北师大版高中数学必修4第二章《平面向量》平面向量小结与复习

合集下载

最新最全面高中数学必修4知识点总结:第二章平面向量(精华版)

最新最全面高中数学必修4知识点总结:第二章平面向量(精华版)

高中数学必修 第二章4 知识点总结平面向量16、向量:既有大小,又有方向的量. 有向线段的三要素:起点、方向、长度.数量:只有大小,没有方向的量. 零向量:长度为 的向量.0 单位向量:长度等于 1个单位的向量. 平行向量(共线向量) :方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量.17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式: b .aba ba⑷运算性质:①交换律: ;a bba ②结合律: ;③ . a0 a a abcabc C⑸坐标运算:设 , ,则 .ax 1 , y 1 b x 2 , y 2 abx 1x 2 , y 1y 2 a18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. b⑵坐标运算:设 , ,则 .a x , yb x , y a bx x , y y 1 12 2 12 12 a bC C设、 两点的坐标分别为., x 2 , y 2 ,则x , y x 1 x 2 y , 1 y 21 1 19、向量数乘运算: ⑴实数 与向量 的积是一个向量的运算叫做向量的数乘,记作.a a ① a ;a②当 时, 的方向与 的方向相同; 当 时, 的方向与 的方向相反; 当 时, a 0 .0 a a 0 a a 0 ⑵运算律:① a ;②;③.a a a a ab ab ⑶坐标运算:设 x, y ,则 .aax, yx, y 与b 共线,当且仅当有唯一一个实数 ,使 a .b20、向量共线定理:向量 a a0 设 ,b ,其中 b0 ,则当且仅当 、b 共线.时,向量 ax , y x , y x y x y 0 a b 0 1 1 2 2 1 22 1、e 2 是同一平面内的两个不共线向量, 那么对于这一平面内的任意向量 ,a 21、平面向量基本定理: 如果 e 1 有且只有一对实数.(不共线的向量 、 作为这一平面内所有向量的一组基 、,使 a1 e12e 2 e 1 e 2 12底)上的一点,2、 的坐标分别是1, ,当22、分点坐标公式: 设点 是线段x 1 , y 1 x 2 , y 2 12 1 2x 1 1x 2y 1 1y 2时,点 的坐标是.(当1时,就为中点公式。

高中数学必修4知识点总结:第二章 平面向量

高中数学必修4知识点总结:第二章 平面向量

高中数学必修4知识点总结第二章平面向量16、向量:既有大小,又有方向得量、数量:只有大小,没有方向得量、有向线段得三要素:起点、方向、长度、零向量:长度为得向量、单位向量:长度等于个单位得向量、平行向量(共线向量):方向相同或相反得非零向量、零向量与任一向量平行、相等向量:长度相等且方向相同得向量、17、向量加法运算:⑴三角形法则得特点:首尾相连、⑵平行四边形法则得特点:共起点、⑶三角形不等式:、⑷运算性质:①交换律:;②结合律:;③、⑸坐标运算:设,,则、18、向量减法运算:⑴三角形法则得特点:共起点,连终点,方向指向被减向量、⑵坐标运算:设,,则、设、两点得坐标分别为,,则、19、向量数乘运算:⑴实数与向量得积就就是一个向量得运算叫做向量得数乘,记作、①;②当时,得方向与得方向相同;当时,得方向与得方向相反;当时,、⑵运算律:①;②;③、⑶坐标运算:设,则、20、向量共线定理:向量与共线,当且仅当有唯一一个实数,使、设,,其中,则当且仅当时,向量、共线、21、平面向量基本定理:如果、就就是同一平面内得两个不共线向量,那么对于这一平面内得任意向量,有且只有一对实数、,使、(不共线得向量、作为这一平面内所有向量得一组基底)22、分点坐标公式:设点就就是线段上得一点,、得坐标分别就就是,,当时,点得坐标就就是、(当23、平面向量得数量积:⑴、零向量与任一向量得数量积为、⑵性质:设与都就就是非零向量,则①、②当与同向时,;当与反向时,;或、③、⑶运算律:①;②;③、⑷坐标运算:设两个非零向量,,则、若,则,或、设,,则、设、都就就是非零向量,,,就就是与得夹角,则、第三章三角恒等变换24、两角与与差得正弦、余弦与正切公式:⑴;⑵;⑶;⑷;⑸();⑹()、25、二倍角得正弦、余弦与正切公式:⑴、222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒⑵ 升幂公式降幂公式,、⑶、26、(后两个不用判断符号,更加好用)2,一次方”得 形式。

高中数学必修4知识点总结:第二章 平面向量

高中数学必修4知识点总结:第二章 平面向量

高中数学必修4知识点总结第二章 平面向量16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量.17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b-≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++.18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--.设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x yy A B=--.19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a aλλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a aλμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+.⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.baCBAa b C C -=A -AB =B设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底) 22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.(当时,就为中点公式。

(完整版)高中数学必修4平面向量知识点总结

(完整版)高中数学必修4平面向量知识点总结

高中数学必修 4 知识点总结平面向量知点一 .向量的基本看法与基本运算1向量的看法:①向量:既有大小又有方向的量向量一般用 a, b, c ⋯⋯来表示,或用有向段的起点与uuur uuurxi yj ( x, y)点的大写字母表示,如:AB 几何表示法AB ,a;坐表示法 a向uuur量的大小即向量的模(度),作 | AB | 即向量的大小,作|a|向量不可以比大小,但向量的模能够比大小.②零向量:度 0 的向量,0,其方向是随意的,0与随意愿量平行零向量 a =0|r ra |=0因为0的方向是随意的,且定0 平行于任何向量,故在有关向量平行(共)的中必看清楚能否有“非零向量” 个条件.(注意与 0 的区)③ 位向量:模 1 个位度的向量向量 a0位向量| a0|=1④平行向量(共向量):方向同样或相反的非零向量随意一平行向量都能够移到同一直上方向同样或相反的向量,称平行向量作a∥ b因为向量能够行随意的平移( 即自由向量 ) ,平行向量能够平移到同向来上,故平行向量也称共向量数学中研究的向量是自由向量,只有大小、方向两个因素,起点能够随意取,在必划分清楚共向量中的“共” 与几何中的“共”、的含,要理解好平行向量中的“平行”与几何中的“平行”是不一的.⑤相等向量:度相等且方向同样的向量相等向量平移后能够重合, a b 大x1x2小相等,方向同样(x1, y1 )(x2 , y2 )y1y22向量加法求两个向量和的运算叫做向量的加法uuur r uuur r r uuur uuur uuurAB a, BC b ,a+ b = AB BC =AC(1)0 a a 0 a ;(2)向量加法足交律与合律;向量加法有“三角形法”与“平行四形法”:(1)用平行四形法,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条角,而差向量是另一条角,方向是从减向量指向被减向量(2)三角形法的特色是“首尾相接” ,由第一个向量的起点指向最后一个向量的点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法例;当两向量是首尾连结时,用三角形法例.向量加法的三角形法例可推行至多个向量相加:uuur AB uuurBCuuurCD LuuurPQuuurQRuuurAR ,但这时一定“首尾相连”.3 向量的减法①相反向量:与 a 长度相等、方向相反的向量,叫做记作 a ,零向量的相反向量还是零向量a 的相反向量对于相反向量有:( i)( a)= a;(ii) a +( a )=( a )+ a =0;(iii) 若a、b是互为相反向量,则 a = b , b= a , a +b= 0②向量减法:向量 a 加上b的相反向量叫做 a 与 b的差,记作: a b a ( b) 求两个向量差的运算,叫做向量的减法③作图法: a b 能够表示为从 b 的终点指向 a 的终点的向量( a 、 b 有共同起点)4实数与向量的积:①实数λ与向量 a 的积是一个向量,记作λ a ,它的长度与方向规定以下:(Ⅰ)a a;(Ⅱ)当0 时,λa 的方向与 a 的方向同样;当0 时,λa 的方向与 a 的方向相反;当0 时,a0 ,方向是随意的②数乘向量知足互换律、联合律与分派律5两个向量共线定理:向量 b 与非零向量 a 共线有且只有一个实数,使得b=a6平面向量的基本定理:假如e1 , e2是一个平面内的两个不共线向量,那么对这一平面内的任一直量 a ,有且只有一对实数 1 , 2 使:a1e1 2 e2 ,此中不共线的向量e1 , e2叫做表示这一平面内全部向量的一组基底7特别注意 :(1)向量的加法与减法是互逆运算(2)相等向量与平行向量有差别,向量平行是向量相等的必需条件(3)向量平行与直线平行有差别,直线平行不包含共线(即重合),而向量平行则包含共线(重合)的状况(4)向量的坐标与表示该向量的有向线条的始点、终点的详细地点没关,只与其相对地点有关学习本章主要建立数形转变和联合的看法,以数代形,以形观数,用代数的运算办理几何问题,特别是办理向量的有关地点关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量能否垂直等 因为向量是一新的工具,它常常会与三角函数、数列、不等式、解几等联合起来进行综合考察,是知识的交汇点例 1 给出以下命题:① 若 | r r r ra | = |b | ,则 a = b ;② 若 A ,B ,C ,D 是不共线的四点,则uuur uuur AB DC 是四边形 ABCD 为平行四边形的充要条件;r rr rr r ③ 若 a = b , b = c ,则 a = c ,rrrrr r④ a =b 的充要条件是 | a |=| b | 且 a // b ;r r r r r r⑤ 若 a // b , b // c ,则 a //c,此中正确的序号是解:①不正确.两个向量的长度相等,但它们的方向不必定同样.uuur uuur uuur uuur uuur uuur ② 正确.∵AB DC ,∴ | AB| |DC |且 AB// DC ,又 A ,B ,C ,D 是不共线的四点, ∴ 四边形 ABCD 为平行四边形; 反之,若四边形 ABCDuuuruuur uuur uuur 为平行四边形,则,AB//DC 且|AB| |DC |,uuur uuur所以, AB DC .③ 正确.∵r r r ra =b ,∴ a , b 的长度相等且方向同样;r r r r 又 b = c ,∴ b , c 的长度相等且方向同样,r r r r ∴ a , c 的长度相等且方向同样,故 a = c .r rr r r r r r ④ 不正确.当 a // b 且方向相反时,即便 | a |=| b | ,也不可以获得 a =b ,故 | a |=| b | r r r r 且 a // b 不是 a =b 的充要条件,而是必需不充足条件.r r⑤ 不正确.考虑 b = 0 这类特别状况.综上所述,正确命题的序号是②③.评论:本例主要复习向量的基本看法.向量的基本看法许多,因此简单忘记.为此,复习一方面要建立优秀的知识构造, 另一方面要擅长与物理中、 生活中的模型进行类比和联想.例 2 设 A 、B 、 C 、 D 、 O 是平面上的随意五点,试化简:uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur ① AB BC CD ,② DB AC BD ③OAOCOBCO解:①原式 = uuur uuur uuur uuur uuur uuur( AB BC ) CD AC CD AD ②原式 = uuur uuur uuur r uuur uuur ( DBBD) AC 0 AC AC③原式=uuur (OBuuurOA)uuur ( OC uuurCO)uuurAB uuur(OCuuurCO) uuurAB ruuurAB例 3 设非零向量rrrrrrrrrra 、b 不共线,c =k a + b ,d = a +k b(k R),若 c ∥ d ,试求 kr r解:∵ c ∥ d∴由向量共线的充要条件得:r r (λ R) c =λ d r r r rr r r 即 k a +b =λ( a +k b ) ∴ (k λ ) a + (1 λ k) b = 0r r又∵ a 、 b 不共线∴由平面向量的基本定理k 0 k11 k二 .平面向量的坐标表示1 平面向量的坐标表示: r r在直角坐标系中, 分别取与 x 轴、y 轴方向同样的两个单位向量 i , j作为基底 由平面向量的基本定理知, 该平面内的任一直量 r r r rr a 可表示成 a xi yj ,因为 a 与r rr 数对 (x,y)是一一对应的,所以把 (x,y)叫做向量 a 的坐标,记作 a =(x,y),此中 x 叫作 a 在 x 轴上的坐标, y 叫做在 y 轴上的坐标(1) 相等的向量坐标同样,坐标同样的向量是相等的向量(2) 向量的坐标与表示该向量的有向线段的始点、终点的详细地点没关,只与其相对位置有关 2 平面向量的坐标运算:(1) rx 1, y 1 rr rx 1 x 2 , y 1 y 2若 a ,bx 2 , y 2 ,则 a b uuur(2) 若 A x 1, y 1 , B x 2 , y 2 ,则 ABx 2 x 1 , y 2 y 1 (3) r r x, y)若 a =(x,y),则 a =((4) rx 1, y 1 rx 2 , y 2 r rx 1 y 2 x 2 y 1 0若 a,b,则 a // b(5) rx 1, y 1 r x 2 , y 2 r r x 1 x 2 y 1 y 2若 a,b,则 a br r y 1 y 2 0若 a b ,则 x 1 x 23 向量的运算向量的加减法,数与向量的乘积,向量的数目(内积)及其各运算的坐标表示和性质运几何方法坐标方法运算性质算 类型向 1 平行四边形法例 r rx,y 21 y)2a bb a量 2 三角形法例a b (x 1的 (a b) c a (b c)加法uuur uuur uuurAB BC AC向 三角形法例r ra b a ( b )量a b (x 1 x 2,y 1 y 2)的 uuur uuur减ABBA法uuur uuur uuurOB OA AB 向a 是一个向量 ,a( x, y)(a)() a量 知足 :的>0 时, a 与 a 同向 ;()aaa 乘<0 时, a 与 a 异向 ;法=0 时,a = 0( a b ) a ba ∥ bab向 a ? b 是一个数r rx 1x 2 y 1y 2a ?b b ? a量a?b的a0 或 b 0时 ,( a) ba ( b)(a b)数???量 a?b =0(ab) ?ca ?cb ?c积a 0且b 0 时 ,a 2 | a |2 , |a | x 2 y 2a?b |a||b|cos a,b| a ? b | | a || b | r r r r r r r r r r例 1 已知向量 a (1,2), b (x,1), u a 2b , v 2a b ,且 u // v ,务实数 x 的值r r r r r r r r解:因为 a (1,2), b (x,1),u a 2b , v 2a br 2( x,1) (2 x 1,4) r 2(1,2) ( x,1) (2 x,3)所以 u (1,2) , vr r又因为 u // v所以 3(2 x 1) 4(2 x) 0 ,即 10x 5解得 x12AC 和 OB ( O 为坐标原点)交例 2 已知点 A(4,0), B(4,4),C(2,6) ,试用向量方法求直线点 P 的坐标uuur uuur(x 4, y)解:设 P(x, y) ,则 OP ( x, y), AP因为 P 是 AC 与OB 的交点 所以 P 在直线 AC 上,也在直线 OB 上uuur uuur uuur uuur即得 OP // OB, AP // ACuuur uuur由点 A(4,0),B(4,4),C(2,6) 得, AC ( 2,6), OB (4, 4)6( x 4) 2 y 0得方程组4x 4 y 0x 3解之得y 3故直线 AC 与 OB 的交点 P 的坐标为 (3,3) 三.平面向量的数目积1 两个向量的数目积:r rrrr r 已知两个非零向量 a 与 b ,它们的夹角为 ,则 a ·b =︱ a ︱ ·︱ b ︱ cosr r r r叫做 a 与 b 的数目积(或内积) 规定 0 a 0r r rr r2 = a b向量的投影: ︱ b ︱ cos r ∈R ,称为向量 b 在 a 方向上的投影 投影的绝对值称为射| a |影3 数目积的几何意义:r r r r ra ·b 等于 a 的长度与 b 在 a 方向上的投影的乘积4 向量的模与平方的关系: r r r 2 r 2 a aa | a |5 乘法公式建立:r r r r r 2 r 2 r a b a b a bar r 2 r 2r r r 2 r a ba2a b b a2 r 2b ;2 r rr 22a bb6 平面向量数目积的运算律:①互换律建立: rrr r a b b a②对实数的联合律建立: r r r r r r Ra ba b a b③分派律建立:r r r r r r r rr r a bc a cb cca b特别注意 :( 1)联合律不建立: r r rr r r;a b ca b cr r r rr r(2)消去律不建立 a ba c不可以获得 b crr不可以获得r r r r (3) a b =0a = 0 或b =07 两个向量的数目积的坐标运算:rrrr已知两个向量a ( x 1 , y 1),b ( x 2 , y 2 ) ,则 a ·b = x 1x 2 y 1 y 2rr uuur ruuur r8 向 量 的 夹 角 : 已 知 两 个 非 零 向 量 a 与 b , 作 OA = a ,OB = b , 则 ∠ AOB=( 000)叫做向量r r180 a 与b的夹角r rr rx1 x2y1 y2cos= cosa ?b=a, b r r2222? ba x1y1x2y2当且仅当两个非零向量r r r r r a 与b同方向时,θ=00,当且仅当 a 与b反方向时θ=1800,同时0与其余任何非零向量之间不谈夹角这一问题r r900r r r r9 垂直:假如a与b的夹角为则称 a 与b垂直,记作 a ⊥b10 两个非零向量垂直的充要条件:a ⊥b a ·b=O x1 x2y1 y20平面向量数目积的性质例 1判断以下各命题正确与否:r r r0 ;(1)0 a0 ;(2)0 ar r r r r r r(3)若a0, a b a c ,则 b c ;r r r r r r r r⑷若 a b a c ,则 b c当且仅当 a0 时建立;r r r r r r r r r(5)( a b )c a(b c ) 对随意 a,b , c 向量都建立;(6)对随意愿量r r2r2 a,有 a a解:⑴错;⑵对;⑶错;⑷错;⑸ 错;⑹对例 2 已知两单位向量r r120,若r r r r r r r r a 与b的夹角为c2a b, d3b a ,试求c 与d的夹角解:由题意,r r r r0,a b 1 ,且a与 b 的夹角为 120r r r r01,所以, a b a b cos1202r r r r r r r r2r r r 227 ,Q c c c(2 a b) (2 a b)4a4a b b r7 ,cr13同理可得dr r r r r r r r r 2r217,而 c d(2a b ) (3b a)7a b3b2a2 rr设为 c 与d的夹角,则 cos2 171317 91 arccos17917 182182评论:向量的模的求法和向量间的乘法计算可见一斑例 3r4,3 r1,2 rr r r r r的已知 a, b, mab , n2a b ,按以下条件务实数值r r r r r r( 1) m n ;( 2) m // n ; (3) m nr r r4,32 r r r 7,8解: m a b, n 2a br r 47 3 28 052( 1) m n;r r9483 27 01 ;( 2) m// n2r r 423 227 28 25 2488 0(3) mn2 2 115评论:此例展现了向量在座标形式下的基本运算。

高中数学复习课件-高中数学必修4课件 第二章总结平面向量

高中数学复习课件-高中数学必修4课件  第二章总结平面向量
专题一 向量的综合运算
向量的运算有:加法、减法、数乘及两个向量的数量积,常见的有两种方法: 定义法和坐标法.特别是利用坐标进行向量的运算时,由于转化为实数的运算, 因此比利用定义运算方便、简捷.
应用 1 若向量 AB =(3,-1),n=(2,1),n· AC =7,则 n· BC 的值为( ).
A.-2
相等向量 : 长度相等且方向相同的两个向量
相反向量 : 长度相等而方向相反的两个向量
表示
几何表示 : 用有向线段表示向量
字母表示
:
用一个小写英文字母或两个大写英文字母表示向量
坐标表示 : 用有序实数对表示向量,等于终点坐标减去起点坐标
线性运算
加法
法则
: 三角形法则和平行四边形法则,结果是向量 运算律 : 交换律、结合律
应用 1 已知向量 a,b 满足|a|=3,|b|=2,a 与 b 的夹角为 60°,则 a·b= ; 若(a-mb)⊥a,则实数 m= .
解析:a·b=|a||b|cos 60°=3×2×1 =3. 2
∵(a-mb)⊥a,∴(a-mb)·a=0. ∴a2-mb·a=0.∴9-3m=0.∴m θ.因此求向量的夹角应先转化为求向量夹角的余弦值,再
结合夹角的范围确定夹角的大小.
应用 1 已知向量 a=(1,2),b=(-2,-4),|c|= 5 ,若(c- b)·a= 15 ,则 a 与 c 的夹 2
角为( ).
A.30°
B.60°
C.120°
D.150°
解析:a·b=-10,则(c- b)·a=c·a- b·a=c·a+10= 15 ,所以 c·a=- 5 .
B.BE D.CF
解析:在正六边形 ABCDEF 中,由于 CD∥AF,且|CD|=|AF|,故 CD = AF .同理

(完整版)高中数学必修4平面向量知识点总结.docx

(完整版)高中数学必修4平面向量知识点总结.docx

高中数学必修 4 知识点总结平面向量知点一 .向量的基本概念与基本运算1向量的概念:①向量:既有大小又有方向的量向量一般用 a, b, c ⋯⋯来表示,或用有向段的起点与uuur uuurxi yj ( x, y)点的大写字母表示,如:AB 几何表示法AB ,a;坐表示法 a向uuur量的大小即向量的模(度),作 | AB | 即向量的大小,作|a|向量不能比大小,但向量的模可以比大小.②零向量:度 0 的向量,0,其方向是任意的,0与任意向量平行零向量 a =0|r ra |=0由于0的方向是任意的,且定0 平行于任何向量,故在有关向量平行(共)的中必看清楚是否有“非零向量” 个条件.(注意与 0 的区)③ 位向量:模 1 个位度的向量向量 a0位向量| a0|=1④平行向量(共向量):方向相同或相反的非零向量任意一平行向量都可以移到同一直上方向相同或相反的向量,称平行向量作a∥ b由于向量可以行任意的平移( 即自由向量 ) ,平行向量可以平移到同一直上,故平行向量也称共向量数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意取,在必区分清楚共向量中的“共” 与几何中的“共”、的含,要理解好平行向量中的“平行”与几何中的“平行”是不一的.⑤相等向量:度相等且方向相同的向量相等向量平移后可以重合, a b 大x1x2小相等,方向相同(x1, y1 )(x2 , y2 )y1y22向量加法求两个向量和的运算叫做向量的加法uuur r uuur r r uuur uuur uuurAB a, BC b ,a+ b = AB BC =AC(1)0 a a 0 a ;(2)向量加法足交律与合律;向量加法有“三角形法”与“平行四形法”:(1)用平行四形法,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条角,而差向量是另一条角,方向是从减向量指向被减向量(2)三角形法的特点是“首尾相接” ,由第一个向量的起点指向最后一个向量的点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加:uuur AB uuurBCuuurCD LuuurPQuuurQRuuurAR ,但这时必须“首尾相连”.3 向量的减法①相反向量:与 a 长度相等、方向相反的向量,叫做记作 a ,零向量的相反向量仍是零向量a 的相反向量关于相反向量有:( i)( a)= a;(ii) a +( a )=( a )+ a =0;(iii) 若a、b是互为相反向量,则 a = b , b= a , a +b= 0②向量减法:向量 a 加上b的相反向量叫做 a 与 b的差,记作: a b a ( b) 求两个向量差的运算,叫做向量的减法③作图法: a b 可以表示为从 b 的终点指向 a 的终点的向量( a 、 b 有共同起点)4实数与向量的积:①实数λ与向量 a 的积是一个向量,记作λ a ,它的长度与方向规定如下:(Ⅰ)a a;(Ⅱ)当0 时,λa 的方向与 a 的方向相同;当0 时,λa 的方向与 a 的方向相反;当0 时,a0 ,方向是任意的②数乘向量满足交换律、结合律与分配律5两个向量共线定理:向量 b 与非零向量 a 共线有且只有一个实数,使得b=a6平面向量的基本定理:如果e1 , e2是一个平面内的两个不共线向量,那么对这一平面内的任一向量 a ,有且只有一对实数 1 , 2 使:a1e1 2 e2 ,其中不共线的向量e1 , e2叫做表示这一平面内所有向量的一组基底7特别注意 :(1)向量的加法与减法是互逆运算(2)相等向量与平行向量有区别,向量平行是向量相等的必要条件(3)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况(4)向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关学习本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等 由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点例 1 给出下列命题:① 若 | r r r ra | = |b | ,则 a = b ;② 若 A ,B ,C ,D 是不共线的四点,则uuur uuur AB DC 是四边形 ABCD 为平行四边形的充要条件;r rr rr r ③ 若 a = b , b = c ,则 a = c ,rrrrr r④ a =b 的充要条件是 | a |=| b | 且 a // b ;r r r r r r⑤ 若 a // b , b // c ,则 a //c,其中正确的序号是解:①不正确.两个向量的长度相等,但它们的方向不一定相同.uuur uuur uuur uuur uuur uuur ② 正确.∵AB DC ,∴ | AB| |DC |且 AB// DC ,又 A ,B ,C ,D 是不共线的四点, ∴ 四边形 ABCD 为平行四边形; 反之,若四边形 ABCDuuuruuur uuur uuur 为平行四边形,则,AB//DC 且|AB| |DC |,uuur uuur因此, AB DC .③ 正确.∵r r r ra =b ,∴ a , b 的长度相等且方向相同;r r r r 又 b = c ,∴ b , c 的长度相等且方向相同,r r r r ∴ a , c 的长度相等且方向相同,故 a = c .r rr r r r r r ④ 不正确.当 a // b 且方向相反时,即使 | a |=| b | ,也不能得到 a =b ,故 | a |=| b |r r r r 且 a // b 不是 a =b 的充要条件,而是必要不充分条件.r r⑤ 不正确.考虑 b = 0 这种特殊情况.综上所述,正确命题的序号是②③.点评:本例主要复习向量的基本概念.向量的基本概念较多,因而容易遗忘.为此,复习一方面要构建良好的知识结构, 另一方面要善于与物理中、 生活中的模型进行类比和联想.例 2 设 A 、B 、 C 、 D 、 O 是平面上的任意五点,试化简:uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur ① AB BC CD ,② DB AC BD ③OAOCOBCO解:①原式 = uuur uuur uuur uuur uuur uuur( AB BC ) CD AC CD AD ②原式 = uuur uuur uuur r uuur uuur ( DBBD) AC 0 AC AC③原式=uuur (OBuuurOA)uuur ( OC uuurCO)uuurAB uuur(OCuuurCO) uuurAB ruuurAB例 3 设非零向量rrrrrrrrrra 、b 不共线,c =k a + b ,d = a +k b(k R),若 c ∥ d ,试求 kr r解:∵ c ∥ d∴由向量共线的充要条件得:r r (λ R) c =λ d r r r rr r r 即 k a +b =λ( a +k b ) ∴ (k λ ) a + (1 λ k) b = 0r r又∵ a 、 b 不共线∴由平面向量的基本定理k 0 k11 k二 .平面向量的坐标表示1 平面向量的坐标表示: r r在直角坐标系中, 分别取与 x 轴、y 轴方向相同的两个单位向量 i , j作为基底 由平面向量的基本定理知, 该平面内的任一向量 r r r rr a 可表示成 a xi yj ,由于 a 与r rr 数对 (x,y)是一一对应的,因此把 (x,y)叫做向量 a 的坐标,记作 a =(x,y),其中 x 叫作 a 在 x 轴上的坐标, y 叫做在 y 轴上的坐标(1) 相等的向量坐标相同,坐标相同的向量是相等的向量(2) 向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关 2 平面向量的坐标运算:(1) rx 1, y 1 rr rx 1 x 2 , y 1 y 2若 a ,bx 2 , y 2 ,则 a b uuur(2) 若 A x 1, y 1 , B x 2 , y 2 ,则 ABx 2 x 1 , y 2 y 1 (3) r r x, y)若 a =(x,y),则 a =((4) rx 1, y 1 rx 2 , y 2 r rx 1 y 2 x 2 y 1 0若 a,b,则 a // b(5) rx 1, y 1 r x 2 , y 2 r r x 1 x 2 y 1 y 2若 a,b,则 a br r y 1 y 2 0若 a b ,则 x 1 x 23 向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示和性质运几何方法坐标方法运算性质算 类型向 1 平行四边形法则 r rx,y 21 y)2a bb a量 2 三角形法则a b (x 1的 (a b) c a (b c)加法uuur uuur uuurAB BC AC向 三角形法则r ra b a ( b )量a b (x 1 x 2,y 1 y 2)的 uuur uuur减ABBA法uuur uuur uuurOB OA AB 向a 是一个向量 ,a( x, y)(a)() a量 满足 :的>0 时, a 与 a 同向 ;()aaa 乘<0 时, a 与 a 异向 ;法=0 时,a = 0( a b ) a ba ∥ bab向 a ? b 是一个数r rx 1x 2 y 1y 2a ?b b ? a量a?b的a0 或 b 0时 ,( a) ba ( b)(a b)数???量 a?b =0(ab) ?ca ?cb ?c积a 0且b 0 时 ,a 2 | a |2 , |a | x 2 y 2a?b |a||b|cos a,b| a ? b | | a || b | r r r r r r r r r r例 1 已知向量 a (1,2), b (x,1), u a 2b , v 2a b ,且 u // v ,求实数 x 的值r r r r r r r r解:因为 a (1,2), b (x,1),u a 2b , v 2a br 2( x,1) (2 x 1,4) r 2(1,2) ( x,1) (2 x,3)所以 u (1,2) , vr r又因为 u // v所以 3(2 x 1) 4(2 x) 0 ,即 10x 5解得 x12AC 和 OB ( O 为坐标原点)交例 2 已知点 A(4,0), B(4,4),C(2,6) ,试用向量方法求直线点 P 的坐标uuur uuur(x 4, y)解:设 P(x, y) ,则 OP ( x, y), AP因为 P 是 AC 与OB 的交点 所以 P 在直线 AC 上,也在直线 OB 上uuur uuur uuur uuur即得 OP // OB, AP // ACuuur uuur由点 A(4,0),B(4,4),C(2,6) 得, AC ( 2,6), OB (4, 4)6( x 4) 2 y 0得方程组4x 4 y 0x 3解之得y 3故直线 AC 与 OB 的交点 P 的坐标为 (3,3) 三.平面向量的数量积1 两个向量的数量积:r rrrr r 已知两个非零向量 a 与 b ,它们的夹角为 ,则 a ·b =︱ a ︱ ·︱ b ︱ cosr r r r叫做 a 与 b 的数量积(或内积) 规定 0 a 0r r rr r2 = a b向量的投影: ︱ b ︱ cos r ∈R ,称为向量 b 在 a 方向上的投影 投影的绝对值称为射| a |影3 数量积的几何意义:r r r r ra ·b 等于 a 的长度与 b 在 a 方向上的投影的乘积4 向量的模与平方的关系: r r r 2 r 2 a aa | a |5 乘法公式成立:r r r r r 2 r 2 r a b a b a bar r 2 r 2r r r 2 r a ba2a b b a2 r 2b ;2 r rr 22a bb6 平面向量数量积的运算律:①交换律成立: rrr r a b b a②对实数的结合律成立: r r r r r r Ra ba b a b③分配律成立:r r r r r r r rr r a bc a cb cca b特别注意 :( 1)结合律不成立: r r rr r r;a b c a b cr rr r r r (2)消去律不成立 a ba c 不能得到b crr不能得到 r r r r(3) a b =0a = 0 或b =07 两个向量的数量积的坐标运算:rrrr已知两个向量a ( x 1 , y 1),b ( x 2 , y 2 ) ,则 a ·b = x 1x 2 y 1 y 2rr uuur ruuur r8 向 量 的 夹 角 : 已 知 两 个 非 零 向 量 a 与 b , 作 OA = a ,OB = b , 则 ∠ AOB=( 000)叫做向量r r180 a 与b的夹角r rr rx1 x2y1 y2cos= cosa ?b=a, b r r2222? ba x1y1x2y2当且仅当两个非零向量r r r r r a 与b同方向时,θ=00,当且仅当 a 与b反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题r r900r r r r9 垂直:如果a与b的夹角为则称 a 与b垂直,记作 a ⊥b10 两个非零向量垂直的充要条件:a ⊥b a ·b=O x1 x2y1 y20平面向量数量积的性质例 1判断下列各命题正确与否:r r r0 ;(1)0 a0 ;(2)0 ar r r r r r r(3)若a0, a b a c ,则 b c ;r r r r r r r r⑷若 a b a c ,则 b c当且仅当 a0 时成立;r r r r r r r r r(5)( a b )c a(b c ) 对任意 a,b , c 向量都成立;(6)对任意向量r r2r2 a,有 a a解:⑴错;⑵对;⑶错;⑷错;⑸ 错;⑹对例 2 已知两单位向量r r120,若r r r r r r r r a 与b的夹角为c2a b, d3b a ,试求c 与d的夹角解:由题意,r r r r0,a b 1 ,且a与 b 的夹角为 120r r r r01,所以, a b a b cos1202r r r r r r r r2r r r 227 ,Q c c c(2 a b) (2 a b)4a4a b b r7 ,cr13同理可得dr r r r r r r r r 2r217,而 c d(2a b ) (3b a)7a b3b2a2 rr设为 c 与d的夹角,则 cos2 171317 91 arccos17917 182182点评:向量的模的求法和向量间的乘法计算可见一斑例 3r4,3 r1,2 rr r r r r的已知 a, b, mab , n2a b ,按下列条件求实数值r r r r r r( 1) m n ;( 2) m // n ; (3) m nr r r4,32 r r r 7,8解: m a b, n 2a br r 47 3 28 052( 1) m n;r r9483 27 01 ;( 2) m// n2r r 423 227 28 25 2488 0(3) mn2 2 115点评:此例展示了向量在坐标形式下的基本运算。

高一数学第二章平面向量小结与复习新课程新课标必修四

高一数学第二章平面向量小结与复习新课程新课标必修四

第12课时复习课一、教学目标1. 理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向量.两向量的夹角等概念。

2. 了解平面向量基本定理.3. 向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。

4. 了解向量形式的三角形不等式:||a|-|b|≤|a±b|≤|a|+|b|(试问:取等号的条件是什么?)和向量形式的平行四边形定理:2(|a|2+|b|2)=|a-b|2+|a+b|2.5. 了解实数与向量的乘法(即数乘的意义):6. 向量的坐标概念和坐标表示法7. 向量的坐标运算(加.减.实数和向量的乘法.数量积)8. 数量积(点乘或内积)的概念,a·b=|a||b|cos =x1x2+y1y2注意区别“实数与向量的乘法;向量与向量的乘法”二、知识与方法向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视. 数量积的主要应用:①求模长;②求夹角;③判垂直三、典型例题例1.对于任意非零向量a与b,求证:||a|-|b||≤|a±b|≤|a|+|b|证明:(1)两个非零向量a与b不共线时,a+b的方向与a,b的方向都不同,并且|a|-|b|<|a±b|<|a|+|b|(3)两个非零向量a与b共线时,①a与b同向,则a+b的方向与a.b相同且|a+b|=|a|+|b|.②a与b异向时,则a+b的方向与模较大的向量方向相同,设|a|>|b|,则|a+b|=|a|-|b|.同理可证另一种情况也成立。

例2 已知O为△ABC内部一点,∠AOB=150°,∠BOC=90°,设OA=a,OB=b,OC=c,且|a|=2,|b|=1,| c|=3,用a与b表示c i j解:如图建立平面直角坐标系xoy,其中i, j是单位正交基底向量, 则B(0,1),C(-3,0),设A(x,y),则条件知x=2cos(150°-90°),y=-2sin(150°-90°),即A(1,-3),也就是a=i-3j, b=j,c=-3i所以-3a=33b+c|即c=3a -33b例3.下面5个命题:①|a·b|=|a|·|b|②(a·b)2=a2·b2③a⊥(b-c),则a·c=b·c④a·b=0,则|a+b|=|a-b|⑤a·b=0,则a=0或b=0,其中真命题是()A①②⑤ B ③④C①③D②④⑤三、巩固训练1.下面5个命题中正确的有()①a=b⇒a·c=b·c;②a·c=b·c⇒a=b;③a·(b+c)=a·c+b·c;④a·(b·c)=(a·b)·c;=A..①②⑤B.①③⑤C. ②③④D. ①③2.下列命题中,正确命题的个数为(A )①若a与b是非零向量,且a与b共线时,则a与b必与a或b中之一方向相同;②若e为单位向量,且a∥e则a=|a|e③a·a·a=|a|3④若a与b共线,a与c共线,则c与b共线;⑤若平面内四点A.B.C.D,必有AC+BD=BC+ADA 1B 2C 3D 43.下列5个命题中正确的是①对于实数p,q和向量a,若p a=q a则p=q②对于向量a与b,若|a|a=|b|b则a=b③对于两个单位向量a与b,若|a+b|=2则a=b④对于两个单位向量a与b,若k a=b,则a=b4.已知四边形ABCD的顶点分别为A(2,1),B(5,4),C(2,7),D(-1,4),求证:四边形ABCD为正方形。

【小初高学习】高中数学 第二章《平面向量》全部教案 北师大版必修4

【小初高学习】高中数学 第二章《平面向量》全部教案 北师大版必修4

北师大版高中数学必修4第二章《平面向量》全部教第一课时 2.1从位移、速度、力到向量一、教学目标1.知识与技能:(1)理解向量与数量、向量与力、速度、位移之间的区别;(2)理解向量的实际背景与基本概念,理解向量的几何表示,并体会学科之间的联系.(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力。

2.过程与方法:通过力与力的分析等实例,引导学生了解向量的实际背景,帮助学生理解平面向量与向量相等的含义以及向量的几何表示;最后通过讲解例题,指导学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题.3.情感态度价值观:通过本节的学习,使同学们对向量的实际背景、几何表示有了一个基本的认识;激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神.二.教学重、难点:重点: 向量及向量的有关概念、表示方法.难点: 向量及向量的有关概念、表示方法.三.学法与教法学法:(1)自主性学习+探究式学习法:(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.教法:探究交流法.四.教学过程(一)、创设情境实例:老鼠由A向西北逃窜,猫在B处向东追去。

问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了.(二)、探究新知1.学生阅读教材思考如下问题A B[展示投影](学生先讲,教师提示或适当补充)(1). 举例说明什么是向量?向量与数量有何区别?既有大小又有方向的量叫向量。

例:力、速度、加速度、冲量等。

注意:①数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小。

②从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质。

2.向量的表示方法有哪些?①几何表示法:有向线段有向线段:具有方向的线段叫做有向线段。

记作:−→−AB 注意:起点一定写在终点的前面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
规定:零向量与任一向量的数量积为0
几何意义: 数量积 a · 等于 a 的长度 |a|与 b 在 b
a 的方向上的投影 |b| cosθ的乘积。
B b B b
B
b
O θ
a
B1 A B1
θ
O a
θ
A O (B1)
a
16
A
5、数量积的运算律: ⑴交换律: a b b a ⑵对数乘的结合律: ( a ) b ( a b ) a ( b ) ⑶分配律: ( a b ) c a c b c
= (λ x , λ y)
14
1、平面向量的数量积 (1)a与b的夹角:
a θ b
共同的起点
[00 ,1800] •(2)向量夹角的范围:
• (3)向量垂直:
B B A A O B A O A O B
15
B A
a O θ
O
b
(4)两个非零向量的数量积:
a · = |a| |b| cosθ b
3)向量的表示 4)向量的模(长度)
4
二、向量的运算
1)加法:①两个法则 ②坐标表示
减法: ①法则 ②坐标表示
运算律
注:
AB a , AD b





(1) a


b , 则四边形是什么图形

? ?
( 2) a b
a b , 则四边形是什么图形
5
2)实数λ与向量 a 的积
3)平面向量的数量积:
(1)两向量的交角定义 (2)平面向量数量积的定义 (3)a在b上的投影 (4)平面向量数量积的几何意义 (5)平面向量数量积的运算律
6
(6)平面向量数量积的性质 ①垂直的充要条件
②求夹角 ③求距离
7
三、平面向量之间关系
向量平行(共线)充要条件的两种形式: 向量垂直充要条件的两种形式:
向量垂直充要条件的两种形式:
(1) a b a b 0 ( 2) a b a b x1 x2 y1 y 2 0
19
(3)两个向量相等的充要条件是两个向量的
坐标相等.
, 即: a ( x1 y1 ),
那么 a b x1 x2且 y1 y 2
9
向 量 几何表示 : 有向线段 的 字母表示 : a 、 等 AB 表 坐标表示 : (x,y) 示
若 A(x1,y1),
则 AB =
B(x2,y2)
(x2 - x1 , = ( x , y ), 则 a
x y
2
2
2. 若表示向量 a 的起点和终点的坐标分别
( x x1 )( x x2 ) ( y y1 )( y y2 ) 0
作业布置:完成教材P126---127中A组习题 第11---15题.(选做)复习题2的C组试题. 教后反思:
25
为A(x1,y1)、B (x2,y2) ,则
a AB
x1 x2
2
y1 y 2
2
11
平面向量复习 1.向量的加法运算 三角形法则 AB+BC= AC OA+OB= OC
A
B O A
C
平行四边形法则
B
C
重要结论:AB+BC+CA= 0
坐标运算: 设 a = (x1, y1), b = (x2, y2) 则a + b = ( x1 + x2 , y1 + y2 )
∴AB=2 BD AB∥ BD
且AB与BD有公共点B
∴ A、B、D 三点共线
例3
22
3、若向量AB=(-3,4),则 AB 按向量 a =(2,-1)平移后的坐标 为
23
) 例 已知直线 l 经过点 P1 ( x1 , y1和 用向量方法求 l 的方程。 P2 ( x2 , y2 )


P P2 ( x2 x1 , y2 y1 ), P P ( x x1 , y y1 ) 1 1
注意: 数量积不满足结合律
即 : ( a b ) c a (b c )
17
平面向量数量积的重要性质
ab为非零向量,e为单位向量
(1)e· a
= a · =| a | cosθ e (2)a ⊥ b的充要条件是 a ·b =0 (3) 当 a与b同向时, a ·b = |a | | b | ; 当 a 与b 反向时,a ·b = - |a | | b |
三、平面向量的基本定理
b ( x2 , y 2 )
如果e1 , e2 是同一平面内的两个不共线 向量,那么对于这一平面内的任一向 量 a,有且只有一对实数1 , 2 ,使 a 1 e1 2 e2
20
1.若 a 0, 0,则 a b 0 b ( × 2.若 a b 0,则 a 0或 b 0 ( × 3.若 a b a c,且 a 0,则b c ( × 2 2 ( √ ) 4. a a a a ( √ ) 5. a b a b ,则a // b ( √ ) 6. a b a b ,则a b
设P(x,y)是直线l上任意一点,则
因为 P , P , P2 1
三点都在直线 l 上,
所以 ( x2 x1 )( y y1 ) ( y2 y1 )( x x1 ) 这就是直线 l 的方程
24
思考 已知两点 A( x1 , y1 ) , ( x2 , y2 )试用向量的方 B 法证明以AB为直径的圆的方程为
(3)两个向量相等的充要条件是两个向量 的坐标相等.
四、平面向量的基本定理
注:满足什么条件的向量可作为基底?
8
向量定义:既有大小又有方向的量叫向量。
重要概念:
(1)零向量: 长度为0的向量,记作0. (2)单位向量:长度为1个单位长度的向量.
(3)平行向量:也叫共线向量,方向相同或相反
的非零向量. (4)相等向量:长度相等且方向相同的向量. (5)相反向量:长度相等且方向相反的向量.
北师大版高中数学必修 4第二章《平面向量》
1
一、教学目标:1. 理解向量.零向量.向量的模.单位向 量.平行向量.反向量.相等向量.两向量的夹角等概念。 2. 了解平面向量基本定理.3. 向量的加法的平行四边 形法则(共起点)和三角形法则(首尾相接)。 4. 了解向量形式的三角形不等式 和向量形式的平行四边形定理; 5. 了解实数与向量的乘法(即数乘的意义):6. 向 量的坐标概念和坐标表示法;7. 向量的坐标运算 (加.减.实数和向量的乘法.数量积);8. 数量积(点 乘或内积)的概念, 注意区别“实数与向量的乘法;向量与向量的乘法”。 二、教学过程
13
平面向量 复习
实数λ与向量 a 的积
定义:λa是一个
向量.
它的长度 |λa| = |λ| |a|; 它的方向 (1) 当λ≥0时,λa 的方向
与a方向相同;
(2) 当λ<0时,λa 的方向 与a方向相反.
其实质就是向量的伸长或缩短!
坐标运算: 若a = (x , y), 则λa = λ (x , y)
2
平 面 向 量 小结与 复 习
表示 向量的三种表示 向量加法 与减法 三 角 形 法 则 平行四边形法则 向量平行的 充要条件
平 面 向 量
运 算
实数与向量的 积
平面向量的 基本定理 向量的数量积
3
一、向量的相关概念:1)定义 2)重要概念:
(1)零向量: (2)单位向量: (3)平行向量: (4)相等向量: (5)相反向量:
12
平面向量复习
2.向量的减法运算 1)减法法则: OA-OB = BA 2)坐标运算: 若 a=( x1, y1 ), b=( x2, y2 ) 则a - b= (x1 - x2 , y1 - y2)
3.加法减法运算率 1)交换律: 2)结合律:
O
B
A
a+b=b+a (a+b)+c=a+(b+c)

特别地:a ·a=| a | 2 或 | a | = (4)cosθ= (5)| a· | ≤ | a | | b | b
18
二、平面向量之间关系
向量平行(共线)充要条件的两种形式:
(1) a // b (b 0) a b; ( 2) a // b ( a ( x1 , y1 ), b ( x 2 , y 2 ), b 0) x1 y 2 x2 y1 0
练习1:判断正误,并简述理由。
) ) )
21
平面向量复习 2. 设AB=2(a+5b),BC= 2a + 8b,CD=3(a b), 求证:A、B、D 三点共线。 分析
要证A、B、D三点共线,可证 AB=λBD关键是找到λ
解: ∵BD=BC+CD= 2a + 8b+ 3(a b)=a+5b
相关文档
最新文档