实验四晶体管共射放大电路设计、仿真与测试(I)资料

合集下载

(完整word版)共射放大电路计算、仿真、测试分析报告

(完整word版)共射放大电路计算、仿真、测试分析报告

实验三 共射放大电路计算、仿真、测试分析报告请在本文件中录入结果并进行各类分析,实验结束后,提交电子文档报告)实验目的:掌握共射电路静态工作点的计算、 仿真、测试方法; 掌握电路主要参数的计算、 中频时输入、 输出波形的相位关系、失真的类型及产生的原因; 掌握获得波特图的测试、 仿真方法; 掌握 负反馈对增益、上下限截频的影响,了解输入输出间的电容对上限截频的影响等。

实验设备及器件:笔记本电脑(预装所需软件环境)AD2口袋仪器电容: 100pF 、0.01 μF 、10μF 、100μF电阻: 51Ω*2 、 300Ω、 1k Ω、2k Ω、10k Ω*2、24k Ω 面包板、晶体管、 2N5551、连接线等实验内容:电路如图 3-1 所示( 搭建电路时应注意电容的极性图 3-1 实验电路1. 静态工作点(1)用万用表的β测试功能,获取晶体管的β值,并设晶体管的V BEQ =0.64V ,r bb'=10Ω(源于 Multisim 模型中的参数) 。

准确计算晶体管的静态工作点( I BQ 、 I EQ 、 V CEQ ,并填入表 3-1 ) (静态工作点的仿真及测量工作在 C 4为 100pF 完成 );主要计算公式及结果: I(cq)=I(eq)=(v(BQ)-v(BEQ))/(R3+R4)=2.37mAI(BQ)=I(CQ)/(1+beta)=12.46*10^-6 A晶体管为 2N5551C ,用万用表测试放大倍数β(不同的晶体管放大倍数不同,计算时使用实 测数据,并调用和修改 Multisim 中 2N5551 模型相关参数, 计算静态工作点时,V BEQ =0.64V )。

静态工作点计算: V(CEQ)=V(CC)-I(CQ)*(R5+R3+R4)=1.798V)。

R124k C 110 FviR210k100pFC4R 51k VTR351R4 300V CC 5VC310 F R 610kC2100 Fvo(2)通过Multisim 仿真获取静态工作点(依据获取的β值,修改仿真元件中晶体管模型的参数,修改方法见附录。

晶体管共射极放大电路实验报告

晶体管共射极放大电路实验报告

晶体管共射极放大电路实验报告实验目的:1.了解晶体管共射极放大电路的基本原理。

2.熟悉晶体管共射极放大电路的实验操作和测量方法。

3.掌握晶体管共射极放大电路的参数测量和计算方法。

实验仪器和材料:1.功率放大器实验箱。

2.变压器。

3.各种被测元件(晶体管、电阻等)。

4.示波器。

5.万用电表。

实验原理:晶体管共射极放大电路是一种三极管放大电路,由三个基本元件组成:B1(输入器),Q1(放大器)和B2(输出器)。

输入信号通过B1输入到基极,晶体管的发射极作为电流输入端,通过Q1的集电极放大后,再输出到B2、其中,B1和B2是用于匹配输入、输出电路的部分,Q1是负责放大信号的部分。

实验步骤:1.搭建晶体管共射极放大电路。

2.给电路施加电源,调节电源电压为合适的值。

3.使用万用表测量和记录电流值、电压值等相关信息。

4.使用示波器观察输出信号波形,并测量信号的频率和幅度。

5.记录实验中发现的问题和解决办法。

实验数据:1. 输入电压:Vin = 1V。

2. 输出电压:Vout = 10V。

3. 输入电流:Iin = 10mA。

4. 输出电流:Iout = 100mA。

5. 输入阻抗:Zin = Vin / Iin。

6. 输出阻抗:Zout = Vout / Iout。

7. 放大倍数:A = Vout / Vin。

结果分析:根据实验数据计算得到的输入阻抗、输出阻抗和放大倍数等参数,可用于评价晶体管共射极放大电路的性能。

同时,通过观察输出信号波形,可以判断电路是否正常工作,是否满足实验要求。

实验总结:通过本次实验,我们学习了晶体管共射极放大电路的基本原理和搭建方法。

并且通过测量和计算,了解了该电路的输入阻抗、输出阻抗和放大倍数等参数。

同时,通过观察输出信号波形,我们可以判断电路是否正常工作。

通过本次实验,我们进一步加深了对晶体管放大电路的理解,提高了实验操作和测量方法的熟练度。

晶体管共射极单管放大器实验报告10页

晶体管共射极单管放大器实验报告10页

晶体管共射极单管放大器实验报告10页一、实验原理晶体管(英文全称为:transis)是一种双极型器件,它使用电压控制流的方式来控制电路,是一种高低电平的转换器,其中N-MOS具有负偏移电流输出,P-MOS有正偏移电流输出。

而晶体管共射极单管放大器(CE amplifier)是利用晶体管放大输入信号,并且输出放大后的信号,它具有以下几个特点:1.具有高增益:某些应用时,可以获得高达1000倍的增益。

2.具有良好的抗杂散比:它的抗杂散比比其他放大器要好。

3.低成本:CE放大器成本低,是很多电路应用的实用设计。

二、实验准备实验准备包括晶体管共射极单管放大器原理、电路电子元件、实验接线、虚拟示波器、实验电源等:1.晶体管共射极单管放大器原理:晶体管共射极单管放大器是利用晶体管的共射极特性,以电容或非线性电路连接晶体管的共射极,把输入信号放大。

2.电路电子元件:该实验采用的电子元件有晶体管、电阻、电容、变压器等,详见实验设置部分提供的原理图。

3.实验接线:实验接线由晶体管的共射极连接电路的共射极部分,将电路中晶体管的此极和源极和源之间、此极与集电极之间等处可接电容等电子元件。

4.虚拟示波器:实验采用数字示波器,用于监测放大器输出脉冲电平变化,以及便于测量电路中其他因素对放大器性能的影响。

5.实验电源:实验主要是检测晶体管共射极单管放大器的增益、抗扰度、抗噪声度等指标,因此电源的选用是非常重要的,实验中,采用的是稳定的可调电源。

三、实验设置1.确定实验电路:实验电路如下图所示,该回路是一个简单的电路,主要是输入端只有一个电压信号,将输入信号放大传输到输出端,从而得到放大后的信号。

2.确定晶体管型号:实验采用的晶体管型号为:MJE15031。

3.确定实验电路的元件参数:该实验电路中的电容为:C1,用于共射极的电容值为:560uF;用于分压电阻的电阻值为: 10kΩ和4.7kΩ;电源电压为: 12V 。

四、实验结果1.检查输出电压:实验准备完毕后,量出输出端的脉冲电平,结果为7V,较预期值(12V)稍有偏差,约为10%,说明实验设置有较小的偏差。

模电实验 晶体管共射极放大电路

模电实验 晶体管共射极放大电路
1.放大器静态工作点的调试和测量:
晶体管的静态工作点对放大电路能否正常工作起着重要的作用。对安装好的晶体管放大电路必须进行静态工作点的测量和调试。
1静态工作点的测量:
晶体管的静态工作点是指VBEQ、IBQ、VCEQ、ICQ四个参数的值。这四个参数都是直流量,所以应该使用万用电表的直流电压和直流电流档进行测量。
放大器的幅率特性就是测量不同频率信号时的电压放大倍数AU。为此,可采用前述测AU的方法,每改变一个信号频率,测量其相应的电压放大倍数,测量时应注意取点要恰当,在低频段与高频段应多测几点,在中频段可以少测几点。此外,在改变频率时,要保持输入信号的幅度不变,且输出波形不得失真。
3DG 9011(NPN)
晶体管共射极放大电路
一、实验目的
1、学习放大电路静态工作点的测试及调整方法,分析静态工作点对放大器性能的影响。
2、掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。
3、熟悉常用电子仪器及模拟电路实验设备的使用。
二、实验原理
图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用RB1和RB2组成的分压电路,并在发射极中接有电阻RE,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号ui后,在放大器的输出端便可得到一个与ui相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。
(a) (b)
图1-2静态工作点对uO波形失真的影响
改变电路参数UCC、RC、RB(RB1、RB2)都会引起静态工作点的变化,如图2-3所示。但通常多采用调节偏置电阻RB2的方法来改变静态工作点,如减小RB2,则可使静态工作点提高等。
图1-3电路参数对静态工作点的影响
最后还要说明的是,上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言,如输入信号幅度很小,即使工作点较高或较低也不一定会出现失真。所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。如需满足较大信号幅度的要求,静态工作点最好尽量靠近交流负载线的中点。

晶体管共射极放大电路实验报告

晶体管共射极放大电路实验报告

晶体管共射极放大电路实验报告一、实验目的1.掌握共射极放大电路的基本原理和组成。

2.学习如何调试和优化放大电路的性能。

3.通过实验数据分析,加深对晶体管放大原理的理解。

二、实验原理共射极放大电路是一种常见的模拟放大电路,它利用晶体管的放大效应将输入信号放大,并通过电阻、电容等元件进行信号处理和反馈控制。

该电路具有较高的电压放大倍数和良好的频率特性,被广泛应用于各种电子系统中。

三、实验步骤1.搭建共射极放大电路:连接电源、输入信号源、晶体管、电阻、电容等元件,组成共射极放大电路。

2.调试放大电路:通过调节电源电压、输入信号源幅度、晶体管偏置等参数,使放大电路达到最佳的工作状态。

3.测量电压放大倍数:通过测量输入和输出信号的电压值,计算放大倍数。

4.分析实验数据:记录不同参数下的放大倍数、输入电阻、输出电阻等数据,分析其对放大电路性能的影响。

5.优化电路性能:根据实验数据分析结果,调整元件参数或采用不同的元件,优化放大电路的性能。

四、实验数据分析1.电压放大倍数:通过测量输入和输出信号的电压值,计算放大倍数。

实验数据显示,随着输入信号幅度的增加,放大倍数逐渐增大;但当输入信号幅度达到一定值时,放大倍数趋于稳定。

这是因为晶体管已经处于饱和状态,无法再通过增加输入信号幅度来提高放大倍数。

2.输入电阻和输出电阻:输入电阻和输出电阻的大小直接影响放大电路的性能。

输入电阻越大,输入信号源的负载越小,对信号源的影响越小;输出电阻越小,输出电压的负载越大,对负载的影响越小。

实验数据显示,随着反馈系数的增加,输入电阻和输出电阻都呈下降趋势。

这是因为反馈系数越大,对输入和输出信号的衰减越大,导致输入和输出电阻减小。

3.通频带:通频带是衡量放大电路频率响应的重要指标。

实验数据显示,随着反馈系数的增加,通频带逐渐变宽。

这是因为反馈系数的增加导致电路的稳定性提高,能够更好地处理高频信号。

五、实验结论与优化建议通过本次实验,我们验证了共射极放大电路的工作原理和性能特点。

实验四 共射极放大器仿真实验仿真

实验四 共射极放大器仿真实验仿真

实验四共射极放大器仿真实验仿真一、实验目的1.运用仿真软件实现对共射极放大电路的静态和动态分析2.掌握静态工作点对电路输出的影响及调整方法3.进一步加深对放大电路特性与原理的理解。

二、实验准备1.Multisim软件的使用说明2.掌握共射放大电路的工作原理及静态、动态特性分析方法三、实验内容与要求(一) 实验仿真电路图1实验仿真电路(三极管用Q2222A或其它管)(二) 放大器的调试:调节R3到合适静态工作点(R3为P76页图中基极上偏置总电阻)根据实验指导书P76图1仿真电路,逐渐增大输入信号ui,用示波器观察输出信号波形,当出现失真时(输出波形正半周或负半周失真),调节R3,使失真消失。

继续增大ui,当再次出现失真时,调节R3,如此重复上述实验过程,直到增大输入信号时,输出信号同时出现失真,则认为静态工作点为最合适。

逐渐减小输入,当达到输出刚不失真时即为该放大器最大不失真输出电压。

1.测量相应的仿真结果到表1。

2.最不失真输出时的输入/输出仿真波形。

图2最大不失真输出时的/输出波形3.交流分析结果图3放大电路输出点交流分析仿真结果(三) 静态工作点对输出的影响仿真分析1.调节R3,当输出出现饱和失真时,记录静态工作点到表2,记录输入、输出信号波形。

逐渐减小输入信号直到刚好出现不失真,记录此时的输入电压、输出电压及其放大位数到表2。

表2图4饱和失真时输入输出电压波形2.调节R3,当输出出现截止失真时,记录静态工作点到表3,记录输入、输出信号波形。

逐渐减小输入信号直到刚好出现不失真,记录此时的输入电压、输出电压及其放大位数到表3。

表2图5 截止失真时输入输出电压波形四、实验思考1.静态工作点对放大器输出的影响是什么?如何调整合适的静态工作点?2.如果是共集电极放大器和共基极放大器,则当输出电压信号出现正半周或负半周失真时分别属于哪种失真,为什么?答:静态工作点偏低,有可能导致截止失真,偏高,可能导致饱和失真,所以选取适当的静态工作点很重要,当静态工作点选在交流负载线的中点的时候,可以使有效区范围最大,允许最大范围的电压的输入。

完整版共射放大电路计算仿真测试分析报告

完整版共射放大电路计算仿真测试分析报告

完整版共射放大电路计算仿真测试分析报告一、引言共射放大电路是一种常用的电子放大电路,可以将输入信号的幅度放大到较大的输出信号。

本文将对共射放大电路进行计算、仿真和测试,并进行详细的分析和报告。

二、电路图和参数共射放大电路的电路图如下所示:(插入电路图)电路参数如下:输入信号幅度Vin = 0.1V输入信号频率f=1kHz直流输入电源Vcc = 12V直流电源温度T=25°CBJT参数:β = 100,Vbe = 0.7V三、计算分析1.静态工作点计算根据电路图,可以通过分压电路计算基极电压Vb,即:Vb = Vcc * (R2 / (R1 + R2))在此基础上,可以计算发射极电压Ve,即:Ve = Vb - Vbe根据等效电路模型,可以计算集电极电流Ic,即:Ic=β*Ib2.放大倍数计算共射放大电路的放大倍数Av可以通过下式计算:Av=-β*(Rc/Re)3.频率响应计算共射放大电路的截止频率fc可以通过下式计算:fc = 1 / (2π * Re * Ce)四、仿真测试在Multisim软件中,创建共射放大电路的电路图,并设置参数如上所述。

通过输入一个正弦信号,观察输出信号的波形,并测量输入输出信号的幅度和相位差。

五、仿真结果分析1.静态工作点分析通过计算,得到静态工作点的电压如下:Vb=4.8VVe=4.1VIc=10mA2.放大倍数分析通过计算,得到放大倍数Av=-100,即原始信号被放大了100倍。

3.频率响应分析通过计算,得到截止频率fc = 159Hz。

这意味着在这个频率以下,放大倍数基本保持稳定;而在高于这个频率的信号,放大倍数将逐渐减小。

4.仿真测试结果根据仿真测试,可以观察到输入信号被放大了100倍,并且相位差较小,说明该共射放大电路具有较好的增益和线性特性。

六、结论通过对共射放大电路进行计算、仿真和测试,可以得到如下结论:1.静态工作点分析表明,电路能够在合适的工作范围内正常工作。

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大电路实验报告

大学学生实验报告1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。

2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

3.熟悉常用电子仪器及模拟电路实验设备的使用。

【实验仪器与材料】1.EL七LA-IV的模拟电路实验箱2. 函数信号发生器3.双踪示波器4.交流毫伏表5.万用电表6.连接线若干【实验内容与原理】查阅资料可知实验箱中的三极管?〜30-35,rbb '〜200 Q图1为电阻分压式工作点稳定单管放大器实验电路图。

它的偏置电路采用昭和金组成的分压电路,并在发射极中接有电阻F E,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号U后,在放大器的输出端便可彳得到一个与U相位相反,幅值被放大了的输出信号U0,从而实现了电压放大。

在右图电路中,当流过基极偏置电阻的电流远大于晶体管的基极电流时(一般5〜10倍),则它的静态工作点可用下式估算U C L U C C— I C ( R D+R E)放大器静态工作点的调试是指对管子集电极电流I c(或U L E)的调整与测试。

调整放大器到合适的静态工作点,然后加入输入电压 U ,在输出电压 U O 不失真的情况下,单独只用用交流毫伏表或者示波器测出 U i 和U o 的有效值U和U O ,贝y⑵输入电阻R 的测量为了测量放大器的输入电阻,按图3电路在被测放大器的输入端与信号源 之间串入一已知电阻 R,在放大器正常工作的情况下,单独只用交流毫伏表或者示波器测出U S 和U ,则根据输入电阻的定义可得图4输入、输出电阻测量电路测量时应注意下列几点:① 由于电阻R 两端没有电路公共接地点,所以测量 R 两端电压U R 时必须分别 测出U S 和U ,然后按U R = U S - U 求出U R 值。

② 电阻R 的值不宜取得过大或过小,以免产生较大的测量误差,通常取 R 与R 为同一数量级为好,本实验可取 R = 1〜2K Q 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Av
vo vi
集电极总电阻 发射极总电阻
RC' RE'
RC PRL re RE1
RE1使增益下降,输入电阻增加,增益稳定性提高。
2、静态工作点与失真
静态工作点选得过高或 过低都易产生非线性失真。
过高:如Q1,稍大的输 入信号正半周将使晶体管进 入饱和区,因而ic波形将出 现顶部压缩、输出电压vce波 形将在底部压缩,这称为饱 和失真。
太低:如Q2 ,稍大的输入信号负半周将使晶体管进入截止区, 因而ic波形将出现底部压缩、输出电压vce波形将在顶部压缩,这称 为截止失真。
要使放大器不失真地放大,工作点必须选择合适。 初选静态工作点时,可以选取直流负载线的中点,即VCE=0.5VCC 或IC=0.5ICS,这样便可获得较大输出动态范围。
电子电路设计方法
电 子 电 路 设 计 的 一 般 流 程
1、数学方法:根据理论知识、经验值等手算 2、CAA:计算机辅助分析(OrCAD、Multisim等) 3、物理实验:
实验四 晶体管共射放大电路 设计、仿真与测试(I)
一、共射放大电路分析与设计
1、电路分析计算
分立电路普遍采用、 带射极电流负反馈、 阻容耦合共射放大电路
Ri R1 PR2 P1 re RE1 Ro RC
Av
vo vi
集电极总电阻 发射极总电阻
RC' RE'
RC PRL re RE1
(5)电容值确定( fL )
:1 1 34 4、 电路设计的一些原则和经验公式
IE
VBB RE
VBE
RBB
1
(1)小信号放大或前置放大器设计时需要考虑晶体管噪声系数。
VBB
VCC
R2 R1 R2
RBB R1 PR2
IE
VBB VBE
RE
RBB
1
IC 1 IE IE VCE VCC (RC RE )IC
小信号参数计算
gm
IC VT
r
gm
re gm
Ri R1 PR2 P1 re RE1
Ro RC
交流分析 基极到集电极的电压增益
R1、R2:提供静态工作点所需基极电压。
R1:RP用来调节静态工作点,RA起保护作用,避免RP调至0时 基极电流过大、损坏晶体管。
RC 直流负载电阻 RL 交流负载电阻 C1、C2 耦合电容
RE1、RE2都参与了直流电流负反馈, 但只有RE1参与交流电流负反馈,因为旁路电容CE交流时可认为
短路。
直流分析(VCE、IC,BJT 工作状态、小信号参数)
将降低晶体管的集电极静态电压VC、影响输出信号摆幅。
因此,RE1、RC的确定需要根据电压增益AV的大小及稳定性、 输入电阻要求、输出信号摆幅等进行综合考虑。
5、设计举例
设计一阻容耦合单级放大电路
已知条件:VCC= +12V,RL=3kΩ,Vi=10mV,RS=600 Ω 性能指标要求: Av >15V/V,Ri > 3kΩ , fL<50Hz
例如,希望放大器耗电少、噪声低或输入阻抗高,Q点可选得 低一些;希望放大器增益高、就要求Q点适当高一些。
3、电路设计步骤
(1)提出技术指标(VCC:9~12V)
(2)确定电路结构、偏置方案
(3)确定偏置元件值( IC 、VCE)
IE
VBB VBE
RE
RBB
1
ቤተ መጻሕፍቲ ባይዱ
(4)确定影响交流参数的元件值( 也影响VCE)
当放大器输出端接有 负载RL时,因交流负载线 比直流负载线要陡,所以 放大器动态范围要变小。
当发射极接有电阻时, 也会使信号动态范围变小。
输出信号幅度较大时, 为了得到最大不失真输出电 压幅度,其静态工作点应设 在交流负载线的中间位置。
小信号放大器输出信号 幅度通常较小,失真不是主 要问题,此时Q点不一定要 选在交流负载线中点,而可 根据其他要求来选择。
(3)电压增益有关元件值的确定:RC、RE1 由IC=1mA得 re 26
Av
RC' RE'
RC PRL re RE1
取 Av =20V/V,由AV计算式可得
RC P3000 20 26 RE1
RC、RE1的具体取值也有两个考虑思路。Ri R1 PR2 P1 re RE1
从Ri 入手。先取定一符合要求的 Ri ,按Ri 计算式可以确定RE1,然后 可确定RC和RE2。
Ri R1 PR2 P1
12 R2 R1 R2
re RE1
3
R1、R2取太小会使 Ri >5 kΩ 难以
满足,取太大会使工作点稳定要求
(IR1>>IB)难以满足。
因此,R1、R2的具体取值有两个
考虑思路。
从Ri计算式看,一般取R2为Ri下限值的3倍即可满足输入电阻要
求,取R2=15 kΩ,则R1=45 kΩ
(1)电路结构及晶体管选择 选用9013,β按160计算。
(2)静态工作点设置:RE、R1、R2
被测信号幅度较小,考虑噪声系
数、取IC=1mA。 取VB =1/4VCC =3V,得
RE
VB VBE IC
2.3k
当IR1
因此,
>> IB 时,VBB≈VB=3V,由VBB式可得
R1 : R2 3 :1
太高,工程设计中一般取VB或VBB为(1/3~1/4) VCC。
(5)由于射极电阻RE1的负反馈作用,增大RE1能提高电路的输入
电阻、提高电压增益的稳定性,但将使电压增益值下降。
Ri R1 PR2 P 1 re RE1
Av
RC' RE'
RC PRL re RE1
另一方面,当电压增益给定时,增大RE1就需要提高RC,而这
通常,高频小信号晶体管工作电流为0.5mA~2mA时噪声最 小,一般取1mA左右。
(2)由静态电流IE式可以看出,要使静态工作点较稳定,应取 VBB>>VBE。对硅晶体管,一般取VBB为3V~5V。
(3)要保证VB足够稳定,应使IR1 >> IB ,常取IR1为(5~10)IB。
(4)为获得较大的输出信号摆幅和电压增益,基极静态电压不能
Ri R1 PR2 P1 re RE1
按IR1>>IB,取IR1=10IB=0.1mA,则 R2=30kΩ
R1
VCC VB I R1
90k
,因此
综合考虑,R2可取标称值20kΩ, R1可取为60kΩ。
为 使 工 作 点 容 易 调 整 , R1 可 由
36 kΩ固定电阻和50 kΩ电位器串 联构成。
相关文档
最新文档