二次根式练习题附答案

合集下载

二次根式练习题及参考答案

二次根式练习题及参考答案

二次根式练习题及参考答案一、选择题1. 下列各式中,是二次根式的是()A. √2B. 2+√3C. (√2)^2D. 1/√22. 二次根式的定义域是()A. 正实数集B. 全体实数集C. 负实数集D. 零集3. 已知a为正数,b为非负数,则必有()A. √a ≠ √bB. √a > √bC. √a < √bD. √a = √b4. 如果√a = √b,则()A. a = bB. a ≤ bC.a ≥ bD. a > b5. 下列哪个数是二次根式()A. 2B. 49C. 5^2D. 3^2二、计算题1. 计算√(3+2√2) 的值。

解答:将√(3+2√2) 分解成 r+s 的形式,即等于√2 + r + s,其中 r 和 s 都是实数。

则有:√2 + r + s = √(3+2√2)√2 = √(3+2√2) - r - s为了消去开方,上式两边平方可得:2 =3 + 2√2 - 2(r+s) + r^2 + s^2 + 2rs2 =3 + r^2 + s^2 + 2rs + √2(2 - 2(r+s))由于√2和(2 - 2(r+s))都是独立存在的,所以它们的系数和常数必须分别为零。

根据此条件可以整理出以下两个方程:2 - 2(r+s) = 02 =3 + r^2 + s^2 + 2rs解得 r = 1,s = 0。

因此:√(3+2√2) = √2 + 1 + 0 = √2 + 12. 计算(√3+1)(√3-1) 的值。

解答:使用公式 (a + b)(a - b) = a^2 - b^2,将a = √3,b = 1 代入,得到:(√3+1)(√3-1) = (√3)^2 - 1^2= 3 - 1= 2三、解答题1. 计算√18 - √8 的值。

解答:将√18 和√8 分别化简,得到:√18 = √(9 × 2) = √9 × √2 = 3√2√8 = √(4 × 2) = √4 × √2 = 2√2因此,√18 - √8 = 3√2 - 2√2 = √22. 计算√(6 + 3√2) + √(6 - 3√2) 的值。

初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题一.选择题1. (2018·湖南怀化·4分)使有意义的x的取值范围是()A.x≤3B.x<3 C.x≥3D.x>3【分析】先根据二次根式有意义的条件列出关于x的不等式.求出x 的取值范围即可.【解答】解:∵式子有意义.∴x﹣3≥0.解得x≥3.故选:C.【点评】本题考查的是二次根式有意义的条件.熟知二次根式具有非负性是解答此题的关键.2.(2018•江苏宿迁•3分)若实数m、n满足.且m、n恰好是等腰△ABC的两条边的边长.则△ABC的周长是()A. 12B. 10C. 8D. 6【答案】B【分析】根据绝对值和二次根式的非负性得m、n的值.再分情况讨论:①若腰为2.底为4.由三角形两边之和大于第三边.舍去;②若腰为4.底为2.再由三角形周长公式计算即可.【详解】由题意得:m-2=0.n-4=0.∴m=2.n=4.又∵m、n恰好是等腰△ABC的两条边的边长.①若腰为2.底为4.此时不能构成三角形.舍去.②若腰为4.底为2.则周长为:4+4+2=10.故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质.根据非负数的性质求出m、n的值是解题的关键.3.(2018•江苏无锡•3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣3【分析】根据二次根式的性质把各个二次根式化简.判断即可.【解答】解:()2=3.A正确;=3.B错误;==3.C错误;(﹣)2=3.D错误;故选:A.【点评】本题考查的是二次根式的化简.掌握二次根式的性质:=|a|是解题的关键.4.(2018•江苏苏州•3分)若在实数范围内有意义.则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式.解不等式.把解集在数轴上表示即可.【解答】解:由题意得x+2≥0.解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件.掌握二次根式中的被开方数是非负数是解题的关键.5.(2018•山东聊城市•3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2D.﹣3=【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A.3与﹣2不是同类二次根式.不能合并.此选项错误;B.•(÷)=•==.此选项正确;C.(﹣)÷=(5﹣)÷=5﹣.此选项错误;D.﹣3=﹣2=﹣.此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算.解题的关键是掌握二次根式混合运算顺序和运算法则.6.(2018•上海•4分)下列计算﹣的结果是()A.4 B.3 C.2D.【分析】先化简.再合并同类项即可求解.【解答】解:﹣=3﹣=2.故选:C.【点评】考查了二次根式的加减法.关键是熟练掌握二次根式的加减法法则:二次根式相加减.先把各个二次根式化成最简二次根式.再把被开方数相同的二次根式进行合并.合并方法为系数相加减.根式不变.7. (2018•达州•3分)二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣2【分析】根据被开方数是非负数.可得答案.【解答】解:由题意.得2x+4≥0.解得x≥﹣2.故选:D.【点评】本题考查了二次根式有意义的条件.利用被开方数是非负数得出不等式是解题关键.8. (2018•杭州•3分)下列计算正确的是()A.B.C.D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB.∵.因此A符合题意;B不符合题意;CD.∵.因此C.D不符合题意;故答案为:A【分析】根据二次根式的性质.对各选项逐一判断即可。

二次根式计算题练习及答案

二次根式计算题练习及答案

一.解答题(共11小题)1.计算:(1);(2).2.计算:(1)×﹣;(2)﹣(2﹣)2+10.3.化简:(1)﹣×+2;(2)(﹣)(+)+6﹣(﹣2)2.4.计算:(1)÷+2×﹣(2+)2(2)(﹣)﹣2﹣(﹣1)2012×﹣+5.计算(1)(+3)(﹣5);(2)×﹣()().6.计算:(1);(2).7.计算:(1)﹣2+(+2)÷;(2)(3﹣2)2﹣(+)(﹣).8.计算(Ⅰ);(Ⅱ).9.计算:(1);(2).10.计算:(1)÷+(+1)(﹣1);(2)(+2)2﹣5;(3)9×÷3;(4)(+)﹣(﹣).11.已知,,求的值.二.填空题(共3小题)12.如果a+b+,那么a+2b﹣3c=.13.若实数x、y、z满足,则x+y+z=.14.若,则=.参考答案与试题解析一.解答题(共11小题)1.计算:(1);(2).【分析】(1)将平方差公式展开,再化简二次根式,进行计算即可得;(2)先展开完全平方公式,再化简二次根式,进行计算即可得.【解答】解:(1)原式==﹣1+3=2;(2)原式===.【点评】本题考查了平方差公式,二次根式,完全平方公式,解题的关键是掌握这些知识点并能够正确计算.2.计算:(1)×﹣;(2)﹣(2﹣)2+10.【分析】(1)根据二次根式的乘除法可以将题目中的式子化简,然后合并同类二次根式即可;(2)根据完全平方公式将式子展开,然后合并同类二次根式即可.【解答】解:(1)×﹣=﹣=﹣=3﹣=;(2)﹣(2﹣)2+10=2﹣(4﹣4+5)+=2﹣9+4+2=8﹣9.【点评】本题考查二次根式的混合运算,熟练掌握运算法则是解答本题的关键.3.化简:(1)﹣×+2;(2)(﹣)(+)+6﹣(﹣2)2.【分析】(1)先算乘法、再化简,然后合并同类项即可;(2)根据平方差公式和完全平方公式将题目中的式子展开,然后合并同类项和同类二次根式即可.【解答】解:(1)﹣×+2=2﹣+=2﹣6+=﹣4+;(2)(﹣)(+)+6﹣(﹣2)2=3﹣2+2﹣(3﹣4+4)=3﹣2+2﹣3+4﹣4=﹣6+6.【点评】本题考查二次根式的混合运算,熟练掌握运算法则是解答本题的关键,注意平方差公式和完全平方公式的应用.4.计算:(1)÷+2×﹣(2+)2(2)(﹣)﹣2﹣(﹣1)2012×﹣+【分析】(1)先利用二次根式的乘除法则运算,再利用完全平方公式计算,然后合并即可;(2)根据负整数指数幂、零指数幂和二次根式的性质计算.【解答】解:(1)原式=+2﹣(8+4+3)=4+2﹣11﹣4=﹣7﹣2;(2)原式=4﹣1×1﹣4+5=4﹣1﹣4+5=4.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.计算(1)(+3)(﹣5);(2)×﹣()().【分析】(1)根据乘法分配律计算,然后合并同类项和同类二次根式即可;(2)根据二次根式的乘法和平方差公式计算即可.【解答】解:(1)(+3)(﹣5)=2﹣5+3﹣15=﹣13﹣2;(2)×﹣()()=﹣(5﹣3)=3﹣2=1.【点评】本题考查二次根式的混合运算,熟练掌握运算法则是解答本题的关键,注意平方差公式的应用.6.计算:(1);(2).【分析】(1)先分母有理化,然后合并同类二次根式即可;(2)根据乘法分配律和完全平方公式可以将题目中的式子展开,然后合并同类二次根式【解答】解:(1)=+﹣==0;(2)=6﹣4﹣(3﹣4+8)=6﹣4﹣3+4﹣8=﹣5.【点评】本题考查二次根式的混合运算、分母有理化,熟练掌握运算法则是解答本题的关键.7.计算:(1)﹣2+(+2)÷;(2)(3﹣2)2﹣(+)(﹣).【分析】(1)先根据二次根式的性质和二次根式的除法法则进行计算,再根据二次根式的加减法则进行计算即可;(2)先根据乘法公式和二次根式的性质进行计算,再根据二次根式的加减法则进行计算即可.【解答】解:(1)﹣2+(+2)÷=2﹣+3+2=3+3;(2)(3﹣2)2﹣(+)(﹣)=9﹣12+20﹣(5﹣2)=9﹣12+20﹣3=26﹣12.【点评】本题考查了乘法公式和二次根式的混合运算,能正确根据二次根式的运算法则进行计算是解此题的关键.(Ⅰ);(Ⅱ).【分析】(I)先根据二次根式的性质进行计算,再算乘法,最后合并同类二次根式即可;(II)先根据平方差公式,完全平方公式和二次根式的性质进行计算,再根据二次根式的加减进行计算即可.【解答】解:(I)原式=×3﹣4×2+3×=2﹣8+=﹣5;(II)原式=6﹣12+12﹣(20﹣2)=6﹣12+12﹣20+2=﹣12.【点评】本题考查了二次根式的混合运算,能正确运用二次根式的运算法则进行计算是解此题的关键,注意运算顺序.9.计算:(1);(2).【分析】(1)先根据二根式的性质进行计算,同时去掉括号,再合并同类二次根式即可;(2)先根据二次根式的性质进行计算,再根据二次根式的乘除法则进行计算即可.【解答】解:(1)=4+﹣+4=4+2﹣3+4=+6;(2)=2×÷=(2×)=8.【点评】本题考查了二次根式的混合运算,能正确根据二次根式的运算法则进行计算是解此题的关键,注意运算顺序.10.计算:(1)÷+(+1)(﹣1);(2)(+2)2﹣5;(3)9×÷3;(4)(+)﹣(﹣).【分析】(1)先根据二次根式的除法法则和平方差公式进行计算,再算加减即可;(2)先根据完全平方公式和二次根式的性质进行计算,再算加减即可;(3)根据二次根式的乘法法则进行计算即可;(4)先去括号,再根据二次根式的加减法则进行计算即可.【解答】解:(1)÷+(+1)(﹣1)=+()2﹣12=+3﹣1=3;(2)(+2)2﹣5=5+4+4﹣=9+3;(3)9×÷3=(9××)=2×=;(4)(+)﹣(﹣)=4+2﹣2+=2+3.【点评】本题考查了二次根式的混合运算和乘法公式,能正确根据二次根式的运算法则进行计算是解此题的关键,注意运算顺序.11.已知,,求的值.【分析】先分母有理化求出a、b的值,再求出a+b和ab的值,求出==,最后将化简后的条件代入变形后的式子就可以求出其值.【解答】解:∵==+2,==﹣2,∴ab=(+2)×(﹣2)=5﹣4=1,a+b=+2+﹣2=2,∴====(2)2﹣2=20﹣2=18.【点评】本题主要考查了二次根式混合运算,分式的化简求值,分母有理化,完全平方公式等知识点,能正确求出,是解答本题的关键.二.填空题(共3小题)12.如果a+b+,那么a+2b﹣3c=0.【分析】先移项,然后将等号左边的式子配成两个完全平方式,从而得到三个非负数的和为0,根据非负数的性质求出a、b、c的值后,再代值计算.【解答】解:原等式可变形为:a﹣2+b+1+|﹣1|=4+2﹣5(a﹣2)+(b+1)+|﹣1|﹣4﹣2+5=0(a﹣2)﹣4+4+(b+1)﹣2+1+|﹣1|=0(﹣2)2+(﹣1)2+|﹣1|=0;即:﹣2=0,﹣1=0,﹣1=0,∴=2,=1,=1,∴a﹣2=4,b+1=1,c﹣1=1,解得:a=6,b=0,c=2;∴a+2b﹣3c=6+0﹣3×2=0.【点评】此题较复杂,能够发现所给等式的特点,并能正确地进行配方是解答此题的关键.13.若实数x、y、z满足,则x+y+z=0.【分析】将化简,得,又因为各项均为非负数,且结果为0,故各项均等于0.即可得出x、y、z的值,代入x+y+z 中即可.【解答】解:根据题意,,整理后:,则,解得x=y=,z=,∴x+y+z=(﹣)+()+=0.【点评】本题考查了二次根式、绝对值、完全平方式的非负性,根据几个非负数的和为0,只有这几个非负数都为0,可以得出未知数的值.14.若,则=6.【分析】对变形,得,因为各项均为非负数,故可求得x、y、z的值,代入中即可.【解答】解:根据题意,,即,得x=2,y=6,z=3;所以.【点评】本题考查的是非负数的性质及二次根式的化简和求值.。

二次根式练习题30道加答案过程

二次根式练习题30道加答案过程

二次根式练习题30道加答案过程1.当a______时,a?2有意义;当x______时,2.当x______时,1有意义. x?315.计算:??11有意义;当x______时,的值为1. 2?22x?xab?11 xx3.直接写出下列各式的结果: 49=______;2=______;2=______;2=______; 2=______;[2]2=______.4.下列各式中正确的是. ??42??2?4?? 27?35.下列各式中,一定是二次根式的是. ?32 2?x6.已知2x?3是二次根式,则x应满足的条件是.x>0 x≤0 x≥-x>-3.当x为何值时,下列式子有意义? ?x; ?x2;x2?1; 7?x.8.计算下列各式:29.若?2?成立,则x,y必须满足条件______.10. ?112______;=______;4324?________.49?36=______;0.81?0.25=______;24a?a3=______.11.下列计算正确的是. 2?3? 2??6?42??312.化简5?2,结果是.?2-10 10 13.如果??,那么.x≥0 x≥ 0≤x≤ x为任意实数 14.当x=-3时,x2的值是.± - 93a6a2b?13a2?492?572x2y716.已知三角形一边长为,这条边上的高为cm,求该三角形的面积.17.把下列各式化成最简二次根式:=______;=______; 45=______; 48x=______;23=______;412=______;a5b3=______; 112?3=______.18.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式:如:32与2. 2与______; 32与______; a 与______; 8a与______;6a2与______.19.?x?xx?x成立的条件是. x<1且x≠0 x>0且x≠1 0<x≤1 0<x<10.下列计算不正确...的是. 3116?72y3x?13x6xy 2??209x?2x21.下列根式中,不是..最简二次根式的是 A.B.C.12D.22.1625= 279=243= 27=5=23=34.当a=______时,最简二次根式与?可以合并.35.若a=+2,b=-2,则a+b=______,ab=______. 36.合并二次根式:?5x1111? ?0.125222?=______;23.把下列二次根式,27,,445,2,,,化简后,与2的被开方数相同的有_________;与的被开a?4ax=______. xx?y23xy37.下列各式中是最简二次根式的是. ab2?3方数相同的有______;与的被开方数相同的有______.4. ?313=______;7?548=______.25.化简后,与的被开方数相同的二次根式是.141626.下列说法正确的是.被开方数相同的二次根式可以合并与可以合并只有根指数为2的根式才能合并2与不能合并27.可以与合并的二次根式是.2aa127a3a28、9?7?5.29.??.30.?3??31.?.32.27?13?.33.12?3438.下列计算正确的是.2??5ab?5a??6?5x?4x?x39.等于.6?6??221 ??2240.?112? 1..42..3..44.? 5.2.46.4?6?3?2.47...78.49.2ba?3a3bab?.参考答案1.a?2,x?3..2.x>0,x=1.3.7;7;7;7;0.7;49.4.D.5.B.6.D..x≤1;x=0;x 是任意实数;x≥-7..18;6;15;6.9.x≥0且y≥0.10.;24;16. 42;0.45;11.B.12.A.13.B. 14.Ba2.b; 15.2;6;24;2x;2ab; 49;12;6xy32y. 16..217.2;;;4;632302?;; abab;18.;;;;19.C.20.C.21.C.453; ; ; 22; ; 53222;2;4.23.,2,,,422.24.3;?6.25.B.26.A. 7.C.28.2?329.30.1123??434.6.35.2,3.36.2;?.31.?32.?33.37.B.38.D.39.B. 042. 6?41.36?7.19?6143.7?44.2.45.84?6.446.?8.47.2?5..?1..?2.? 二次根式1.表示二次根式的条件是______.2.使x有意义的x的取值范围是______..若?有意义,则m =______.4.已知??y?4,则xy的平方根为______..当x=5时,在实数范围内没有意义的是. 1?x| 7?x2?3x4x?206.若|x?5|?2?0,则x-y的值是.--7.计算下列各式: ?2?1)2328.已知△ABC的三边长a、b、c均为整数,且a和b 满足a?2?b2?6b?9?0.试求△ABC的c边的长.9.已知数a,b,c在数轴上的位置如图所示:化简:a2?|a?c|?2?|?b|的结果是:______. 10.已知矩形的长为2,宽为,则面积为______cm2.11.比较大小:3______2;5______4;?22______?6. 12.如果nm是二次根式,那么m,n应该满足条件. mn>0m>0,n≥0 m≥0,n>0 mn≥0且m≠013.把4234根号外的因式移进根号内,结果等于. ? ?44414.计算:5?=______;8a3b.122ab2=______; ?2213?2;=______;3?=______.15.先化简,再求值:?a,其中a?5?12. 16.把下列各式中根号外的因式移到根号里面: a?1 a;?1y?1?17.已知a,b为实数,且??0,求a2008-b2008的值. 18.化简二次根式:17=______;18=______;?413=______. 19.计算下列各式,使得结果的分母中不含有二次根式: 1=______; 132______;2x2=______;y=______.0.已知≈1.732,则13≈______;27≈______.1.计算b1a?ab?ab等于.1ab2ab 11a2bab bab bab22.下列各式中,最简二次根式是.1x?yab x2? 5a2b23.?? ?a?ba?b24.已知:△ABC中,AB=AC,∠A=120°,BC?8,求△ABC的面积.25.观察规律:12?1?2?1,1?2?3?,12??2?3求值.122?7=______;1?=______;1n?1?n=______.26.238ab3与6ba2b无法合并,这种说法是______的.27.一个等腰三角形的两边长分别是2和3,则这个等腰三角形的周长为.2?4362?262?42?4或62?28.?.29.0??12?|5?|?230.a?a133a?12aa.31.2aba1a?bb?aa3b?2bab3.32.化简求值:3x1?4y?x?y,其中x=4,y=1x9.33.已知四边形ABCD四条边的长分别为,,.5和3,求它的周长.4.探究下面问题判断下列各式是否成立.你认为成立的,在括号内画“√”,否则画“×”.①2?23?22;②3?38?338;③4?4?4;④5?524?5524.1515你判断完以上各题后,发现了什么规律?请用含有n的式子将规律表示出来,并写出n的取值范围.请你用所学的数学知识说明你在中所写式子的正确性.35.设a??b??,则a2007b2008的值是______.36.的运算结果是. 0abab2abab37.下列计算正确的是. 2?a?ba??aba2?b2?a?ba?1a?a8.1?2.1?2?.100101.40.2?2.41.已知x??,y??,求值:x2-xy+y2.42.已知x+y=5,xy=3,求x?y的值.yx43.若b<0,化简?ab3的结果是______.44.若菱形的两条对角线长分别为和则此菱形的面积为______.45.若x??2,则代数式x2-4x+3的值是______.6.当a<2时,式子a?2,2?a,a?2,2中,有意义的有. 1个 2个 3个7.若a,b两数满足b<0<a且|b|>|a|,则下列各式有意义的是.a?bb?a a?b ab48abab5??ab?9.?8x4.50.已知:如图,直角梯形ABCD中,AD∥BC,∠A =90°,△BCD为等边三角形,且AD=2,求梯形ABCD的周长.二次根式基础练习一、选择题1.若3?m为二次根式,则m的取值为A.m≤3B.m<3C.m≥D.m>32.下列式子中二次根式的个数有⑴1;⑵3?3;⑶?x2?1;⑷8;⑸12;⑹3?x;⑺x2?2x?3.A.2个 B.3个 C.4个 D.5个3.当a?2a?2有意义时,a的取值范围是A.a≥B.a>C.a≠ D.a≠-24.下列计算正确的是①??4??9?6;②?4?9?6;③52?42?5?4??4?1;④52?42?52?42?1;A.1个 B.2个 C.3个 D.4个5.化简二次根式2?3得A.?B.5C.?D.306.对于二次根式x2?9,以下说法不正确的是A.它是一个正数 B.是一个无理数C.是最简二次根式D.它的最小值是37.把3aab分母有理化后得A.4bB.C.1 bD.b28.ax?by的有理化因式是A.x?yB.x?yC.ax?by D.ax?by9.下列二次根式中,最简二次根式是A.3a B.13C.D.10.计算:a1b?ab?ab等于A.1ab2abB.1ababC.1bab D.bab二、填空题11.当x___________时,?3x是二次根式.12.当x___________时,3?4x在实数范围内有意义. 13.比较大小:?32______?23.14.2ba?a18b?____________;252?242?__________.15.计算:3a?2b?___________.16b216.计算:ca2=_________________.17.当a=3时,则15?a2?___________.18.若x?2x?23?x?3?x成立,则x满足_____________________.三、解答题19.把下列各式写成平方差的形式,再分解因式:)计算:⑴?3?;⑵2?13?6;⑶131?23?;⑷x?10?1y?z.221.计算:⑴?220;⑵0.01?81; 0.25?144⑶12123ab1?2?1;⑷?.352bab22.把下列各式化成最简二次根式: abc27132?122 ⑴;⑵?252723.已知:x?24.参考答案:一、选择题 c3.a4b120?4,求x2?2的值.x1.A;2.C;3.B;4.A;5.B;6.B;7.D;8.C;9.D;10.A.二、填空题11.≤1314b;12.≤;13.<;14.,7;15.302ab;16.;17.32;a34318.2≤x<3.三、解答题19.⑴;⑵;⑶;⑷;20.⑴?243;⑵2;⑶?43;⑷10xyz; 33c2321.⑴?;⑵;⑶1;⑷;22.⑴33;⑵ ?2bc;23.18.4a420二次根式检测题一、选择题有意义,那么x的取值范围是 A.x?B.x?3C.x? D.x≥3 2.下列二次根式中,是最简二次根式的是新- 课-标- 第-一 -网 1.A.2xyB.ab23.1?2a,那么A.a<≥11 B.错误!24.下列二次根式,5.a的值为6.m?n的值是C.1D..D.8. )A.x?1B.x??1C.x≥1D.x≤?19.n的最小值是A. B.C. D.210.k、m、n为三整数,若错误!未找到引用源。

二次根式练习题含答案

二次根式练习题含答案
二次根式练习题含答案
一、选择题
1.已知 =5﹣x,则x的取值范围是( )
A.为任意实数B.0≤x≤5C.x≥5D.x≤5
2.若 ,则 ( ).
A. B. C. D.
3.下列计算正确的是()
A. B.
C. D.
4.下列计算正确的是()
A. B. C. D.
5.下列算式:(1) ;(2) ;(3) = ;(4) ,其中正确的是()
请模仿小明的方法探索并解决下列问题:
(1)当 为正整数时,若 ,请用含有 的式子分别表示 ,得: , ;
(2)填空: = - ;
(3)若 ,且 为正整数,求 的值.
【答案】(1) , ;(2) ;(3) 或46.
【解析】
试题分析:
(1)把等式 右边展开,参考范例中的方法即可求得本题答案;
(2)由(1)中结论可得: ,结合 都为正整数可得:m=2,n=1,这样就可得到: ;
=-10.
【点睛】
此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解答此题的关键.
25.先观察下列等式,再回答下列问题:
① ;


(1)请你根据上面三个等式提供的信息,猜想 的结果,并验证;
(2)请你按照上面各等式反映的规律,用含n的等式表示(n为正整数).
【答案】(1) (2) (n为正整数)
【详解】
=
=
= .
【点睛】
此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.
22.观察下列各式子,并回答下面问题.
第一个:
第二个:
第三个:
第四个: …
(1)试写出第 个式子(用含 的表达式表示),这个式子一定是二次根式吗?为什么?

二次根式测试题及答案

二次根式测试题及答案

二次根式测试题及答案一、选择题(每题 3 分,共 30 分)1、下列式子一定是二次根式的是()A √xB √x²+1C √x² 1D √1 / x答案:B解析:二次根式的被开方数必须是非负数。

选项 A 中,当 x < 0 时,√x 无意义;选项 C 中,当-1 < x < 1 时,x² 1 < 0 ,√x² 1 无意义;选项 D 中,当 x < 0 时,√1 / x 无意义。

而对于选项 B,因为x² ≥ 0 ,所以 x²+1 ≥ 1 ,√x² + 1 一定有意义。

2、若√(2 a)²= a 2 ,则 a 的取值范围是()A a < 2B a >2C a ≤ 2D a ≥ 2答案:D解析:因为√(2 a)²=|2 a| ,而√(2 a)²= a 2 ,所以|2 a|= a 2 ,即2 a ≤ 0 ,解得a ≥ 2 。

3、下列计算正确的是()A √2 +√3 =√5B 2 +√2 =2√2C 3√2 √2 =3D √2 × √3 =√6答案:D解析:选项 A,√2 与√3 不是同类二次根式,不能合并;选项 B,2 与√2 不是同类二次根式,不能合并;选项 C,3√2 √2 =2√2 。

4、化简√( 5)²的结果是()A 5B 5C ± 5D 25答案:A解析:√( 5)²=| 5| = 5 。

5、若√x 1 +√1 x = 0 ,则 x 的值为()A 0B 1C 1D 2答案:B解析:因为二次根式有意义的条件是被开方数为非负数,所以 x 1 ≥ 0 且1 x ≥ 0 ,解得 x = 1 。

6、下列二次根式中,最简二次根式是()A √1 /2B √02C √2D √20答案:C解析:选项 A,√1 / 2 =√2 / 2 ;选项 B,√02 =√1 / 5 =√5 / 5 ;选项 D,√20 =2√5 。

二次根式练习题含答案

二次根式练习题含答案
A. B.4 C. D.2
分析:直接利用二次根式的乘法运算法则求出即可.
解答:解: × = =4.
故选:B.
点评:此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.
9.(2015•山东日照,第2题3分)) 的算术平方根是( )
A.2B.±2C. D.±
考点:算术平方根..
专题:计算题.
分析:先求得 Байду номын сангаас值,再继续求所求数的算术平方根即可.
考点:二次根式的乘除法.
专题:计算题.
分析:原式利用二次根式的乘法法则计算,将结果化为最简二次根式即可.
解答:解:原式= = =4.
故答案为:4
点评:此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.
5.(2015•江苏南京,第7题3分)4的平方根是,算术平方根是.
【答案】±2;2.
考点:1.算术平方根;2.平方根.
解答:解:A、5a2+3a2=8a2,错误;
B、a3•a4=a7,错误;
C、(a+2b)2=a2+4ab+4b2,错误;
D、 ,正确;
故选D.
点评:此题考查同类项、同底数幂的乘法、立方根和完全平方公式,关键是根据法则计算.
14.(2015•江苏徐州,第4题3分)使 有意义的x的取值范围是( )
A.x≠1B.x≥1C.x>1D.x≥0
∴选项B不正确;
∵ ,
∴选项C不正确;
∵(a2b)3=a6b3,
∴选项D正确.
故选:D.
点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(am)n=amn(m,n是正整数);②(ab)n=anbn(n是正整数).

二次根式练习题及答案

二次根式练习题及答案

二次根式练习题1.如果二次根式有意义,那么x应该满足的条件是.2.若两个最简二次根式与是同类二次根式,则a =.3.已知,则x2﹣4x+1的值为.4.关于x的代数式有意义,满足条件的所有整数x的和是9,则a的取值范围.5.已知,.则(1)x2+y2=.(2)(x﹣y)2﹣xy=.6.若x=1+,则x3﹣3x2+2x﹣=.7.实数a、b满足,则a2+b2的最大值为.8.已知x=,y=,且19x2+123xy+19y2=1985,则正整数n的值为.9.计算:(1)82014×(﹣0.125)2015;(2)﹣﹣(π+2020)0.10.计算题:(1)(3+)(3﹣)﹣(﹣1)2;(2)(2﹣3).11.一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2.设a+b(其中a、b、m、n均为正整数),则有a+b =m2+2n2+2mn,∴a=m2+2n2,b=2mn.这样可以把部分a+b的式子化为平方式的方法.请你仿照上述的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a=,b=.(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)化简参考答案与试题解析1.如果二次根式有意义,那么x应该满足的条件是x≤,且x.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,2x+1≠0,且2﹣3x≥0,解得x≤,且x.故答案为:x≤,且x.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.2.若两个最简二次根式与是同类二次根式,则a=2.【分析】根据一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式列出方程求a即可.【解答】解:∵3a﹣1=11﹣3a,∴6a=12,∴a=2.故答案为:2.【点评】本题考查了同类二次根式,最简二次根式,掌握一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式是解题的关键.3.已知,则x2﹣4x+1的值为2.【分析】先根据分母有理化求出x值,然后利用完全平方公式对代数式变形,再代入数据求解即可.【解答】解:===,x2﹣4x+1=x2﹣4x+4﹣4+1=(x﹣2)2﹣3,把代入上式中,原式===2,故答案为:2.【点评】本题主要考查了代数式求值,二次根式的运算,分母有理化等知识点,解题的关键在于能够利用完全平方公式对代数式进行变形求解.4.关于x的代数式有意义,满足条件的所有整数x的和是9,则a的取值范围﹣1<a≤0.【分析】根据二次根式的被开方数是非负数求出x的取值范围,根据满足条件的所有整数x的和是9,得到x=4,3,2,从而1<a+2≤2,从而得出答案.【解答】解:∵4﹣x≥0,x﹣a﹣2≥0,∴a+2≤x≤4,∵满足条件的所有整数x的和是9,∴x=4,3,2,∴1<a+2≤2,∴﹣1<a≤0.故答案为:﹣1<a≤0.【点评】本题考查了二次根式有意义的条件,根据二次根式的被开方数是非负数求出x 的取值范围是解题的关键.5.已知,.则(1)x2+y2=14.(2)(x﹣y)2﹣xy=11.【分析】(1)先分母有理化求出x,再去求x﹣y和xy的值,根据完全平方公式进行变形,最后代入求出答案即可;(2)把x﹣y=﹣2,xy=1代入,即可求出答案.【解答】解:(1)∵x===2﹣,y=2+,∴x﹣y=(2﹣)﹣(2+)=﹣2,xy=(2﹣)×(2+)=4﹣3=1,∴x2+y2=(x﹣y)2+2xy=(﹣2)2+2×1=12+2=14,故答案为:14;(2)由(1)知:x﹣y=﹣2,xy=1,所以(x﹣y)2﹣xy=(﹣2)2﹣1=12﹣1=11,故答案为:11.【点评】本题考查了二次根式的化简求值,分母有理化和完全平方公式等知识点,能求出x﹣y和xy的值是解此题的关键,注意:(x﹣y)2=x2﹣2xy+y2.6.若x=1+,则x3﹣3x2+2x﹣=5.【分析】先将原式进行分组,然后进行因式分解,代入x的值,再根据二次根式混合运算顺序(先算乘方,然后算乘法,最后算加减)及计算法则进行计算.【解答】解:原式=(x3﹣3x2)+2x﹣=x2(x﹣3)+2x﹣,当x=1+时,原式=(1+)2(1+﹣3)+2(1+)﹣=(1+2+7)(﹣2)+2+2﹣=(8+2)(﹣2)+2+2﹣=8﹣16+14﹣4+2+2﹣=5.故答案为:5.【点评】本题考查二次根式的混合运算,理解二次根式的性质,掌握完全平方公式(a+b)2=a2+2ab+b2的结构是解题关键.7.实数a、b满足,则a2+b2的最大值为52.【分析】根据=|a|化简变形得:|a﹣2|+|a﹣6|+|b+4|+|b﹣2|=10,a到2和6的距离之和=4,b到﹣4和2的距离之和是6,得到2≤a≤6,﹣4≤b≤2,根据|a|最大为6,|b|最大为4即可得出答案.【解答】解:原式变形为++|b+4|+|b﹣2|=10,∴|a﹣2|+|a﹣6|+|b+4|+|b﹣2|=10,∴a到2和6的距离之和是4,b到﹣4和2的距离之和是6,∴2≤a≤6,﹣4≤b≤2,∴|a|最大为6,|b|最大为4,∴a2+b2=62+(﹣4)2=36+16=52.故答案为:52.【点评】本题考查了二次根式的性质与化简,根据绝对值的性质得到2≤a≤6,﹣4≤b ≤2是解题的关键.8.已知x=,y=,且19x2+123xy+19y2=1985,则正整数n的值为2.【分析】先将x,y分母有理化化简为含n的代数式,可得x+y=4n+2,xy=1,然后将xy =1代入19x2+123xy+19y2=1985,结果化简为x2+y2=98,进而求解.【解答】解:∵x===()2=2n+1﹣2,y=,=()2=2n+1+2,∴x+y=4n+2,xy=1,将xy=1代入19x2+123xy+19y2=1985得19x2+123+19y2=1985,化简得x2+y2=98,(x+y)2=x2+y2+2xy=98+2=100,∴x+y=10.∴4n+2=10,解得n=2.故答案为:2.【点评】本题考查二次根式的分母有理化,解题关键是利用整体思想求解.9.计算:(1)82014×(﹣0.125)2015;(2)﹣﹣(π+2020)0.【分析】(1)原式逆用积的乘方运算法则计算即可求出值;(2)原式利用二次根式性质,分母有理化,以及零指数幂法则计算即可求出值.【解答】解:(1)原式=(﹣8×0.125)2014×(﹣0.125)=(﹣1)2014×(﹣0.125)=﹣0.125;(2)原式=2﹣﹣1=﹣1.【点评】此题考查了分母有理化,幂的乘方与积的乘方,以及零指数幂,熟练掌握运算法则是解本题的关键.10.计算题:(1)(3+)(3﹣)﹣(﹣1)2;(2)(2﹣3).【分析】(1)利用平方差公式及完全平方公式进行求解较简便;(2)先化简,再算括号里的运算最后算除法即可.【解答】解:(1)(3+)(3﹣)﹣(﹣1)2=9﹣5﹣(3﹣2+1)=9﹣5﹣3+2﹣1=2;(2)(2﹣3)=(8)=﹣=.【点评】本题主要考查二次根式的混合运算,解答的关键是对相应的运算法则的掌握与运用.11.一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2.设a+b(其中a、b、m、n均为正整数),则有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn.这样可以把部分a+b的式子化为平方式的方法.请你仿照上述的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a=m2+3n2,b=2mn.(2)利用所探索的结论,找一组正整数a、b、m、n填空:21+4=(1+ 2)2;(3)化简【分析】(1)将(m+n)2用完全平方公式展开,与原等式左边比较,即可得答案;(2)设a+b=,则=m2+2mn+5n2,比较完全平方式右边的值与a+b,可将a和b用m和n表示出来,再给m和n取特殊值,即可得答案;(3)利用题中描述的方法,将要化简的双重根号,先化为一重根号,再利用分母有理化化简,再合并同类二次根式和同类项即可.【解答】解:(1)∵,=m2+2mn+3n2∴a=m2+3n2,b=2mn故答案为:m2+3n2,2mn.(2)设a+b=则=m2+2mn+5n2∴a=m2+5n2,b=2mn若令m=1,n=2,则a=21,b=4故答案为:21,4,1,2.(3)=﹣=﹣=﹣=﹣=++﹣=+【点评】本题考查了利用分母有理化和利用完全平方公式对二次根式化简,以及对这种方法的拓展应用,本题具有一定的计算难度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式练习题附答案一、选择题1.计算÷=( )A .B .5C .D .2.下列二次根式中,不能与合并的是( )A .B .C .D .3.计算:﹣的结果是( )A .B .2C .2D .2.8 4.下列运算正确的是( )A .2+=2B .5﹣=5 C .5+=6 D . +2=35.计算|2﹣|+|4﹣|的值是( )A .﹣2B .2C .2﹣6D .6﹣26.小明的作业本上有以下四题:①=4a 2;② •=5a ;③a ==;④÷=4.做错的题是( )A .①B .②C .③D .④7.下列四个命题,正确的有( )个.①有理数与无理数之和是有理数②有理数与无理数之和是无理数③无理数与无理数之和是无理数④无理数与无理数之积是无理数.A .1B .2C .3D .48.若最简二次根式和能合并,则x 的值可能为( )A .B .C .2D .59.已知等腰三角形的两边长为2和5,则此等腰三角形的周长为( )A .4+5 B .2+10C .4+10 D .4+5或2+10二、填空题10.×= ;= . 11.计算:(+1)(﹣1)= .12.(+2)2= .13.若一个长方体的长为,宽为,高为,则它的体积为 cm 3.14.化简: = .15.计算(+1)2015(﹣1)2014= .16.已知x 1=+,x 2=﹣,则x 12+x 22= .三、解答题17.计算:(1)(﹣)2;(2)(+)(﹣).(3)(+3)2.18.化简:(1);(2) 19.计算:(1)×+3;(2)(﹣)×;(3).20.(6分)计算:(3+)(3﹣)﹣(﹣1)2. 21.计算:(1)(﹣)+; (2).(用两种方法解) 22.计算:(1)9﹣7+5;(2)÷﹣×+.23.已知:x=1﹣,y=1+,求x 2+y 2﹣xy ﹣2x+2y 的值.《2.7 二次根式(一)》参考答案与试题解析一、选择题1.计算÷=()A.B.5 C.D.【考点】二次根式的乘除法.【专题】计算题.【分析】根据÷=(a≥0,b>0)计算即可.【解答】解:原式==,故选A.【点评】本题考查了二次根式的乘除法,解题的关键是掌握二次根式除法计算公式.2.下列二次根式中,不能与合并的是()A.B.C. D.【考点】同类二次根式.【专题】计算题.【分析】原式各项化简,找出与不是同类项的即可.【解答】解:A、原式=,不合题意;B、原式=2,不合题意;C、原式=2,符合题意;D、原式=3,不合题意,故选C【点评】此题考查了同类二次根式,熟练掌握同类二次根式的定义是解本题的关键.3.计算:﹣的结果是()A. B.2 C.2 D.2.8【考点】二次根式的加减法.【专题】计算题.【分析】原式各项化简后,合并即可得到结果.【解答】解:原式=4﹣2=2,故选C【点评】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.4.下列运算正确的是()A.2+=2B.5﹣=5 C.5+=6 D. +2=3【考点】二次根式的加减法.【专题】计算题.【分析】原式各项合并得到结果,即可做出判断.【解答】解:A、原式不能合并,错误;B、原式=4,错误;C、原式=6,正确;D、原式不能合并,错误,故选C【点评】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.5.计算|2﹣|+|4﹣|的值是()A.﹣2 B.2 C.2﹣6 D.6﹣2【考点】二次根式的加减法.【分析】先进行绝对值的化简,然后合并同类二次根式求解.【解答】解:原式=﹣2+4﹣=2.故选B.【点评】本题考查了二次根式的加减法,解答本题的关键是掌握绝对值的化简.6.小明的作业本上有以下四题:① =4a2;②•=5a;③a==;④÷=4.做错的题是()A.①B.②C.③D.④【考点】二次根式的乘除法.【分析】利用二次根式的性质进而化简求出即可.【解答】解:① =4a2,正确;②•=5a,正确;③a==,正确;④÷==2,故此选项错误.故选:D.【点评】此题主要考查了二次根式的乘除法,正确化简二次根式是解题关键.7.下列四个命题,正确的有()个.①有理数与无理数之和是有理数②有理数与无理数之和是无理数③无理数与无理数之和是无理数④无理数与无理数之积是无理数.A.1 B.2 C.3 D.4【考点】实数的运算.【专题】探究型.【分析】根据无理数、有理数的定义及实数的混合运算进行解答即可.【解答】解:①有理数与无理数的和一定是有理数,故本小题错误;②有理数与无理数的和一定是无理数,故本小题正确;③例如﹣+=0,0是有理数,故本小题错误;④例如(﹣)×=﹣2,﹣2是有理数,故本小题错误.故选A.【点评】本题考查的是实数的运算及无理数、有理数的定义,熟知以上知识是解答此题的关键.8.若最简二次根式和能合并,则x的值可能为()A.B.C.2 D.5【考点】同类二次根式.【分析】根据能合并的最简二次根式是同类二次根式列出方程求解即可.【解答】解:∵最简二次根式和能合并,∴2x+1=4x﹣3,解得x=2.故选C.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.9.已知等腰三角形的两边长为2和5,则此等腰三角形的周长为()A.4+5B.2+10C.4+10D.4+5或2+10【考点】二次根式的应用;等腰三角形的性质.【专题】计算题.【分析】先由三角形的三边关系确定出第三边的长,再求周长.【解答】解:∵2×2<5∴只能是腰长为5∴等腰三角形的周长=2×5+2=10+2.故选B.【点评】本题考查了等腰三角形的性质:两腰相等,注意要用三角形的三边关系确定出第三边.二、填空题10.×= 2 ; = .【考点】二次根式的乘除法.【分析】直接利用二次根式的性质化简求出即可.【解答】解:×==2,==.故答案为:2,.【点评】此题主要考查了二次根式的乘除法,正确化简二次根式是解题关键.11.计算:( +1)(﹣1)= 1 .【考点】二次根式的乘除法;平方差公式.【专题】计算题.【分析】两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).【解答】解:( +1)(﹣1)=.故答案为:1.【点评】本题应用了平方差公式,使计算比利用多项式乘法法则要简单.12.(+2)2= 9+4.【考点】二次根式的混合运算.【专题】计算题.【分析】利用完全平方公式计算.【解答】解:原式=5+4+4=9+4.故答案为9+4.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.13.若一个长方体的长为,宽为,高为,则它的体积为12 cm3.【考点】二次根式的乘除法.【分析】首先根据正方体的体积列出计算式,然后利用二次根式的乘除法法则计算即可求解.【解答】解:依题意得,正方体的体积为:2××=12cm3.故答案为:12.【点评】此题主要考查了二次根式的乘法,同时也利用了正方体的体积公式,正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.14.化简: = . 【考点】二次根式的加减法. 【分析】先进行二次根式的化简,然后合并即可.【解答】解:原式=3+2+ =. 【点评】本题考查了二次根式的加减法,属于基础题,关键是掌握二次根式的化简.15.计算(+1)2015(﹣1)2014= +1 .【考点】二次根式的混合运算.【专题】计算题.【分析】先根据积的乘方得到原式=[(+1)•(﹣1)]2014•(+1),然后利用平方差公式计算.【解答】解:原式=[(+1)•(﹣1)]2014•(+1) =(2﹣1)2014•(+1)=+1.故答案为+1. 【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.16.已知x 1=+,x 2=﹣,则x 12+x 22= 10 .【考点】二次根式的混合运算.【分析】首先把x 12+x 22=(x 1+x 2)2﹣2x 1x 2,再进一步代入求得数值即可.【解答】解:∵x 1=+,x 2=﹣, ∴x 12+x 22=(x 1+x 2)2﹣2x 1x 2=(++﹣)2﹣2(+)×(﹣)=12﹣2=10.故答案为:10.【点评】此题考查二次根式的混合运算,把代数式利用完全平方公式化简是解决问题的关键.三、解答题17.计算:(1)(﹣)2;(2)(+)(﹣).(3)(+3)2.【考点】二次根式的混合运算.【分析】(1)(3)利用完全平方公式计算即可;(2)利用平方差公式计算即可.【解答】解:(1)原式=2﹣2+=;(2)原式=2﹣3=﹣1;(3)原式=5+6+18=23+6.【点评】此题考查二次根式的混合运算,掌握完全平方公式和平方差公式是解决问题的关键.18.化简:(1);(2)【考点】二次根式的乘除法.【分析】(1)根据二次根式的乘法法则计算;(2)可以直接进行分母有理化.【解答】解:(1)=4×2=8;(2)=.【点评】此题考查了乘法法则、分母有理化和二次根式的性质: =|a|.19.计算:(1)×+3;(2)(﹣)×;(3).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)利用二次根式的乘法法则运算;(2)先利用二次根式的乘法法则运算,然后合并即可;(3)先把各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算.【解答】解:(1)原式=+3=4+3=7;(2)原式=﹣=﹣3=﹣2;(3)原式===2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.20.计算:(3+)(3﹣)﹣(﹣1)2.【考点】二次根式的混合运算.【分析】利用完全平方公式和平方差公式计算,再进一步合并即可.【解答】解:原式=9﹣5﹣4+2=2.【点评】本题考查的是二次根式的混合运算,掌握完全平方公式和平方差公式是解决问题的关键.21.计算:(1)(﹣)+;(2).(用两种方法解)【考点】二次根式的混合运算.【分析】(1)先算乘法,再算加减;(2)先化简,再算除法或利用二次根式的除法计算.【解答】解:(1)原式=2﹣+=2;(2)方法一:原式=﹣=﹣1;方法二:原式==﹣1.【点评】本题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.22.计算:(1)9﹣7+5;(2)÷﹣×+.【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的除法和乘法法则运算,然后合并即可.【解答】解:(1)原式=9﹣14+20=15;(2)原式=﹣+2=4﹣+2=4+.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.23.已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.【考点】二次根式的化简求值;因式分解的应用.【专题】计算题.【分析】根据x、y的值,先求出x﹣y和xy,再化简原式,代入求值即可.【解答】解:∵x=1﹣,y=1+,∴x﹣y=(1﹣)﹣(1+)=﹣2,xy=(1﹣)(1+)=﹣1,∴x2+y2﹣xy﹣2x+2y=(x﹣y)2﹣2(x﹣y)+xy=(﹣2)2﹣2×(﹣2)+(﹣1)=7+4.【点评】本题考查了二次根式的化简以及因式分解的应用,要熟练掌握平方差公式和完全平方公式.。

相关文档
最新文档