力的合成与分解
力的合成与分解

力的合成与分解力的合成和分解是物理学中的重要概念,用于描述多个力对物体的作用与结果。
通过对力的合成和分解的研究,可以更好地理解和解决各种与力相关的问题。
本文将就力的合成和分解进行探讨,旨在帮助读者对这一概念有更深入的理解。
一、力的合成力的合成是指将两个或多个力合成为一个力的过程。
合成力的大小和方向由合成的力决定。
在力的合成中,常用向量相加的方法来求解。
以两个力的合成为例,假设有一个物体同时受到两个力F1和F2的作用,力F1的大小为|F1|,方向为θ1;力F2的大小为|F2|,方向为θ2。
根据力的合成原理,可以将F1和F2合成为一个力F,其大小为|F|,方向为θ。
根据三角形法则,我们可以将这两个力的向量相加,得到合成力F的大小和方向。
在数学上,可以使用余弦定理和正弦定理来计算合成力F的大小和方向。
通过计算大小和方向,可以准确地描述合成力对物体的作用效果。
二、力的分解力的分解是指将一个力分解为两个或多个力的过程。
力的分解可以将一个复杂问题简化为若干个简单问题,从而更容易理解和求解。
通过力的分解,可以将一个力分解为多个力的合力,也可以将一个力分解为两个互相垂直的力。
在力的分解中,常用向量相减的方法来求解。
假设有一个力F的大小为|F|,方向为θ,我们希望将该力分解为两个力F1和F2。
分解的力F1的大小为|F1|,方向为θ1;分解的力F2的大小为|F2|,方向为θ2。
通过向量相减的方法,我们可以得到力F1的大小和方向。
力的分解方法有很多种,常用的方法包括正交分解法和平行分解法。
正交分解法将力分解为与某一方向垂直的力和与该方向平行的力,而平行分解法将力分解为与某一方向平行的力和与该方向垂直的力。
根据具体情况选择适当的分解方法,可以更好地解决问题。
三、力的合成与分解的应用力的合成与分解在物理学中有广泛的应用。
以下是一些应用的例子:1. 物体受到多个力作用时,可以使用力的合成来求解合成力的大小和方向,从而确定物体的运动状态。
力的分解与合成

力的分解与合成力是物体之间相互作用的结果,它可以分解为多个分力,或者将多个分力合成为一个合力。
力的分解与合成是力学中重要的基本概念,通过对力的分解与合成的理解,可以更好地解释与预测物体运动的规律。
本文将讨论力的分解与合成的原理、方法以及应用。
一、力的分解力的分解指的是将一个作用力分解为多个分力的过程,每个分力在不同方向上对物体施加作用。
力的分解有助于我们研究物体在不同方向上的运动和受力情况。
1.1 原理分解力的原理是基于向量的性质。
力是一个矢量量,具有方向和大小。
对于一个力F,可以将其分解为两个互相垂直的力F1和F2,它们的矢量和等于原力F。
1.2 方法力的分解可以通过几何方法和代数方法来进行。
几何方法的步骤如下:1)绘制力的图示,标出力的方向和大小;2)根据需要将力的图示旋转,使其方便进行分解;3)选取一个水平方向作为基准轴,将力的图示在轴上标出对应的投影;4)在基准轴上标出另一个垂直于该轴的轴线,将力的图示在该轴线上标出对应的投影;5)所得的两个投影即为力的分力。
代数方法的步骤如下:1)利用向量的几何特性,将力表示成代数式,即F = F1 + F2;2)通过已知条件或几何意义,设置方程组解出分力的大小。
1.3 应用力的分解在物理学、工程学和运动学等领域有广泛的应用。
例如,在斜面运动中,可以将重力分解为平行和垂直于斜面的两个分力,进而研究物体在斜面上的运动规律。
在力学分析和设计中,对于复杂的力系统,可以通过力的分解来简化问题,更好地理解力的作用。
二、力的合成力的合成指的是将多个力合并为一个合力的过程,合力具有与原力相同的效果。
力的合成可以帮助我们研究物体所受合力对运动的影响。
2.1 原理合成力的原理同样基于向量的性质。
对于两个力F1和F2,将它们的矢量和作为合力F,合力的方向与矢量和的方向相同。
2.2 方法力的合成同样可以通过几何方法和代数方法来进行。
几何方法的步骤如下:1)绘制力的图示,标出力的方向和大小;2)将力的图示放置在同一基准轴上,使其方便进行合成;3)将各力的图示端点相连接,得到合力的图示;4)测量合力的图示表示的方向和大小。
力的合成与分解

力的合成与分解力在物理学中是一个重要的概念,它描述了物体之间相互作用的效果。
而力的合成与分解是力学中的一种基本问题,它帮助我们理解多个力作用在物体上时的结果,以及如何将一个力分解为多个力的合力,或者将一个力的合力分解为多个力。
一、力的合成力的合成是指将多个力作用于物体上时,求出它们的合力。
合力的大小和方向决定了物体受到的合力效果。
当多个力作用于物体上时,可以使用力的几何法进行合成。
力的几何法可以通过在力的作用方向上构成力的向量,并使用矢量相加的方法得到合力。
例如,假设一个物体同时受到水平向右的力F₁和竖直向上的力F₂,我们可以使用力的几何法求出它们的合力F。
首先,将力F₁和F₂分别用箭头表示在一个力的作用方向上。
然后,将F₁的箭头的起点连接到F₂的箭头的终点,得到一个新的力F的箭头。
该箭头的起点是F₁的起点,终点是F₂的终点。
最后,连接F₁的终点和F₂的起点,即得到了合力F的箭头。
根据箭头的直线方向和箭头的长度,我们可以得到合力F的大小和方向。
二、力的分解力的分解是指将一个力拆解成多个分力,使得这些分力的合成恰好等于原来的力。
力的分解可以帮助我们分析复杂情况下的力的作用效果。
当一个力作用在物体上时,有时候我们需要将这个力分解成两个或更多个分力,以便更好地理解和计算物体的运动情况或受力效果。
常见的力的分解方法有平行四边形法和正交分解法。
在平行四边形法中,我们假设一个力F可以被分解为两个分力F₁和F₂。
首先,确定一个合适的力F₄与F形成一个平行四边形。
然后,根据平行四边形法则,连接F₁的起点与F₂的起点,连接F₁的终点与F₄的起点,连接F₂的终点与F₄的终点。
这样,我们得到了两个分力F₁和F₂,它们的合力恰好等于原来的力F。
正交分解法是指将一个力拆解成一个或多个方向上的力分量。
对于任何一个力F,我们可以将它分解成多个垂直于不同方向的力分量。
例如,如果一个力F斜向上,我们可以将它拆解成一个垂直向上的力分量和一个垂直向右的力分量。
力的合成与分解

力的合成与分解力是物体受到的外界作用,有时候一个物体受到多个力的作用,这时候我们需要学习力的合成与分解。
力的合成是指多个力合并为一个力的过程,而力的分解则是指一个力被分解为多个力的过程。
这两个概念在物理学中非常重要,能够帮助我们更好地理解力的作用。
本文将详细介绍力的合成与分解的原理和应用。
一、力的合成1. 合力的定义合力指的是多个力作用于同一个物体时,产生的一个等效力。
合力的大小和方向可以通过合力图来表示。
合力图是在一个力的作用线上,画出所有作用力的矢量,并将它们的起始点和末端连接起来,形成一个三角形或平行四边形。
合力的大小等于合力图的对角线的长度,合力的方向由对角线的方向决定。
2. 力的合成方法有两种常用的力的合成方法:几何法和代数法。
几何法是通过几何图形构造合力图,然后测量合力的大小和方向。
首先在一张纸上画出力的作用线,然后根据力的大小和方向,在作用线上画出力的矢量。
将矢量的起始点和末端连接起来,形成合力图。
然后使用直尺测量合力图的对角线,其长度即为合力的大小,对角线的方向即为合力的方向。
代数法是通过力的分量计算合力的大小和方向。
将力按照一个特定的坐标系分解为水平和垂直方向上的分量。
然后计算分量的和,即得到合力的大小和方向。
3. 力的合成实例假设一个物体同时受到一力F₁和另一力F₂的作用,力F₁和F₂的大小和方向分别为10N和20N,F₁的方向向右,F₂的方向向上。
使用几何法,我们在纸上画出力F₁和F₂的作用线,然后根据力的大小和方向,在作用线上画出力的矢量。
连接两个矢量的起始点和末端,得到合力图。
使用直尺测量合力图的对角线,即可得到合力的大小和方向。
使用代数法,我们将力F₁和F₂分解为水平和垂直方向上的分量。
由于F₁的方向向右,其水平分量F₁x等于F₁,垂直分量F₁y等于0。
由于F₂的方向向上,其水平分量F₂x等于0,垂直分量F₂y等于F₂。
然后计算水平和垂直分量的和,即为合力的大小和方向。
力的合成与分解

力的合成与分解在物理学中,力的合成与分解是一种常见的分析力学问题。
力的合成指的是将多个力合并为一个力的过程,而力的分解则是将一个力拆分成多个分力的过程。
通过理解和应用力的合成与分解的原理,我们可以更好地理解并解决各种力学问题。
一、力的合成力的合成是指通过几个力的矢量相加得到一个合力的过程。
合力的大小和方向由各个分力的大小和方向共同决定。
在力的合成中,我们常常使用向量图或使用三角法进行计算。
1. 向量图法向量图法是一种常见且直观的力的合成方法。
首先,我们将各个力按照大小和方向画成箭头,然后将它们的起点置于同一点,根据力的大小与方向,画出各个力的箭头。
最后,将各个箭头首尾相接,最终合力的箭头即为各个力的矢量和。
2. 三角法三角法是力的合成的一种数学计算方法。
对于平面力的合成,我们可以使用三角函数来求解。
假设有两个力F1和F2,它们分别与x轴的夹角为α和β,力的合力F与x轴的夹角为θ。
根据三角法的原理,我们可以使用正弦定理和余弦定理来计算合力的大小和方向。
二、力的分解力的分解是指将一个力分解成多个分力的过程。
分力的大小和方向由原力及分解方式共同决定。
力的分解在解决复杂力学问题时非常有用,可以将一个力分解为多个方向上的简单力,从而简化问题的求解过程。
1. 直角坐标系分解直角坐标系分解是一种常用的力的分解方法,适用于力在水平和竖直方向上的分解。
假设力F的大小为F,与x轴的夹角为α。
我们可以将力F分解为水平方向上的分力Fx和竖直方向上的分力Fy。
根据三角函数的定义,我们可以得到分力Fx的大小为F*cosα,分力Fy的大小为F*sinα。
2. 求直角坐标系分解直角坐标系分解也可以用于求解分力。
假设已知合力F与x轴的夹角为θ,合力F的大小为F,需要求解分力F1和F2的大小。
根据三角函数的定义,我们可以得到分力F1的大小为F*cosθ,分力F2的大小为F*sinθ。
结论力的合成与分解为解决各种力学问题提供了重要的方法。
高中物理力的合成与分解

高中物理力的合成与分解高中物理力的合成与分解一、什么是物理力的合成与分解物理力的合成与分解是指物理力的构成和其结果的分解,也就是把两个或多个相互作用的力通过分析、变换运算而组合起来,产生新的力,或者逆运算把一个力分解为它的组成部分。
二、物理力的合成1、合成平行力平行力可以用下面的公式合成:F=F1+F2,这句公式表示将两个力(F1和F2)把它们合成一个力,两个力的方向应该相同,这两个力的大小可以相同也可以不同,经过运算只剩下一个力,大小为F1+F2。
2、合成垂直力垂直力可以用下面的公式合成:F=F1+F2,这句公式表示将两个力(F1和F2)把它们合成一个力,两个力的方向应该垂直,这两个力的大小可以相同也可以不同,经过运算只剩下一个力,大小为F1+F2。
三、物理力的分解1、分解平行力平行力可以用下面的公式分解:F=F1+F2,这句公式表示将一个力(F)分解成两个力(F1和F2),两个力的方向应该相同,可以使用推出的力和原来的力的比值来确定两个力的大小,例如原来的力F是30N,可以分解为F1=20N,F2=10N。
2、分解垂直力垂直力可以用下面的公式分解:F=F1+F2,这句公式表示将一个力(F)分解成两个力(F1和F2),两个力的方向应该垂直,可以使用推出的力和原来的力的比值来确定两个力的大小,例如原来的力F是30N,可以分解为F1=20N,F2=10N。
四、物理力的合成与分解的应用物理力的合成与分解在物理和工程学中都有广泛的应用,它可以用于分析物理现象,可以用于物体运动的分析,也可以用于结构力学的计算和分析。
此外,物理力的合成与分解也可以用于物体机械工程结构设计,例如机械臂的设计和调整,以及飞机机翼结构的设计和优化调整。
力的合成与分解

力的合成与分解力是物体受到的引导或推动物体发生运动或变形的作用,是物体间相互作用的表现。
力的合成与分解是力学中的基本概念,旨在帮助我们理解多个力同时作用于物体时的效果,以及如何将一个力分解为多个方向的力。
一、力的合成力的合成是指将多个力合并为一个力的过程。
当两个力同时作用在一个物体上时,它们可以按照特定的方法合成为一个力。
合成力的大小和作用方向由原始力的大小和方向决定。
以两个力F1和F2作用在物体上为例,根据力的三角形法则,可以将这两个力的大小和方向用力的箭头表示在一个平面上。
然后,将这两个力的箭头按顺序相连,从第一个力的尾部连接到第二个力的头部,形成一个三角形。
三角形的斜边代表合力,合力的箭头指向三角形的对边。
二、力的分解力的分解是指将一个力分解为两个或多个力的过程。
当一个力施加在物体上时,可以将这个力分解为两个或多个在不同方向上的力,以便更好地理解和研究力的作用效果。
以一个力F作用在物体上为例,可以将这个力分解为两个分力,垂直分力和平行分力。
垂直分力是指与给定方向垂直的分力,平行分力是指与给定方向平行的分力。
将一个力分解为垂直分力和平行分力时,应根据给定的方向选择适当的线段垂直和平行于这个方向。
通过一些几何方法,可以计算出这两个分力的大小和方向。
三、实例分析为了更好地理解力的合成与分解的概念,我们以一个力的合成与分解的实际例子进行分析。
假设有一个人沿着东北方向用力拉动一个箱子,如果他同时向东方施加20牛的力和向北方施加15牛的力,我们可以使用力的合成来计算合力。
根据力的合成方法,我们可以画出20牛向东方的力和15牛向北方的力的箭头图。
然后将这两个箭头按顺序连接起来,形成一个三角形。
通过测量这个三角形的斜边,我们可以计算得出合力为25牛,方向为东北方向。
接下来,我们可以使用力的分解方法将这个合力分解为两个分力。
根据合力的方向,我们选择适当的线段垂直和平行于东北方向。
通过一些几何计算,我们可以得到垂直分力为15牛,方向为北方;平行分力为15牛,方向为东方。
力的合成和力的分解定律

力的合成和力的分解定律力的合成和力的分解定律是物理学中的重要概念,主要涉及力的合成、力的分解和力的平行四边形法则。
一、力的合成力的合成是指多个力共同作用于一个物体时,可以将其看作一个总力的作用。
根据平行四边形法则,多个力的合力等于这些力的矢量和。
即在力的图示中,将各个力的箭头首尾相接,形成一个闭合的矢量图形,这个图形对角线所表示的力就是多个力的合力。
二、力的分解力的分解是指一个力作用于一个物体时,可以将其分解为多个分力的作用。
根据平行四边形法则,一个力可以被分解为两个分力,这两个分力分别与原力构成两个力的矢量和。
在力的图示中,将原力的箭头分别与两个分力的箭头首尾相接,形成一个闭合的矢量图形,这个图形对角线所表示的力就是原力。
三、力的平行四边形法则力的平行四边形法则是描述力的合成和分解的基本规律。
根据该法则,多个力共同作用于一个物体时,它们的合力等于这些力的矢量和。
同样地,一个力可以被分解为两个分力,这两个分力的合力等于原力。
在力的图示中,力的合成和分解都遵循平行四边形法则,即各个力的箭头首尾相接,形成一个闭合的矢量图形,这个图形对角线所表示的力就是合力或分力。
力的合成和力的分解定律在实际生活中有广泛的应用,如物理学中的力学问题、工程设计、体育竞技等。
通过力的合成和分解,可以简化复杂力的计算,便于分析和解决问题。
综上所述,力的合成和力的分解定律是物理学中的重要概念,掌握这些知识有助于更好地理解和解决力学问题。
习题及方法:1.习题:两个力F1和F2,F1 = 5N,F2 = 10N,它们之间的夹角为60度,求这两个力的合力。
解题方法:根据力的合成,将两个力的矢量和画在一个坐标系中,将F1和F2按照夹角60度画出矢量图,然后用平行四边形法则求出合力。
答案:合力F = √(F1² + F2² + 2F1F2cos60°) = √(5² + 10² + 2510*0.5) = 15N。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲力的合成与分解一、力的合成1.合力与分力(1)定义:如果几个力共同作用产生的效果与一个力的作用效果相同,这一个力就叫做那几个力的合力,那几个力叫做这一个力的分力。
(2)关系:合力与分力是等效替代关系。
2。
共点力作用在物体的同一点,或作用线的延长线交于一点的几个力.如图1均为共点力.图13.力的合成(1)定义:求几个力的合力的过程。
(2)运算法则①平行四边形定则:求两个互成角度的分力的合力,可以用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向。
如图2甲所示,F1、F2为分力,F为合力.图2②三角形定则:把两个矢量的首尾顺次连接起来,第一个矢量的首到第二个矢量的尾的有向线段为合矢量.如图乙,F1、F2为分力,F为合力.自测1(多选)关于几个力及其合力,下列说法正确的是()A。
合力的作用效果跟原来几个力共同作用产生的效果相同B.合力与原来那几个力同时作用在物体上C。
合力的作用可以替代原来那几个力的作用D。
求几个力的合力遵循平行四边形定则答案ACD自测2教材P64第4题改编(多选)两个力F1和F2间的夹角为θ,两力的合力为F.以下说法正确的是()A。
若F1和F2大小不变,θ角越小,合力F就越大B.合力F总比分力F1和F2中的任何一个力都大C。
如果夹角θ不变,F1大小不变,只要F2增大,合力F就必然增大D。
合力F的作用效果与两个分力F1和F2共同产生的作用效果是相同的答案AD二、力的分解1.定义:求一个力的分力的过程。
力的分解是力的合成的逆运算。
2。
遵循的原则(1)平行四边形定则。
(2)三角形定则。
3.分解方法(1)效果分解法。
如图3所示,物体重力G的两个作用效果,一是使物体沿斜面下滑,二是使物体压紧斜面,这两个分力与合力间遵循平行四边形定则,其大小分别为G1=G sin θ,G2=G cos θ.图3(2)正交分解法.自测3已知两个共点力的合力为50 N,分力F1的方向与合力F的方向成30°角,分力F2的大小为30 N。
则()A。
F1的大小是唯一的B。
F2的方向是唯一的C.F2有两个可能的方向D.F2可取任意方向答案 C解析由F1、F2和F的矢量三角形图可以看出:因F2=30 N>F20=F sin 30°=25 N且F2<F,所以F1的大小有两个,即F1′和F1″,F2的方向有两个,即F2′的方向和F2″的方向,故选项A、B、D错误,选项C正确.三、矢量和标量1.矢量:既有大小又有方向的物理量,叠加时遵循平行四边形定则,如速度、力等。
2。
标量:只有大小没有方向的物理量,求和时按代数法则相加,如路程、速率等.自测4下列各组物理量中全部是矢量的是()A.位移、速度、加速度、力B。
位移、时间、速度、路程C。
力、位移、速率、加速度D.速度、加速度、力、路程答案 A命题点一共点力的合成1。
两个共点力的合成|F1-F2|≤F合≤F1+F2,即两个力大小不变时,其合力随夹角的增大而减小,当两力反向时,合力最小;当两力同向时,合力最大。
2.三个共点力的合成(1)最大值:三个力共线且同向时,其合力最大,为F1+F2+F3.(2)最小值:任取两个力,求出其合力的范围,如果第三个力在这个范围之内,则三个力的合力的最小值为零,如果第三个力不在这个范围内,则合力的最小值为最大的一个力减去另外两个较小的力的大小之和。
3。
几种特殊情况的共点力的合成类型作图合力的计算互相垂直F=错误! tan θ=错误!两力等大,夹角为θF=2F1cos 错误! F与F1夹角为错误!两力等大,夹角为120°合力与分力等大F′与F夹角为60°4。
力合成的方法(1)作图法(2)计算法若两个力F1、F2的夹角为θ,如图4所示,合力的大小可由余弦定理得到:图4F=错误!tan α=错误!.例1(多选)两个共点力F1、F2大小不同,它们的合力大小为F,则()A。
F1、F2同时增大一倍,F也增大一倍B。
F1、F2同时增加10 N,F也增加10 NC。
F1增加10 N,F2减少10 N,F一定不变D.若F1、F2中的一个增大,F不一定增大答案AD解析根据求合力的公式F=错误!(θ为F1、F2的夹角),若F1、F2都变为原来的2倍,合力也一定变为原来的2倍,A正确;对于B、C两种情况,力的变化不是按比例增加或减少的,不能判断合力的变化情况,B、C错误;若F1与F2共线反向,F1>F2,则F=F1-F2,F1增大时,F增大,F2增大且小于F1时,F减小,所以D正确.例2(多选)一物体静止于水平桌面上,两者之间的最大静摩擦力为5 N,现将水平面内三个力同时作用于物体的同一点,三个力的大小分别为2 N、2 N、3 N.下列关于物体的受力情况和运动情况判断正确的是()A.物体所受静摩擦力可能为2 NB。
物体所受静摩擦力可能为4 NC。
物体可能仍保持静止D.物体一定被拉动答案ABC解析两个2 N力的合力范围为0~4 N,然后与3 N的力合成,则三个力的合力范围为0~7 N,由于最大静摩擦力为5 N,因此可判定A、B、C正确,D错误。
变式1(多选)已知力F,且它的一个分力F1跟F成30°角,大小未知,另一个分力F2的大小为错误!F,方向未知,则F1的大小可能是()A。
错误!B。
错误!C。
错误!D。
错误!F答案AC变式2水平横梁一端插在墙壁内,另一端装光滑小滑轮且一轻绳的一端C固定于墙壁上,另一端跨过滑轮后悬挂一质量m=10 kg的重物,∠CBA=30°.如图5所示,则滑轮受到绳子的作用力为(g取10 m/s2)()图5A。
50 N B.50错误!N C。
100 N D.100错误!N答案 C命题点二力分解的两种常用方法1。
效果分解法按力的作用效果分解(思路图)2。
正交分解法(1)定义:将已知力按互相垂直的两个方向进行分解的方法。
(2)建立坐标轴的原则:一般选共点力的作用点为原点,在静力学中,以少分解力和容易分解力为原则(使尽量多的力分布在坐标轴上);在动力学中,往往以加速度方向和垂直加速度方向为坐标轴建立坐标系。
(3)方法:物体受到多个力F1、F2、F3、…作用,求合力F时,可把各力向相互垂直的x 轴、y轴分解.x轴上的合力F x=F x1+F x2+F x3+…y轴上的合力F y=F y1+F y2+F y3+…合力大小F=错误!合力方向:与x轴夹角为θ,则tan θ=错误!.例3如图6所示,墙上有两个钉子a和b,它们的连线与水平方向的夹角为45°,两者的高度差为l。
一条不可伸长的轻质细绳一端固定于a点,另一端跨过光滑钉子b悬挂一质量为m1的重物。
在绳上距a端错误!的c点有一固定绳圈。
若绳圈上悬挂质量为m2的钩码,平衡后绳的ac段正好水平,则重物和钩码的质量比错误!为()图6A.错误!B.2C.错误!D.错误!答案 C解析解法一(力的效果分解法):钩码的拉力F等于钩码重力m2g,将F沿ac和bc方向分解,两个分力分别为F a、F b,如图甲所示,其中F b=m1g,由几何关系可得cos θ=错误!=错误!,又由几何关系得cos θ=错误!,联立解得错误!=错误!.解法二(正交分解法):绳圈受到F a、F b、F三个力作用,如图乙所示,将F b沿水平方向和竖直方向正交分解,由竖直方向受力平衡得m1g cos θ=m2g;由几何关系得cos θ=错误!,联立解得错误!=错误!.变式3(2018·山东烟台模拟)减速带是交叉路口常见的一种交通设施,车辆驶过减速带时要减速,以保障行人的安全。
当汽车前轮刚爬上减速带时,减速带对车轮的弹力为F,下图中弹力F画法正确且分解合理的是()答案 B解析减速带对车轮的弹力方向垂直车轮和减速带的接触面,指向受力物体,故A、C错误;按照力的作用效果分解,将F分解为水平方向和竖直方向,水平方向的分力产生的效果减慢汽车的速度,竖直方向的分力产生向上运动的作用效果,故B正确,D错误.变式4(多选)(2016·全国卷Ⅰ·19)如图7,一光滑的轻滑轮用细绳OO′悬挂于O点;另一细绳跨过滑轮,其一端悬挂物块a,另一端系一位于水平粗糙桌面上的物块b.外力F向右上方拉b,整个系统处于静止状态.若F方向不变,大小在一定范围内变化,物块b仍始终保持静止,则()图7A.绳OO′的张力也在一定范围内变化B。
物块b所受到的支持力也在一定范围内变化C.连接a和b的绳的张力也在一定范围内变化D.物块b与桌面间的摩擦力也在一定范围内变化答案BD解析由于物块a、b均保持静止,各绳角度保持不变,对a受力分析得,绳的拉力F T′=m a g,所以物块a受到的绳的拉力保持不变。
由滑轮性质,滑轮两侧绳的拉力相等,所以b受到绳的拉力大小、方向均保持不变,C选项错误;a、b受到绳的拉力大小、方向均不变,所以OO′的张力不变,A选项错误;对b进行受力分析,如图所示。
由平衡条件得:F T cos β+F f=F cos α,F sin α+F N+F T sin β=m b g。
其中F T和m b g始终不变,当F大小在一定范围内变化时,支持力在一定范围内变化,B选项正确;摩擦力也在一定范围内发生变化,D选项正确。
命题点三 力合成与分解的两个重要应用应用1 斧头劈木柴问题例4 刀、斧、凿等切削工具的刃部叫做劈,如图8是斧头劈木柴的示意图。
劈的纵截面是一个等腰三角形,使用劈的时候,垂直劈背加一个力F ,这个力产生两个作用效果,使劈的两个侧面推压木柴,把木柴劈开.设劈背的宽度为d ,劈的侧面长为l ,不计斧头的自身重力,则劈的侧面推压木柴的力约为( )图8A 。
dl F B 。
错误!F C.错误!F D.错误!F答案 B解析 斧头劈木柴时,设两侧面推压木柴的力分别为F 1、F 2且F 1=F 2,利用几何三角形与力的三角形相似有 错误!=错误!,得推压木柴的力F 1=F 2=错误!F ,所以B 正确,A 、C 、D 错误.应用2 拖把拖地问题例5 拖把是由拖杆和拖把头构成的擦地工具(如图9).设拖把头的质量为m ,拖杆质量可忽略.拖把头与地板之间的动摩擦因数为常数μ,重力加速度为g .某同学用该拖把在水平地板上拖地时,沿拖杆方向推拖把,拖杆与竖直方向的夹角为θ。
图9(1)若拖把头在地板上匀速移动,求推拖把的力的大小.(2)设能使该拖把在地板上从静止刚好开始运动的水平推力与此时地板对拖把的正压力的比值为λ。
已知存在一临界角θ0,若θ≤θ0,则不管沿拖杆方向的推力有多大,都不可能使拖把从静止开始运动.求这一临界角的正切tan θ0。
答案(1)错误!mg(2)λ解析(1)设该同学沿拖杆方向用大小为F的力推拖把.将推拖把的力沿竖直和水平方向分解,根据平衡条件有F cos θ+mg=F N ①F sin θ=F f ②式中F N和F f分别为地板对拖把的正压力和摩擦力.所以F f=μF N ③联立①②③式得F=错误!mg ④(2)若不管沿拖杆方向用多大的力都不能使拖把从静止开始运动,应有F sin θ≤λF N ⑤这时,①式仍成立。