(完整)初中数学线段与角练习题
初中数学三角形有关的线段讲解及习题

(2)周长问题:如图所示,AD是BC边上的中线,△ABD和△ACD的周长之差实质上就是AB与AC的差,这也是三角形中线中常出现的问题.
【例10】有一块三角形优良品种试验基地,如图所示,由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择(画图说明).
所以∠DAC+∠C=90°,∠EBC+∠C=90°.
所以∠DAC=∠EBC.
10.三角形中线应用拓展
三角形的中线是三角形中的一条重要线段,它最大的特点是已知三角形的中线,图中一定含有相等线段,由此延伸出中线的应用:
(1)面积问题:三角形的中线将三角形分成面积相等的两个三角形,如图,在△ABC中,AD是BC边上的中线,则S△ABD=S△ACD=S△ABC.
9.三角形高的应用
从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高.
因为三角形的高是通过作垂线得到的,既有直角,又有垂线段,因此它的应用方向主要有两方面:一是求面积问题,高是垂线段,也是点到直线的距离,是求三角形的面积所必须知道的长度;二是直角,高是垂线段,因而一定有直角,根据所有直角都相等或互余关系进行解题是三角形的高应用的另一方向.
【例7-1】以下列长度的三条线段为边,能组成三角形吗?
(1)6 cm,8 cm,10 cm;
(2)三条线段长之比为4∶5∶6;
(3)a+1,a+2,a+3(a>0).
分析:根据三角形的三边关系来判断已知的三条线段能否组成三角形,选择较短的两条线段,看它们的和是否大于第三条线段,即可判断能否组成三角形.
方案3:如图(3),分别取BC的中点D、CD的中点E、AB的中点F,连接AD,AE,DF.
1.4 线段、角的轴对称性 练习(1)

学案1.4 线段、角的轴对称性知识与基础1、在下列图形中,不是轴对称图形的是( )A 、一条线段B 、两条相交直线C 、有公共端点的两条相等的线段D 、有公共端点的两条不相等的线段2、有下列图形:(1)两个点;(2)一条线段;(3)一个角;(4)一个长方形;(5)两条相交直线;(6)两条平行线。
其中轴对称图形共有( )A 、3个B 、4个C 、5个D 、6个3、如图,OC 平分∠AOB ,点P 在OC 上,PD ⊥OA 于D ,PE ⊥OB 于E ,若∠1=20º,则∠3=______º;若PD =1cm ,则PE =_________cm. A AD C DPO E B B E C4、如图,在△ABC 中,AB 的垂直平分线DE 交BC 于点E ,交AB 于点D ,△ACE 的周长为11cm ,AB =4cm ,则△ABC 的周长为__________cm.5、如图,在△ABC 中,∠C =90°,BD 平分∠ABC CD :AD =2:3,则点D 到AB 的距离为A D CPA B6、如图,直线交于点O ,点P 关于l 1、l 2的对称点分别为P 、P 。
(1)若l 1、l 2相交所成的锐角∠AOB =60°,则∠P 1OP 2=_________;(2)若OP =3,P 1P 2=5,则△P 1OP 2的周长为_________。
7、如图,在△ABC 中,AD 是边BC 的垂直平分线,DE ⊥AB 于E ,DF ⊥AC 于F 。
(1)AD 是∠BAC 的角平分线吗?为什么?(2)写出图中所有的相等线段,并说明理由。
应用与拓展8、如图,在四边形ABCD 中,对角线AC 、BD 互相垂直平分,交点为O ,写出图中所有相等的线段和相等的角,A O C并说明理由。
B9、“西气东输”是造福子孙后代的创世工程,现有两条高速公路l 1、l 2和两个城镇A 、B (如1 2 3图),准备建一个燃气控制中心站P,使中心站到两条公路距离相等,并且到两个城镇等距离,请你画出中心站的位置。
2020初中数学中考专题复习——四边形中的线段最值问题专项训练2(附答案详解)

解:∵在△ABC中,AB=6,AC=8,BC=10,
∴AB2+AC2=BC2,
即∠BAC=90°.
又PE⊥AB于E,PF⊥AC于F,
∴四边形AEPF是矩形,
∴EF=AP.
∵M是EF的中点,
∴AM= EF= AP,
因为AP的最小值即为直角三角形ABC斜边上的高
AP= ,
∴AM的最小值是 .
故选C.
②根据对称性:连接ED交BC于点P,此时AP+EP=AD,最小,再过点D作DF垂直AC的延长线于点F,根据勾股定理即可求解.
【详解】
如图所示:
(1)∵BD∥CE,CD∥BE,
∴四边形BDCE是平行四边形,
∵CE⊥AB,
∴∠BEC=90°,
∴四边形BECD是矩形;
(2)①当BE的长为 时,四边形BECD是菱形.理由如下:
6.C
【解析】
【分析】
根据勾股定理的逆定理可以证明∠BAC=90°,根据直角三角形斜边上的中线等于斜边的一半,则AM= EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短知:AP的最小值即等于直角三角形ABC斜边上的高.
【详解】
设 与AC交于点O,作 ⊥ 于 ,如图所示:
在Rt△ABC中,∠BAC=90 ,∠ACB=45 ,
∴ ,
∵四边形PAQC是平行四边形,
∴ ,
∵ ⊥ ,∠ACB=45 ,
∴ ,
当 与 重合时,OP的值最小,则PQ的值最小,
∴PQ的最小值
故选:A.
【点睛】
本题考查了勾股定理的运用、平行四边形的性质以及垂线段最短的性质,利用垂线段最短求线段的最小值是解题的关键.
2019中考数学《线段与角》专题复习考点讲解(含答案)

线段与角考点图解技法透析1.与直线、射线、线段有关的知识(1)直线:①直线的概念,一根拉得很紧的线,给我们以直线的形象,直线是直的,并且是向两方无限延伸的.②直线的表示方法:如图记作“直线AB”或“直线BA”;l 记作“直线l”.③直线的性质:过两点有且只有一条直线,即:两点确定一条直线.(2)射线:①射线的概念,直线上一点和它一旁的部分叫射线,这一点叫射线的端点.射线向一方无限延伸.②射线的表示方法:如图记作“射线AB”;l记作射线l,注意必须把表示端点的字母写在前面.(3)线段:①线段的概念:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点,线段不延伸.②线段的表示方法:如图记求“线段AB”或“线段BA”或“线段a”.③线段的性质:两点的所有连线中,线段最短.即两点之间,线段最短.(4)直线、射线、线段的区别与联系.①联系:直线、射线都可以看作是线段无限延伸得到的;反过来,射线和线段都是直线的一部分,线段可以看作是直线上两点及这两点间的部分,射线可以看作是直线上一点及其一旁的部分.②区别:如下表(5)线段的画法:①用直尺可以画出以A、B为端点的线段,画时不能向任何一方延伸.②“连接AB”的意义就是画出以A、B为端点的线段.③线段的延长线,如图,延长AB是指按由A向B的方向延长.延长BA是指按由B向A的方向延长.(也可说反向延长AB)(6)线段的比较①度量法:测量线段的长度后比较大小,②叠合法:用圆规把一条线段移到另一条线段上比较大小.(7)画一条线段等于已知线段,如:已知线段a,画一条线段AB=a,有两种画法:①先画射线AC,再在射线AC上截取AB=a.②先测量线段a的长度、再画一条等于这个长度的线段AB即可.(8)线段的中点及等分点的概念①如图①点O把线段AB分成相等的两条线段,AO与OB,点O叫线段AB的中点,显然有AO=OB=12AB(或AB=2AO=2OB)②如图②点O1,O2把线段AB分成相等的三条线段AO1=O1O2=O2B,则点O1,O2叫做线段AB 的三等分点,显然有:AO 1=O 1O 2=O 2B =13AB(或AB =3AO ,=3O 1O 2=3O 2B) ③如图③,点O 1,O 2,O 3把线段AB 分成相等的四条线段,则点O 1,O 2,O 3叫做线段AB的四等分点,显然有:AO 1=O 1O 2=O 2O 3=O 3B =14AB(或AB =4AO 1=4O 1O 2=4O 2O 3=4O 3B) (9)两点间的距离:连接两点间的线段的长度叫两点间的距离.2.与角有关的知识(1)角的概念:角既可以看成有公共端点的两条射线组成的图形,又可以看成是一条射线绕着端点从一个位置旋转到另一个位置所组成的图形.(2)角的四种表示方法:①一般可以用三个大写字母表示,且表示顶点的字母必须写在中间.如图①,记作∠AOB (或∠BOA );②当角的顶点处只有一个角时,可以用角的顶点字母来表示这个角,如图①可记作∠O ;③可以用一个小写希腊字母(如α、β、γ等)表示,如图②∠BOC 记作∠a ;④用一个阿拉伯数字表示如图②∠AOC 记作∠1.(3)特殊角及角的分类:①平角:一条射线绕着它的端点旋转,当转到与起始位置在同一条直线上时所成的角. ②周角:一条射线绕着它的端点旋转,当转到与起始位置重合时所成的角. ③直角:等于90°的角叫直角.④锐角:小于直角的角叫锐角.⑤钝角:大于直角而小于平角的角叫钝角.(4)角度制及角的画法:①角度制:以度、分,秒为单位的角的度量制,1°=60',1'=60".②借助三角尺和量角器画角.(5)角的和、差、倍、分的关系①每的和、差,如图所示:∠AOC =∠AOB +∠BOC ,∠AOB =∠AOC -∠BOC②角的倍、分:角平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,如图所示,若∠1=∠2,则OC 是∠AOB 的平分线,此时有∠1=∠2=12∠AOB (或∠AOB =2∠1=2∠2). 同理,还有角的三等分线、四等分线……等.(6)余角和补角:①定义:如果两个角的和等于90°,那么这两个角互为余角;如果两个角的和等于180°,那么这两个角互为补角.②性质:同角(或等角)的余角相等;同角(或等角)的补角相等(7)方位角:方位角是表示方向的角.具体表示时.是南(或北)在先,再说偏东(或偏西)3.钟表上有关角的问题(1)钟表上,相邻两个数字之间有5个小格,每个小格表示1分钟,如果与角度联系起来,每一小格对应6°;(2)秒针每分钟转过360°,分钟每分钟转过6°,时针每分钟转过0.5°.(3)时针与分针成一直线必须成180°的角,两针重合必须成0°的角,名题精讲考点1例1 平面内两两相交的6条直线,其交点个数最少为_______个,最多为_______个.【切题技巧】可以通过画图来探求,先从简单情形、特殊情形考虑,再进行归纳,得出结论.①当平面内两两相交的6条直线相交于一点,此时交点的个数最少为1个,②当平面内两两相交的5条直线相交于一点,第6条直线与前面的5条直线都相交,此时交点的个数为1+5=6个,③当平面内两两相交的4条直线相交于一点,第5条直线与前面的4条直线都相交,第6条直线再与前面的5条直线都相交,此时交点的个数为1+4+5=10个……,因此为使平面内两两相交的直线的交点个数最多,则要使任意两直线相交都产生新的交点,即任意两条直线相交都确定一个交点,且任意三条直线都不过同一点,于是可得交点数最多为:1+2+3+4+5=()1552+⨯=15(个)【规范解答】分别填1个,15个.(1)本例可进行如下推广:若平面内有两两相交的n条直线,其交点最少为1个,最多为1+2+3+…+(n+1)=12n(n-1)个交点;(2)一般地,平面内n条直线两两相交,且任意三条直线都不共点,那么这些直线将平面分成12(n+1)n+1个互不重叠的部分.(3)-般地,如果一条直线上有n个点,那么这条直线上的不同线段的条数为(n-1)+(n-2)+…+2+1=12n(n-1)条;共有2n条不同的射线.【同类拓展】1.如图,数一数图中共有多少条不同的线段,多少条不同的射线?考点2 线段长度的计算例2 如图C、D、E将线段AB分成2:3:4:5四部分,M、P、Q、N分别是AC、CD、DE、EB的中点,且MN=42,求PQ的长.【切题技巧】先根据比例把AC、CD、DE、EB用含x的代数式表示,再利用线段的和差及线段的中点的意义可得到相应的方程,从而求得PQ的长.【规范解答】∴【借题发挥】几何问题本身是研究图形的性质和数量关系,准确地画出图形,能使问题中各个量之间的关系直观化.本题的分析要着眼于找出未知线段的联系,使未知向已知转化,求线段的长度要充分利用线段的和差与线段的中点、等分点的意义,其解题方法与途径不是唯一的,需要我们根据题意灵活运用不同方法解决实际问题.【同类拓展】2.已知三条线段a、b、c在同一条直线上,他们有共同的起点,a 的终点是b的中点,c的中点是b的终点,且a+b+c=7cm,求a、b、c的长.考点3 角的个数及角的度数的计算例3 如图已知OA、OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD.(1)若∠AOD=70°,∠MON=50°求∠BOC的大小;(2)若∠AOD=α;∠MON=β,求∠BOC的大小(用含α、β的式子表示).利用角的平分线性质,角的和、差之间的转化,先找出∠AOD,∠MON与∠BOC之间的数量关系,为方便角的表示,可用含α、β的式子表示所求的角,也可设未知数,把几何问题代数化,通过整体变形、列方程,从而确定出角的大小.【规范解答】【借题发挥】(1)对于求角的度数的计算,通常有两种思路:一是根据各个量之间的关系,用已知量来表示未知量,直接求未知量;二是通过设辅助未知数,把几何问题代数化,根据图形中角的相等关系列方程或方程组,从而求解,应注意挖掘题目中的隐含的条件,适当转换.(2)一般地,同一平面内,在平角∠AOB的内部引以O为端点的(n-1)条射线,则图中共有:n+(n-1)+(n-2)+…+3+2+1=12n(n+1)个小于平角的角.【同类拓展】 3.如图,∠AOB=100°,OM平分∠AOC,ON平分∠BOC,则∠MON=_______.考点4 钟表上有关的角度问题例4 时钟在下午4点至5点的什么时刻:(1)分针和时针重合?(2)分针和时针成一条直线?(3)分针和时针成45°角?【切题技巧】4点整时针已转过4大格,每大格30°,这时可看成时针在分针前面120°,若设所需时间为x分钟,则有6x-12x的值等于1200时,两针就重合;当时针与分针之间的角度为1200+180°时两针成一条直线;当时针与分针之间的角度差等于120°-45°(时针在前)或120°+45°(分针在前)时,两针成45°角.【规范解答】【借题发挥】钟表上时针和分钟问题实质是数学中的追及问题,钟面上有12大格,60小格,每个大格为30°的角,每个小格为6°的角.如果把单位时间内,分针和时针转过的度数当作是它们的“速度”,那么分针的速度为6°/分,时针的速度为0.5°/分,因此,分针速度是时针速度的12倍.在时针与分针的转动过程中,总是分针追及时针,然后超过时针又转化为追及时针,【同类拓展】4.王老师在活动课上为学生们讲数学故事,他发现故事开始时挂钟上的时针和分针恰好成90°角,这时是7点多;故事结束时两针恰好也是90°角,这时是8点多,他还发现,讲故事中,两针成90°角的有趣图形还出现过一次,求王老师讲故事所花的时间多少分?考点5 与线段有关的实际问题例5 摄制组从A市到B市有1天的路程,计划上午比下午多走100千米到C市吃中饭,由于堵车,中午才赶到一个小镇,只行驶了原计划的三分之一,过了小镇,汽车赶了400千米,傍晚才停下来休息.司机说,再走从C市到这里路程的二分之一就到达目的地了,问A、B两市相距多少千米?【切题技巧】题目中所给条件只有路程,而没有给出时间与速度,所以可以画出线段表示各段路程,借助图形,思考它们之间的数量关系,从而利用形数结合思想解决问题.【规范解答】如图,设小镇为D,傍晚汽车E处休息,令AD=x,则AC=3x,DE=400,CE=400-2x ED=12(400-2x)=200-x,于是有:AB=AC+CE+EB=3x+400-2x+200-x=600(km) 答:A、B两市相距600千米,【借题发挥】利用“线段图”将实际问题转化为几何问题,借助图形,利用“形数结合”思想解决实际问题是数学竞赛中的常用方法,如:A、B、C、D、E、F六支足球队进行单循环比赛,当比赛到某一天时,统计出A、B、C、D、E五队已分别比赛了5、4、3、2、1场球,则还没有与B队比赛的球队是哪支队?此题用算术或代数方法求解容易陷入困境,此时可考虑用6个点表示A、B、C、D、E、F这6支足球队,若两队已赛过一场、就在相应的两个点之间连一条线,这样用“线段图”来辅助解题,形象直观,如图所示,则还没有与B队比赛的球队是E队.【同类拓展】5.某公司员工分别在A、B、C三个住宅区,A区有30个,B区有15人,C区有10人,三个区在同一条直线上.位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在 ( )A.A区B.B区C.C区D.A、B两区之间参考答案1.(1)21(条) (2)14(条) 2.1cm,2cm,4cm. 3.50°4.1小时零5511分钟. 5.A2019-2020学年数学中考模拟试卷一、选择题1.如图,一只蚂蚁从长、宽都是3cm,高是8cm的长方体纸盒的A点沿纸盒面爬到B点,那么它所行的最短路线的长是( )+8)cm B.10cm C.14cm D.无法确定2.2018年全国消协组织创新维权手段,聚焦维权难点,消费维权能力和水平不断提.2018年,全国消协组织共受理消费者投诉76.2万件,解决55.6万件,为消费者挽回经济损失约9.8亿元;其中,9.8亿可用科学记数法表示为()A.9.08×108B.9.8×108C.0.98×109D.0.98×1010 3.2019年3月3日至3月15日,中国进入“两会时间”,根据数据统计显示,2019年全国两会热点传播总量达829.8万条,其中数据“829.8万”用科学记数法表示为()A.8.298×107B.82.98×105C.8.298×106D.0.8298×1074.如图,在平面直角坐标系中,点A(0,6),点B在x轴的负半轴上,将线段AB绕点A逆时针旋转90°至AB',点M是线段AB'的中点,若反比例函数kyx(k≠0)的图象恰好经过点B',M,则k=()A.4B.6C.9D.12 5.下列立体图形中,主视图是三角形的是()A. B. C. D.6.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是( )A .中位数是9B .众数为16C .平均分为7.78D .方差为27.下列运算中,正确的是( )A .(﹣x )2•x 3=x 5B .(x 2y )3=x 6yC .(a+b )2=a 2+b 2D .a 6+a 3=a 28.如图,点E 、F 是正方形ABCD 的边BC 上的两点(不与B 、C 两点重合),过点B 作BG ⊥AE 于点G ,连接FG 、DF ,若AB =2,则DF+GF 的最小值为( )A. ﹣1B.C.3D.49.关于x 的一元二次方程(m-5)x 2+2x+2=0有实根,则m 的最大整数解是( )A .2B .3C .4D .510.如图,在平面直角坐标系中,点A 的坐标为()0,1,点B 是x 轴正半轴上一点,以AB 为边作等腰直角三角形ABC ,使BAC=90∠︒,点C 在第一象限。
七年级上数学线和角习题(附详细答案)

2017年10月12日135****9626的初中数学组卷一.选择题(共7小题)1.(2016•恩施州)已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为()A.28°B.112°C.28°或112°D.68°2.(2014•义乌市)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直3.(2017•南京)不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥4.(2016•金华)足球射门,不考虑其他因素,仅考虑射点到球门AB的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E均在格点上,球员带球沿CD方向进攻,最好的射点在()A.点C B.点D或点EC.线段DE(异于端点)上一点D.线段CD(异于端点)上一点5.(2015•新疆)如图所示,某同学的家在A处,书店在B处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B 6.(2015•河北)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.7.(2015•百色)一个角的余角是这个角的补角的,则这个角的度数是()A.30°B.45°C.60°D.70°二.解答题(共2小题)8.(2016•内江)问题引入:(1)如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=(用α表示);如图②,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,则∠BOC=(用α表示)拓展研究:(2)如图③,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,请猜想∠BOC=(用α表示),并说明理由.类比研究:(3)BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,请猜想∠BOC=.9.(2017•河北)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.2017年10月12日135****9626的初中数学组卷参考答案与试题解析一.选择题(共7小题)1.已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为()A.28°B.112°C.28°或112°D.68°【分析】根据题意画出图形,利用数形结合求解即可.【解答】解:如图,当点C与点C1重合时,∠BOC=∠AOB﹣∠AOC=70°﹣42°=28°;当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+42°=112°.故选C.【点评】本题考查的是角的计算,在解答此题时要注意进行分类讨论,不要漏解.2.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直【分析】根据公理“两点确定一条直线”来解答即可.【解答】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.【点评】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.3.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥【分析】根据四棱锥的特点,可得答案.【解答】解:四棱锥的底面是四边形,侧面是四个三角形,底面有四条棱,侧面有4条棱,故选:D.【点评】本题考查了认识立体图形,熟记常见几何体的特征是解题关键.4.足球射门,不考虑其他因素,仅考虑射点到球门AB的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E均在格点上,球员带球沿CD方向进攻,最好的射点在()A.点C B.点D或点EC.线段DE(异于端点)上一点D.线段CD(异于端点)上一点【分析】连接BC,AC,BD,AD,AE,BE,再比较∠ACB,∠ADB,∠AEB的大小即可.【解答】解:连接BC,AC,BD,AD,AE,BE,已知A,B,D,E四点共圆,同弧所对的圆周角相等,因而∠ADB=∠AEB,然后圆同弧对应的“圆内角“大于圆周角,“圆外角“小于圆周角,因而射门点在DE上时角最大,射门点在D点右上方或点E左下方时角度则会更小.故选C.【点评】本题考查了比较角的大小,一般情况下比较角的大小有两种方法:①测量法,即用量角器量角的度数,角的度数越大,角越大.②叠合法,即将两个角叠合在一起比较,使两个角的顶点及一边重合,观察另一边的位置.5.如图所示,某同学的家在A处,书店在B处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B【分析】根据线段的性质,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B,据此解答即可.【解答】解:根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.故选:B.【点评】此题主要考查了线段的性质,要熟练掌握,解答此题的关键是要明确:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.6.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.【分析】根据方向角的定义,即可解答.【解答】解:根据岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,故D符合.故选:D.【点评】本题考查了方向角,解决本题的关键是熟记方向角的定义.7.一个角的余角是这个角的补角的,则这个角的度数是()A.30°B.45°C.60°D.70°【分析】设这个角的度数为x,则它的余角为90°﹣x,补角为180°﹣x,再根据题意列出方程,求出x的值即可.【解答】解:设这个角的度数为x,则它的余角为90°﹣x,补角为180°﹣x,依题意得:90°﹣x=(180°﹣x),解得x=45°.故选B.【点评】本题考查的是余角及补角的定义,能根据题意列出关于x的方程是解答此题的关键.二.解答题(共2小题)8.问题引入:(1)如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=90°+α(用α表示);如图②,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,则∠BOC=120°+α(用α表示)拓展研究:(2)如图③,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,请猜想∠BOC=120°﹣α(用α表示),并说明理由.类比研究:(3)BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,请猜想∠BOC=﹣α.【分析】(1)如图①,根据角平分线的定义可得∠OBC=∠ABC,∠OCB=∠ACB,然后表示出∠OBC+∠OCB,再根据三角形的内角和等于180°列式整理即可得∠BOC=90°+α;如图②,根据三角形的内角和等于180°列式整理即可得∠BOC=120°+α;(2)如图③,根据三角形的内角和等于180°列式整理即可得∠BOC=120°﹣α;(3)根据三角形的内角和等于180°列式整理即可得∠BOC=﹣α.【解答】解:(1)如图①,∵∠ABC与∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB),在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A=90°+α;如图②,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=120°+∠A=120°+α;(2)如图③,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(∠DBC+∠ECB)=180°﹣(∠A+∠ACB+∠A+ABC)=180°﹣(∠A+180°)=120°﹣α;(3)在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(∠DBC+∠ECB)=180°﹣(∠A+∠ACB+∠A+ABC)=180°﹣(∠A+180°)=﹣α.故答案为90°+α,120°+α;120°﹣α;﹣α.【点评】本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.9.在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.【分析】(1)根据以B为原点,则C表示1,A表示﹣2,进而得到p的值;根据以C为原点,则A表示﹣3,B表示﹣1,进而得到p的值;(2)根据原点O在图中数轴上点C的右边,且CO=28,可得C表示﹣28,B表示﹣29,A表示﹣31,据此可得p的值.【解答】解:(1)若以B为原点,则C表示1,A表示﹣2,∴p=1+0﹣2=﹣1;若以C为原点,则A表示﹣3,B表示﹣1,∴p=﹣3﹣1+0=﹣4;(2)若原点O在图中数轴上点C的右边,且CO=28,则C表示﹣28,B表示﹣29,A表示﹣31,∴p=﹣31﹣29﹣28=﹣88.【点评】本题主要考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离.。
精品 2016年八年级数学上册 与三角形有关的线段 练习题

精品 2016年八年级数学上册与三角形有关的线段练习题2016年八年级数学上册与三角形有关的线段练题1.下列各组线段的长为边,能组成三角形的是:A.2cm,3cm,4cm B.2cm,3cm,5cm C.2cm,5cm,10cm D.8cm,4cm,4cm2.为了估计池塘两岸A,B间的距离,XXX在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是:A.15m B.17m C.20m D.28m3.若三角形的三条边长分别为4,5,x,则x的取值范围是:A.4<x<5 B.0<x<9 C.1<x<9 D.﹣1<x<94.已知三角形的三边长分别为4、5、x,则x不可能是:A.3B.5C.7D.95.现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根可以组成不同三角形的个数是:A.1个 B.2个 C.3个 D.4个6.如果一个三角形的两边长分别是2和4,则第三边可能是:A.2 B.4 C.6 D.87.已知三角形的一边长为2,另一边长为3,且它的周长为偶数,那么第三边长为:A.1 B.2 C.3 D.48.若a、b、c是△ABC的三边的长,则化简|a﹣b﹣c|﹣|b ﹣c﹣a|+|a+b﹣c|=:A.a+b+c B.﹣a+3b﹣c C.a+b﹣c D.2b﹣2c9.下面的说法正确的是:A.三角形的角平分线、中线和高都在三角形内 B.直角三角形的高只有一条 C.三角形的高至少有一条在三角形内 D.钝角三角形的三条高都在三角形外面11.下列说法正确的是:A.三角形的角平分线,中线和高都在三角形的内部 B.直角三角形的高只有一条 C.钝角三角形的三条高都在三角形外 D.三角形的高至少有一条在三角形内12.在△ABC中,D是BC上的一点,且△ABD与△ADC 的面积相等,则线段AD为△XXX的:A.高 B.角平分线 C.中线 D.不能确定13.能将三角形面积平分的是三角形的:A.角平分线 B.高C.中线D.外角平分线14.下列说法正确的个数是:①两条直线被第三条直线所截,则同旁内角一定互补;②若线段a、b、c,满足b+c>a,则以a、b、c为边一定能组成三角形。
人教版数学初中七年级上期末几何培优提升训练(线与角动点问题)

人教版数学七年级上期末几何培优提升训练(线与角动点问题)一、线段动点1. 【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则 A ,B 两点之间的距离AB=|a -b |,线段AB 的中点表示的数为2a b 【问题情境】如图,数轴上点A 表示的数为-2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t >0).【综合运用】(1)填空:①A 、B 两点间的距离AB= ________,线段AB 的中点表示的数为________ ; ②用含t 的代数式表示:t 秒后,点P 表示的数为 ________;点Q 表示的数为________.(2)求当t 为何值时,P 、Q 两点相遇,并写出相遇点所表示的数;(3)求当t 为何值时,PQ=12AB ; (4)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.2. 操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示1的点与表示-1的点重合,则表示-3的点与表示_______的点重合;操作二:(2)折叠纸面,使表示-1的点与表示3的点重合,回答以下问题:①表示5的点与表示数________的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.3.已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数:________ ;用含t的代数式表示点P和点C的距离:PC=________(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,①点P、Q同时运动的过程中有________ 处相遇,相遇时t=________ 秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.(友情提醒:注意考虑P、Q的位置)4.如图所示,在一条不完整的数轴上从左到右有点A、B、C,其中点A与点B的距离是2,记作AB=2,以下类同,BC=3,设点A,B,C所对应数的和是p.(1)若以B为原点,则点A所对应的数为_______,点C所对应的数为_______,p的值为_______;若以C为原点,则p的值为_______ ;(2)若原点O在图中数轴上点C的右边,且CO=28,求p的值;在此基础上,将原点O 向右移动a(a>0)个单位,则p的值为_______;(用含a的式子表示)(3)若原点O在点B与C之间,且CO=2,则p=_______;若原点O从点C出发沿着数轴向左运动,当p=5.5时,求CO的值.二、角度运动1.如图1,点O为直线AB上一点,过点O作射线OC,将一直角三角形的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;(2)若∠BOC=120°.将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为________.(直接写出结果);(3)在(2)的条件下,将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.2.如图,∠AOB=120°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每分钟20°;射线OD从OB开始,绕点O逆时针旋转,旋转的速度为每分钟5°,OC和OD 同时旋转,设旋转的时间为t(0≤t≤15).(1)当t为何值时,射线OC与OD重合;(2)当t为何值时,射线OC⊥OD;(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC,OB 与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值,若不存在,请说明理由.3.如图1,已知线段AB=16cm,点C为线段AB上的一个动点,点D、E分别是AC和BC 的中点.(1)若点C恰为AB的中点,求DE的长;(2)若AC=6cm,求DE的长;(3)试说明不论AC取何值(不超过16cm),DE的长不变;(4)知识迁移:如图2,已知∠AOB=130°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=65°与射线OC的位置无关.4. 已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE.(1)如图1,若∠COF=28°,则∠BOE=________°;(2)当射线OE绕点O逆时针旋转到如图2的位置时,(1)中∠BOE与∠COF的关系是否仍然成立?如成立,请说明理由.(3)在图3中,若∠COF=65°,在∠BOE的内部是否存在一条射线OD,使得2∠BOD+∠AOF= 12(∠BOE-∠BOD)?若存在,请求出∠BOD的度数;若不存在,请说明理由.仰望天空时,什么都比你高,你会自卑;俯视大地时,什么都比你低,你会自负;只有放宽视野,把天空和大地尽收眼底,才能在苍穹泛土之间找准你真正的位置。
初中数学人教版七年级上学期_第四章_42直线、射线、线段

初中数学人教版七年级上学期第四章 4.2直线、射线、线段一、单选题(共10题;共20分)1. 下列四个生产生活现象,可以用“两点之间线段最短”来解释的现象有()A.用两个钉子将木条固定在墙上B.打靶时,眼睛要与准星、靶心在同一条直线上C.架设A,B两地的电线时,总是尽可能沿着线段AB架设D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线2. 下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.画线段CD=2cm3. 现实生活中“为何有人宁可违反交通规则翻越隔离带乱穿马路,也不愿从天桥或斑马线通过?”,请用数学知识解释这一现象,其原因为( )A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短4. 如图,从点A到点B有3条路,其中走ADB最近,其数学依据是()A.经过两点有且只有一条直线B.两条直线相交只有一个交点C.两点之间的所有连线中,线段最短D.直线比曲线短5. 如图,点B为线段AC上一点,AB=11cm,BC=7cm,D、E分别是AB、AC的中点,则DE的长为()A.3.5cmB.4cmC.4.5cmD.5cm 6. 如图,数轴的单位长度为1,点A,B表示的数互为相反数,若数轴上有一点C到点B的距离为2个单位,则点C表示的数是( )A.−1或2B.−1或5C.1或2D.1或57. 在直线l上取三点A、B、C,使线段AB=8cm,AC=3cm,则线段BC的长为()A.5cmB.8cmC.5cm或8cmD.5cm或11cm8. A、B、C中三个不同的点,则()A.AB+BC=ACB.AB+BC>ACC.BC≥AB−ACD.BC=AB−AC9. 如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A.4cmB.2cmC.4cm或2cmD.小于或等于4cm,且大于或等于2cm10. 平面内的9条直线任两条都相交,交点数最多有m个,最少有n个,则m+n等于( )A.36B.37C.38D.39二、填空题(共5题;共7分)下列三个日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某名同学的跳远成绩.其中,可以用“两点之间线段最短”来解释的是________ .(填序号)建筑工人砌墙时,经常在两个墙角的位置分别插一根木桩,然后在两个木桩之间拉一条线,建筑工人沿着拉紧的这条直线砌墙,这个事实说明的原理是________.如图,点A、B、C、D在同一条直线上,则图中共有线段________条;直线有________条;射线有________条.点A、B、C在直线l上,AB=2BC,M、N分别为线段AB、BC的三等分点,BM=13AB,BN=13BC,则MNBC=________.一条一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k(k=1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼________米处.三、解答题(共5题;共26分)如图,AB=2,AC=6,延长BC到点D,使BD=4BC,求AD的长.如图,已知线段AB,请用尺规按照下列要求作图:①延长线段AB到C,使得BC=2AB;②连接PC;③作射线AP.如果AB=2cm,求AC的值如图所示,比较这两组线段的长短.已知线段AB=14,在线段AB上有点C,D,M,N四个点,且满足AC:CD:DB=1:2:4,AM=12AC,且DN=14BD,求MN的长.如图,数轴上A点表示的数是−2,B点表示的数是5,C点表示的数是10.(1)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:________. (2)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A之间的距离;参考答案与试题解析初中数学人教版七年级上学期第四章 4.2直线、射线、线段一、单选题(共10题;共20分)1.【答案】C【考点】线段的性质:两点之间线段最短直线的性质:两点确定一条直线【解析】根据线段的性质“两点确定一条直线和两点之间线段最短”逐项进行分析.【解答】解:A、B、D用“两点确定一条直线”进行解释;C可用“两点之间线段最短”进行解释.故答案为:C.2.【答案】D【考点】作图—尺规作图的定义直线、射线、线段两点间的距离【解析】A.错误.直线没有长度;B.错误.射线没有长度;C.错误.射线有无限延伸性,不需要延长;D.正确.故选D.【解答】此题暂无解答3.【答案】D【考点】线段的性质:两点之间线段最短【解析】解答此题的关键在于理解线段的基本性质的相关知识,掌握线段公理:所有连接两点的线中,线段最短.也可简单说成:两点之间线段最短;连接两点的线段的长度,叫做这两点的距离;线段的大小关系和它们的长度的大小关系是一致的.【解答】解:现实生活中有人乱穿马路,不愿从天桥或斑马线通过,其原因是两点之间,线段最短,故选D.4.【答案】C【考点】相交线直线的性质:两点确定一条直线线段的性质:两点之间线段最短【解析】根据两点之间线段最短的性质解答.【解答】从点A到点B有3条路,其中走ADB最近,其数学依据是两点之间的所有连线中,线段最短.5.【答案】A【考点】两点间的距离【解析】首先根据:AB=11cm,D是AB的中点,求出AD的长是多少;然后根据:AB=11cm,BC=7cm,求出AC的长是多少,再根据E是AC的中点,求出AE的长是多少,再用它减去AD的长,求出DE的长为多少即可.【解答】∵AB=11cm,D是AB的中点,∴AD=12AB=12×11=5.5(cm);∵AB=11cm,BC=7cm,∴AC=AB+BC=11+7=18(cm),∵E是AC的中点,∴AE=12AC=12×18=9(cm),∴DE=AE−AD=9−5.5=3.5(cm).6.【答案】D【考点】数轴相反数【解析】如图,根据点A、B表示的数互为相反数可确定原点,即可得出点B表示的数,根据两点间的距离公式即可得答案.【解答】解:如图,∵点A,B表示的数互为相反数,∴AB的中点O为原点,∴点B表示的数为3.∵点C到点B的距离为2个单位,∴点C表示的数为C1=1或C2=5.故选D.7.【答案】D【考点】两点间的距离【解析】分两种情况:点C在线段AB上,点C在线段AB的延长线上.再根据线段的和差,可得线段BC的长.【解答】当点C在线段AB上时,BC=AB−AC=8−3=5(cm);当点C在线段AB的延长线上时,BC=AB+AC=8+3=11(cm),所以线段AC的长为5cm或11cm.8.【答案】C【考点】比例线段比较线段的长短【解析】本题主要考查了线段长短的计量的相关知识点,需要掌握度量法:即用一把刻度量出两条线段的长度再比较;叠合法:从“形”的角度比较,观察点的位置才能正确解答此题.【解答】解:此题分两种情况:①当A, B, C三点没在同一条直线上时,根据三角形任意两边之和大于第三边,任意两边差小于第三边,即可排除A, D两个两个选项,②当A, B, C三点位于同一条直线上的时候,则可得出最长线段与其中一条线段的差等于第三条线段,从而排除B,得出答案,所以答案是:C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(完整)初中数学线段与角练习题初中数学线段与角练题
1. 已知线段AB的长度为5,线段BC的长度为3,求线段AC 的长度。
思路:根据线段的性质,线段AC的长度等于线段AB的长度加上线段BC的长度。
解答:线段AC的长度为5 + 3 = 8。
2. 已知线段DE的长度为4,点F是线段DE的中点,求线段EF的长度。
思路:根据线段的性质,线段EF的长度等于线段DE的长度除以2。
解答:线段EF的长度为4 ÷ 2 = 2。
3. 角XYZ的度数为37°,角YZW的度数为83°,求角XZW
的度数。
思路:根据角度的性质,角XZW的度数等于角XYZ的度数加上角YZW的度数。
解答:角XZW的度数为37° + 83° = 120°。
4. 角ABC的度数为78°,角CDE的度数为42°,角BED的度数为90°,求角ABD的度数。
思路:根据角度的性质,角ABD的度数等于角ABC的度数加上角CDE的度数减去角BED的度数。
解答:角ABD的度数为78° + 42° - 90° = 30°。
5. 已知角MNO的度数为60°,角NOP的度数为120°,求角MOQ的度数。
思路:根据角度的性质,角MOQ的度数等于360°减去角MNO的度数减去角NOP的度数。
解答:角MOQ的度数为360° - 60° - 120° = 180°。
6. 已知角PQR是直角,角RPQ的度数为30°,求角RPQ的补角的度数。
思路:根据角度的性质,角RPQ的补角的度数等于90°减去角RPQ的度数。
解答:角RPQ的补角的度数为90° - 30° = 60°。