2020考研数学复习:高数常见题型分析
2020数学一考研真题解析

2020数学一考研真题解析2020数学一考研真题解析:一、基础知识点1、微积分:(1)一般情况下的高阶微分:假定待求函数的函数表达式为f(x),f(x)的n阶导数的表达式为Dnf(x),Tn+1 = (Dnf(x))/(n!),及T1=Df(x),T2=D2f(x),……,Tn+1=Dn+1f(x)。
(2)曲线的法线斜率:设曲线y=f(x)在x=x0处的切线的斜率为k,则有k=f’(x0)。
(3)函数在极坐标系中的表达式:设函数y=f(x)在极坐标系中表示为y=F(ρ,φ),则F(ρ,φ)的微分可以按以下公式进行求解:∂F/∂ρ=∂F/∂ρρcosφ−ρsinφ·∂F/∂φ,∂F/∂φ=∂F/∂ρρsinφ+ρcosφ·∂F/∂φ。
2、线性代数:(1)解线性方程组:设线性方程组有n个未知数(n≥2),则可以通过矩阵乘法或伴随矩阵的计算解决该问题。
(2)直线、平面的方程:设Ax+By+Cz+D=0(A、B、C、D不全为零)为直线的方程,则其参数方程为x=x0+λsinφcosθ,y=y0+λsinφsinθ,z=z0+λcosφ,其中λ为包含A、B、C的线性方程的系数矩阵的行列式的倒数,x0、y0、z0为一点在直线上的拓展,sinφ、cosφ、sinθ、cosθ为矩阵系数矩阵对应行、列向量的模的倒数。
3、概率论:(1)概率分布:若抽样空间S由m个样本料点组成,则其抽样空间的概率为P(A)=m/|S|,即为Ⅰ类样本占全抽样空间的比例。
(2)期望:若X是一随机变量,其概率函数为P(X),则X的期望定义为E(X)=∑xiP(X=xi),即对每一可能出现的取值xi,按可能取值xi出现的概率P(X=xi)求和。
二、典型题目解析1、测验题:(1)已知f(x)=2x3+x2+2x+1,求f(x)的一阶导数f'(x)=6x2+2x+2。
(2)曲线y=x3+2x2-1在x=2处的切线斜率为k,则k=11。
考研数学解析高等数学中的微积分与线性代数的典型题型

考研数学解析高等数学中的微积分与线性代数的典型题型考研数学是很多考生必考科目之一,其中涉及的高等数学包括微积分和线性代数两个部分。
微积分和线性代数都是数学的基础学科,对于考研数学的学习和理解至关重要。
本文将解析高等数学中微积分与线性代数的典型题型,帮助考生更好地掌握和应对考试。
一、微积分的典型题型解析1. 导数与微分在微积分中,导数和微分是非常重要的概念。
导数描述了函数在某一点上的变化率,而微分则是导数的计算结果。
考生需要掌握导数和微分的定义、计算方法和性质,并能够灵活运用。
典型题型1:计算函数f(x) = 2x^3 - 3x^2 + 4x - 1在x = 2处的导数和微分。
解析:首先求导数,根据导数的定义,我们有f'(x) = 6x^2 - 6x + 4。
然后计算微分,根据微分的定义,我们有df(x) = f'(x)dx = (6x^2 - 6x + 4)dx。
代入x = 2,得到f'(2) = 20和df(2) = 20dx。
2. 极限极限是微积分中另一个重要的概念,描述了函数在某一点或无穷远处的趋势。
考生需要掌握极限的定义、计算方法和性质,并能够正确判断函数的极限存在与否。
典型题型2:判断函数f(x) = (x^2 - 1)/(x - 1)的极限是否存在,并计算存在时的极限值。
解析:观察这个函数,我们可以看到当x趋近于1时,分母趋于0,因此需要进一步化简。
将分子进行因式分解得f(x) = x + 1,此时可以看出函数在x = 1处没有定义,因此极限不存在。
3. 不定积分不定积分是微积分中的重要概念,也是求解函数的积分的方法。
考生需要掌握不定积分的定义、计算方法和性质,并能够灵活运用。
典型题型3:求函数f(x) = 3x^2 - 2x + 1的不定积分。
解析:根据不定积分的性质,我们可以逐项积分得到F(x) = x^3 - x^2 + x + C,其中C为常数项。
二、线性代数的典型题型解析1. 矩阵运算与线性方程组矩阵运算和线性方程组是线性代数中最基础的内容。
2020考研高数(一)真题及答案解析

2020全国硕士研究生入学统一考试数学一试题详解一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)当0x +→时,下列无穷小量中最高阶是( )(A )()21xt e dt -⎰(B )(0ln 1xdt +⎰(C )sin 20sin xt dt ⎰(D )1cos 0-⎰【答案】(D )【解析】由于选项都是变限积分,所以导数的无穷小量的阶数比较与函数的比较是相同的。
(A )()()222011x t x e dt e x '-=-~⎰(B )(()(0ln 1ln 1x dt x'+=⎰(C )()()sin 2220sin sin sin xt dt x x '=⎰(D )()1cos 3012xx x-'=⎰经比较,选(D )(2)设函数()f x 在区间()1,1-内有定义,且()0lim 0,x f x →=则( )(A )当0x →=时,()f x 在0x =处可导。
(B )当0x →=时,()f x 在0x =处可导。
(C )当()f x 在0x =处可导时,0x →=。
(D )当()f x 在0x =处可导时,0x →=【答案】(C )【解析】当()f x 在0x =处可导,且()0lim 0x f x →=,则有()00f =,0()lim 0x f x x→=(()f x为x 的高阶无穷小量),所以00x →=,选(C )。
(3)设函数(),f x y 在点()0,0处可微,()0,00,00,,,1f f f n x y ()⎛⎫∂∂==- ⎪∂∂⎝⎭,非零向量n与α垂直,则( ) (A )()(,0,0lim0x y →存在(B )()(,0,0lim0x y →=存在(C )()(,0,0lim0x y →存在(D )()(,0,0lim0x y →存在【答案】(A ) 【解析】由题意可知,(,)(,)limlimx y x y →→(,)limx y →=由于函数(),f x y 在点()0,0处可微,所以(,)lim0x y →,选(A )。
2020年考研《数学一》各题考点分析

xx考研《数学一》各题考点分析一、选择题部分:前四题是高等数学部分,第1题是关于一元函数积分学中的反常积分判别收敛问题,这部分是要求我们会计算反常积分和判别其收敛性的。
第2题是有关原函数的问题,这部分是要知道原函数的概念的,别切要求我们知道哪些函数一定有原函数(连续函数),哪些函数一定没有原函数的(含有可去、跳跃、无穷间断点的函数)。
第3题是有关一阶微分方程解的性质的问题,关于常微分方程问题是我们常考的内容,在考试前我们已经做了大量的相关练习,因此这块内容相信同学们已经比较了解,做的也应该不错。
第4题是我们高等数学上册第一章节间断点的知识点。
关于间断点这一块,我们知道,它是常考内容,作为小题,其考察的也比较频繁的。
对于这一块内容,我们在找间断点前,首先要考虑的就是其间断点的嫌疑点问题,一是其无定义的点,一定是间断点,二是分段函数的分段点(有可能是间断点)。
选择题的5、6两题是线性代数部分的:第5题,是有关矩阵相似的问题,这题我们利用相似定义很快便可得出答案选C,关于矩阵相似的问题我们已经做过很多练习了,相对而言本题还是容易判别的。
第6题是关于二次型与空间解析几何中的双叶双曲面结合起来的。
其实对于这一部分数一单一的内容,我们在暑假的时候的二阶强化课讲义上就有类似的题,我们是要求考数一的同学一定要注意这些小的边角问题的。
记的在考前一周时,有数一的同学还特地问了我关于空间解析几何会考哪些东西,会与线代怎么结合,我是说了有关双曲面的问题的。
后面7、8两题是关于概率统计的:第7题是关于正态分布的题,这一题与我们之前做练习时所讲的题型,其实是没什么区别的,因此这题应该会做的,主要考察正态分布的知识内容。
第8题是关于相关系数的内容,此题的灵活性是比较大的,与10年考的拿到大题是差不多的,所以同学们在做这题时可能会有些难度。
关于数字特征这一章节我们讲的也比较多了,也讲了其也可能会与分布函数问题结合处大题的。
二、填空题部分:前四题是高数部分的内容,第9题是和往年差不多,也是考查了极限的计算问题,其是与变限积分相结合的,这里就要求同学们要掌握变限积分的求导方法,带有变限积分问题的极限往往要用洛必达法则来求解。
高等数学(概率论部分)研究生考试试题分析

高等数学(概率统计部分)研究生入学试题考试典型题型分析主讲人:杨新梅单位:数学与计算机科学学院概率论与数理统计题型总结目前,大部分同学开始了概率论和数理统计的复习,本文主要想对同学们近期的复习做一个简单的指导。
概率论与数理统计主要考查考生对研究随机现象规律性的基本概念、基本理论和基本方法的理解,以及运用概率统计方法分析和解决实际问题的能力。
常有的题型有:填空题、选择题、计算题和证明题,试题的主要类型有:(1)确定事件间的关系,进行事件的运算;(2)利用事件的关系进行概率计算;(3)利用概率的性质证明概率等式或计算概率;(4)有关古典概型、几何概型的概率计算;(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;(6)有关事件独立性的证明和计算概率;(7)有关独重复试验及伯努利概率型的计算;(8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;(9)由给定的试验求随机变量的分布;(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率;(11)求随机变量函数的分布(12)确定二维随机变量的分布;(13)利用二维均匀分布和正态分布计算概率;(14)求二维随机变量的边缘分布、条件分布;(15)判断随机变量的独立性和计算概率;(16)求两个独立随机变量函数的分布;(17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;(18)求随机变量函数的数学期望;(19)求两个随机变量的协方差、相关系数并判断相关性;(20)求随机变量的矩和协方差矩阵;(21)利用切比雪夫不等式推证概率不等式;(22)利用中心极限定理进行概率的近似计算;(23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;(24)推证某些统计量(特别是正态总体统计量)的分布;(25)计算统计量的概率;(26)求总体分布中未知参数的矩估计量和极大似然估计量;(27)判断估计量的无偏性、有效性和一致性;(28)求单个或两个正态总体参数的置信区间;(29)对单个或两个正态总体参数假设进行显著性检验;(30)利用χ2检验法对总体分布假设进行检验。
2020考研数学:高数六大常考题型剖析

2020考研数学:高数六大常考题型剖析2020考研数学:高数六大常考题型剖析一、求极限无论数学一、数学二还是数学三,求极限是高等数学的基本要求,所以也是每年必考的内容。
区别在于有时以4分小题形式出现,题目简单;有时以大题出现,需要使用的方法综合性强。
比如大题可能需要用到等价无穷小代换、泰勒展开式、洛比达法则、分离因式、重要极限等几种方法,有时考生需要选择多种方法综合完成题目。
另外,分段函数在个别点处的导数,函数图形的渐近线,以极限形式定义的函数的连续性、可导性的研究等也需要使用极限手段达到目的,须引起注意!利用中值定理证明等式或不等式利用中值定理证明等式或不等式,利用函数单调性证明不等式证明题虽不能说每年一定考,但也基本上十年有九年都会涉及。
等式的证明包括使用4个常见的微分中值定理(即罗尔中值定理、拉格朗日中值定理、柯西中值定理、泰勒中值定理),1个定积分中值定理;不等式的证明有时既可使用中值定理,也可使用函数单调性。
这里泰勒中值定理的使用时的一个难点,但考查的概率不大。
二、求导一元函数求导数,多元函数求偏导数求导数问题主要考查基本公式及运算能力,当然也包括对函数关系的处理能力。
一元函数求导可能会以参数方程求导、变限积分求导或应用问题中涉及求导,甚或高阶导数;多元函数(主要为二元函数)的偏导数基本上每年都会考查,给出的函数可能是较为复杂的显函数,也可能是隐函数(包括方程组确定的隐函数)。
另外,二元函数的极值与条件极值与实际问题联系极其紧密,是一个考查重点。
极值的充分条件、必要条件均涉及二元函数的偏导数。
三、级数级数问题常数项级数(特别是正项级数、交错级数)敛散性的判别,条件收敛与绝对收敛的本质含义均是考查的重点,但常常以小题形式出现。
函数项级数(幂级数,对数一的考生来说还有傅里叶级数,但考查的频率不高)的收敛半径、收敛区间、收敛域、和函数等及函数在一点的幂级数展开在考试中常占有较高的分值。
四、积分的计算积分的计算包括不定积分、定积分、反常积分的计算,以及二重积分的计算,对数一考生来说常主要是三重积分、曲线积分、曲面积分的计算。
考研高等数学各题型总结

题型三 结论中含§,还含有a,b
1)将a,b与§分离,根据a,b的式子采用拉格朗日或柯西中值定理;
2)不能分离时,利用题型二的还原法
题型四 结论中含两个或两个以上中值的问题
情形一:只含两个简单中值:找出函数3个点,用两次拉格朗日证;
情形二:只含两个中值,但是两项的复杂程度不同:取出复杂项单独研究,若是乘积形式,则找原函数用拉格朗日证即可;若是商形式,则找原函数用柯西。
题型六 含变积分限的函数极限
1)换元2)再利用罗必达去积分号
题型七 间断点及其分类
1)0点的连续》》f(0+0)=f(0-0)
题型八 闭区间上的连续函数
看到【 】闭区间的函数证明题,考虑介值定理:m<=f(§)<=M
第二章导数与微分
题型一 导数
1)可导》》f`+=f`-
2)绝对值不影响函数的连续性,但是可能导数,在f(a)=0处受影响
情形二:设f(x)属于c[a,b]且f(x)单调若被证明积分区间相同采用相减求导积分区间不同,采用换元法化为相同积分或通过积分项处理采用中值定理法
情形三:设f(x)在[a,b]上一阶可导 1)若所证明的积分等式或不等式涉及f,f’,一般有两个工具需要使用:若被积函数不含f’(x),则使用拉格朗日中值:F(x)-f(a)=f’(§)(x-a)若被积函数含f(x),则使用牛顿-莱布尼兹公式: 2)若f(x)连续且定积分区间的长度与定积分前面的常数为倒数关系,一般使用积分中值定理。
题型四 分段函数的积分:分段积分,但是常数C要统一,利用分段点求C.
第五章定积分及其应用
题型一 变积分限的函数问题
用换元法去掉积分限中的字母
考研数学高数常考的内容及题型

考研数学高数常考的内容及题型考研数学高数常考的内容及题型考研是指教育主管部门和招生机构为选拔研究生而组织的相关考试,下面店铺为大家带来考研数学高数常考的内容及题型,希望大家喜欢!考研数学高数有哪些常考内容和题型1、考试内容(1)几何级数与级数及其收敛性;(2)常数项级数的收敛与发散的概念;(3)收敛级数的和的概念;(4)交错级数与莱布尼茨定理;(5)级数的基本性质与收敛的必要条件;(6)正项级数收敛性的判别法;(7)函数项级数的收敛域与和函数的概念;(8)任意项级数的绝对收敛与条件收敛;(9)幂级数的和函数;(10)简单幂级数的和函数的求法;(11)幂级数在其收敛区间内的基本性质;(12)幂级数及其收敛半径、收敛区间(指开区间)和收敛域;(13)初等函数的幂级数展开式;(14)狄利克雷(Dirichlet)定理;(15)“无穷级数”考点和常考题型上的正弦级数和余弦级数。
(其中14-17只要求数一考生掌握,数三考试不要求掌握)。
(16)函数的傅里叶(Fourier)系数与傅里叶级数;(17)“无穷级数”考点和常考题型上的傅里叶级数;2、考试要求(1)了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;(2)理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的`必要条件;(3)掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法;(4)掌握几何级数与级数的收敛与发散的条件;(5)掌握交错级数的莱布尼茨判别法;(6)了解函数项级数的收敛域及和函数的概念;(7)了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和;(8)理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法;(9)了解函数展开为泰勒级数的充分必要条件;(10)了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.(其中11只要求数一考生掌握,数二、数三考试不要求掌握)(11)掌握“无穷级数”考点和常考题型的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开成幂级数;3、常考题型(1)把函数展开成傅立叶级数、正弦级数、余弦级数;(2)求幂级数的和函数;(3)狄利克雷定理(4)判定级数的敛散性;(5)把函数展开成幂级数;(6)求幂级数的收敛域和收敛半径;(7)特殊的常数项级数的求和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020考研数学复习:高数常见题型分析
2020考研数学复习:高数常见题型分析
1、求极限
无论数学一、数学二还是数学三,求极限是高等数学的基本要求,所以也是每年必考的内容。
区别在于有时以4分小题形式出现,题目简单;有时以大题出现,需要使用的方法综合性强。
比如大题可能需要用到等价无穷小代换、泰勒展开式、洛比达法则、分离因式、重要极限等几种方法,有时
需要选择多种方法综合完成题目。
另外,分段函数在个别点处的导数,函数图形的渐近线,以极限形式定义的函数的连续性、可导性
的研究等也需要使用极限手段达到目的,须引起注意!
2、利用中值定理证明等式或不等式
利用中值定理证明等式或不等式,利用函数单调性证明不等式证明题虽不能说每年一定考,但也基本上十年有九年都会涉及。
等式的证明包括使用4个常见的微分中值定理(即罗尔中值定理、拉格朗日中值定理、柯西中值定理、泰勒中值定理),1个定积分中
值定理;不等式的证明有时既可使用中值定理,也可使用函数单调性。
这里泰勒中值定理的使用时的一个难点,但考查的概率不大。
3、求导
一元函数求导数,多元函数求偏导数求导数问题主要考查基本公式及运算能力,当然也包括对函数关系的处理能力。
一元函数求导可能会以参数方程求导、变限积分求导或应用问题中涉及求导,甚或高阶导数;多元函数(主要为二元函数)的偏导数基
本上每年都会考查,给出的函数可能是较为复杂的显函数,也可能
是隐函数(包括方程组确定的隐函数)。
另外,二元函数的极值与条
件极值与实际问题联系极其紧密,是一个考查重点。
极值的充分条件、必要条件均涉及二元函数的偏导数。
4、级数
级数问题常数项级数(特别是正项级数、交错级数)敛散性的判别,条件收敛与绝对收敛的本质含义均是考查的重点,但常常以小题形
式出现。
函数项级数(幂级数,对数一的考生来说还有傅里叶级数,但考
查的频率不高)的收敛半径、收敛区间、收敛域、和函数等及函数在
一点的幂级数展开在考试中常占有较高的分值。
4、积分的计算
积分的计算包括不定积分、定积分、反常积分的计算,以及二重积分的计算,对数一考生来说常主要是三重积分、曲线积分、曲面
积分的计算。
这是以考查运算能力与处理问题的技巧能力为主,以对公式的熟悉及空间想象能力的考查为辅的。
需要注意在复习中对一些问题的
灵活处理,例如定积分几何意义的使用,重心、形心公式的使用,
对称性的使用等。
6、微分方程解常微分方程
微分方程解常微分方程方法固定,无论是一阶线性方程、可分离变量方程、齐次方程还是高阶常系数齐次与非齐次方程,只要记住
常用形式,注意运算准确性,在考场上正确运算都没有问题。
但这里需要注意:研究生考试对微分方程的考查常有一种反向方式,即平常给出方程求通解或特解,现在给出通解或特解求方程。
这需要大家对方程与其通解、特解之间的关系熟练掌握。