必有一个发生的互斥事件叫做对立事件。

5.必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。

6.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。

2相交线与平行线1.相交线在同一平面内,两条直线的位置关系有相交和平行两种。

如果两条直线只有一个公共点时,称这两条直线相交。

2.垂线当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。

3.同位角两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。

4.内错角两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角。

5.同旁内角两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。

6.平行线几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。

平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

7.平移平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

3平面直角坐标系1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册知识点总结在平凡的学习生活中,不管我们学什么,都需要掌握一些知识点,知识点在教育实践中,是指对某一个知识的泛称。

哪些才是我们真正需要的知识点呢?下面是店铺为大家收集的七年级数学下册知识点总结,希望对大家有所帮助。

七年级数学下册知识点总结1单项式1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

多项式1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

整式1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:(1)代数式化简。

(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

同底数幂的乘法1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。

2、底数相同的幂叫做同底数幂。

3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。

即:am﹒an=am+n。

4、此法则也可以逆用,即:am+n = am﹒an。

5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。

幂的乘方1、幂的乘方是指几个相同的幂相乘。

(am)n表示n个am相乘。

2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。

(am)n=amn。

3、此法则也可以逆用,即:amn =(am)n=(an)m。

积的乘方1、积的乘方是指底数是乘积形式的乘方。

2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。

即(ab)n=anbn。

3、此法则也可以逆用,即:anbn=(ab)n。

三种“幂的运算法则”异同点1、共同点:(1)法则中的底数不变,只对指数做运算。

(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。

(3)对于含有3个或3个以上的运算,法则仍然成立。

2、不同点:(1)同底数幂相乘是指数相加。

(2)幂的乘方是指数相乘。

(3)积的乘方是每个因式分别乘方,再将结果相乘。

同底数幂的除法1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。

2、此法则也可以逆用,即:am-n = am÷an(a≠0)。

零指数幂1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。

负指数幂1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。

整式的乘法(一)单项式与单项式相乘1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

2、系数相乘时,注意符号。

3、相同字母的幂相乘时,底数不变,指数相加。

4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。

5、单项式乘以单项式的结果仍是单项式。

6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。

(二)单项式与多项式相乘1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。

即:m(a+b+c)=ma+mb+mc。

2、运算时注意积的符号,多项式的每一项都包括它前面的符号。

3、积是一个多项式,其项数与多项式的项数相同。

4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。

(三)多项式与多项式相乘1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

即:(m+n)(a+b)=ma+mb+na+nb。

2、多项式与多项式相乘,必须做到不重不漏。

相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。

在未合并同类项之前,积的项数等于两个多项式项数的积。

3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。

4、运算结果中有同类项的要合并同类项。

5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。

平方差公式1、(a+b)(a-b)=a2-b2,即:两数和与这两数差的积,等于它们的平方之差。

2、平方差公式中的a、b可以是单项式,也可以是多项式。

3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。

4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成(a+b)(a-b)的形式,然后看a2与b2是否容易计算。

相交线与平行线1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

性质是对顶角相等。

2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。

3、两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧)内错角Z(在两条直线内部,位于第三条直线两侧)同旁内角U(在两条直线内部,位于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。

其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

5、垂直三要素:垂直关系,垂直记号,垂足6、垂直公理:过一点有且只有一条直线与已知直线垂直。

7、垂线段最短。

8、点到直线的距离:直线外一点到这条直线的垂线段的长度。

9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

如果b//a,c//a,那么b//c10、平行线的判定:①同位角相等,两直线平行。

②内错角相等,两直线平行。

③同旁内角互补,两直线平行。

11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

12、平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

13、平面上不相重合的两条直线之间的位置关系为_______或________14、平移:①平移前后的两个图形形状大小不变,位置改变。

②对应点的线段平行且相等。

平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

15、命题:判断一件事情的语句叫命题。

命题分为题设和结论两部分;题设是如果后面的,结论是那么后面的。

命题分为真命题和假命题两种;定理是经过推理证实的真命题。

实数一、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数负有理数正无理数无理数无限不循环小数负无理数整数包括正整数、零、负整数。

正整数又叫自然数。

正整数、零、负整数、正分数、负分数统称为有理数。

2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如7,2等;π(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等; 3(3)有特定结构的数,如0.1010010001…等;二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4.实数与数轴上点的关系:每一个无理数都可以用数轴上的一个点表示出来,数轴上的点有些表示有理数,有些表示无理数,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。

三、平方根、算数平方根和立方根1、平方根(1)平方根的定义:如果一个数x的平方等于a,那么这个数x就叫做a的平方根.即:如果a,那么x叫做a的平方根.?x2(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。

3?3的平方等于9,9的平方根是?(3)平方与开平方互为逆运算:(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算(5)符号:正数a的正的平方根可用表示,也是a的算术平方根;正数a的负的平方根可用-表示.a?2(6)x <—> ??xa是x的平方x的平方是ax是a的平方根a的平方根是x2、算术平方根a,那么这个正数?(1)算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2x叫做a的算术平方根.a的算术平方根记为,读作“根号a”,a 叫做被开方数.规定:0的算术平方根是0.。

?a (x≥0)中,规定x?也就是,在等式x2(2)的结果有两种情况:当a是完全平方数时,是一个有限数;当a不是一个完全平方数时,是一个无限不循环小数。

(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。

相关文档
最新文档