(完整版)最小二乘法拟合椭圆附带matlab程序

合集下载

matlab最小二乘法拟合椭圆

matlab最小二乘法拟合椭圆

matlab最小二乘法拟合椭圆在MATLAB中使用最小二乘法拟合椭圆的方法如下:1. 假设我们有一组二维点的坐标数据,可以表示为 (x, y)。

我们的目标是找到一个椭圆方程来最好地拟合这些点。

2. 根据椭圆的标准方程,我们可以将椭圆表示为 Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0 的形式。

其中 A、B、C、D、E 和 F 是椭圆的参数,需要确定。

3. 我们可以将这个问题转化为一个最小二乘问题,通过找到参数 A、B、C、D、E 和 F,使得该方程对每个数据点 (x, y) 的误差最小化。

4. 在MATLAB中,可以使用 lsqnonlin 函数来解决最小二乘问题。

首先,定义一个误差函数,即方程 Ax^2 + Bxy + Cy^2 + Dx + Ey + F 的值与点 (x, y) 之间的距离差的平方之和。

5. 然后,使用 lsqnonlin 函数来最小化误差函数并找到最佳的参数 A、B、C、D、E 和 F。

以下是一个使用最小二乘法拟合椭圆的示例代码:```matlabfunction error = ellipseFit(params, x, y)A = params(1);B = params(2);C = params(3);D = params(4);E = params(5);F = params(6);error = A * x.^2 + B * x.*y + C * y.^2 + D * x + E * y + F;endx = [1, 2, 3, 4, 5]; % 输入数据点的 x 坐标y = [2, 4, 5, 6, 7]; % 输入数据点的 y 坐标params0 = [1, 1, 1, 1, 1, 1]; % 初始参数猜测值% 使用 lsqnonlin 函数求解最小二乘问题params = lsqnonlin(@(params)ellipseFit(params, x, y),params0);A = params(1);B = params(2);C = params(3);D = params(4);E = params(5);F = params(6);disp(['椭圆方程: ', num2str(A), 'x^2 + ', num2str(B),'xy + ', num2str(C), 'y^2 + ', num2str(D), 'x + ', num2str(E), 'y + ', num2str(F), ' = 0']);```这段代码根据输入的数据点坐标进行最小二乘拟合,得到椭圆方程的参数,并打印出椭圆方程。

最小二乘曲线拟合及Matlab 实现

最小二乘曲线拟合及Matlab 实现

图3
测量数据散点图与拟合曲线图
5
结束语
通过 Matlab 实现对磁偶极子辐射场测量数据 的曲线拟合 可在有限的测量数据条件下精确描述 导电介质中电磁波的传播特性 为实验研究与工程 应用提供依据 基于最小二乘曲线拟合及 Matlab 实现方法简明 适用 可应用于类似的测量数据处 理和实验研究
参考文献
[1] 周陪森 , 刘震涛 , 吴淑荣 . 自动检测与仪表 [M]. 北京 : 清华大学出版社 , 1987. [2] 何汉林 , 魏汝祥 , 李卫军 . 数值分析 [M]. 武汉 : 湖北科 学技术出版社 , 1999. [3] 何仁斌 . MATLAB6 工程计算及应用 [M]. 重庆 : 重庆大 学出版社 , 2001. [4] 牛中奇 , 朱满座 , 卢志远 , 等 . 电磁场理论基础 [M]. 北 京 : 电子工业出版社 , 2001. [5] 易芳 . 采用 MATLAB 的线性回归分析 [J]. 兵工自动化 , 2004, 23 (2): 68 - 69.
polynomialfitting1引言由于磁偶极子在导电介质中的传播衰减大并具有强非线性测量数据与被测物理量的真值不完全一致求被测物理量的变化规律法是对测量数据进行曲线拟合1曲线拟合用matlab实现对导电介质中磁偶极子辐需对数据进行必要的数学加工和处理寻解决此类问题的常用方故基于最小二乘射场的传播特性的曲线拟合与仿真2最小二乘曲线拟合给定一组测量数据xiyii求得变量x和y之间的函数关系fxa使它最佳地逼近或拟合已知数据2aa0a1012m基于最小二乘原理fxa称为拟合模型做法是选择参数a使得拟合模型与实际观测值在各点的残差ekykfxka的加权平方和最小m2iiiyxfxan是一些待定参数即求fx使??m0i2iii0iyxfxminxi0称为权应用此法拟合的曲线称为最小二乘拟它反映数据xiyi在实验中所占数据的比重合曲线用最小二乘法求拟合曲线首先要确定拟合模型fx一般来说根据各门科的知识可以大致确定函数的所属类若不具备这些知识则通常从问题的运动规律及给定数据的散点图来确定拟合曲线的形式21多项式拟合若拟合模型fxa多项式拟合假设各数据点的权为1mm2iaaea0a1xanxn则称其为an由最小二乘法确定系数a0a1令a0a12最小ani0inini100iyxax?则有0yxaxaax2am0iinini10jij????j012man即ii得方程组m0iji0jninj1i1ji0yxxaxax??????????????????????????????????????????????????mmmm0iini0iiim0iin10m0in2im0i1nim0ini0i1ni0i2im0iim0inim0iiyxyxyaaaxxxxxxxx1m此方程称为多项式拟合的法方程令????????????????iiiiiimmm0n2im01nim0ni01ni02im0im0inim0iixxxxxxxx1mx????????????????????iimm0ini0iim0iiyxyxyy??????????????n10aaaa则得xay从而ax1y收稿日期作者简介20041209修回日期男20041231陈光1980吉林人在读硕士1999年毕业于海军工程大学从事水下目标探测与制导研究107万方数据兵工自动化软件技术o

最小二乘法曲线拟合-原理及matlab实现

最小二乘法曲线拟合-原理及matlab实现

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ϕ来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ϕ最好地逼近()x f ,而不必满足插值原则。

因此没必要取)(i x ϕ=i y ,只要使i i i y x -=)(ϕδ尽可能地小)。

原理:给定数据点},...2,1,0),,{(m i y x i i =。

求近似曲线)(x ϕ。

并且使得近似曲线与()x f 的偏差最小。

近似曲线在该点处的偏差i i i y x -=)(ϕδ,i=1,2,...,m 。

常见的曲线拟合方法:1.使偏差绝对值之和最小2.使偏差绝对值最大的最小3.使偏差平方和最小最小二乘法:按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。

推导过程:1. 设拟合多项式为:kk x a x a a x +++=...)(10ϕ2. 各点到这条曲线的距离之和,即偏差平方和如下:3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到了:.......4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵:5. 将这个范德蒙得矩阵化简后可得到:6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。

MATLAB实现:MATLAB提供了polyfit()函数命令进行最小二乘曲线拟合。

调用格式:p=polyfit(x,y,n)[p,s]= polyfit(x,y,n)[p,s,mu]=polyfit(x,y,n)x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。

x 必须是单调的。

矩阵s包括R(对x进行QR分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。

最小二乘法、最佳均方逼近、随机拟合及其MATLAB程序

最小二乘法、最佳均方逼近、随机拟合及其MATLAB程序

2曲线拟合的线性最小二乘法及其MATLAB?序例2给出一组数据点(X i, y i)列入表2中,试用线性最小二乘法求拟合曲线, 估计其误差,作出拟合曲线•解 (1)在MATLAB工作窗口输入程序>> x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.126.50 68.04];plot(x,y , 'r*'),lege nd( '实验数据(xi,yi)' )xlabel( 'x' ), ylabel( 'y'),title( '数据点(xi,yi) 的散点图’)运行后屏幕显示数据的散点图(略)(3)编写下列MATLAB程序计算f(x)在(X j,yj处的函数值,即输入程序>> syms al a2 a3 a4x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];fi=a1.*x.A3+ a2.*x.A2+ a3.*x+ a4运行后屏幕显示关于a1,a2, a3和a4的线性方程组fi =[ -125/8*a1+25/4*a2-5/2*a3+a4,-4913/1000*a1+289/100*a2-17/10*a3+a4,-1331/1000*a1+121/100*a2-11/10*a3+a4, -64/125*a1+16/25*a2-4/5*a3+a4,a4, 1/1000*a1+1/100*a2+1/10*a3+a4,27/8*a1+9/4*a2+3/2*a3+a4,19683/1000*a1+729/100*a2+27/10*a3+a4, 5832/125*a1+324/25*a2+18/5*a3+a4]编写构造误差平方和的MATLAB程序>> y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04];fi=[-125/8*a1+25/4*a2-5/2*a3+a4, -4913/1000*a1+289/100*a2-17/10*a3+a4, -1331/1000*a1+121/100*a2-11/10*a3+a4,-64/125*a1+16/25*a2-4/5*a3+a4, a4,1/1000*a1+1/100*a2+1/10*a3+a4,27/8*a1+9/4*a2+3/2*a3+a4,19683/1000*a1+729/100*a2+27/10*a3+a4,5832/125*a1+324/25*a2+18/5*a3+a4];fy=fi-y; fy2=fy.A2; J=sum(fy.A2)运行后屏幕显示误差平方和如下J=(-125/8*a1+25/4*a2-5/2*a3+a4+1929/10)A2+(-4913/1000*a1+289/100*a2-17/10*a3+a4+171/2)A2+(-1331/1000*a1+121/100*a2-11/10*a3+a4+723/20F2+(-64/125*a1+16/25*a2-4/5*a3+a4+663/25F2+(a4+91/10F2+(1/1000*a1+1/100*a2+1/10*a3+a4+843/100)A2+(27/8*a1+9/4*a2+3/2*a3+a4+328/25)A2+(19683/1000 *a1+729/100*a2+27/10*a3+a4-13/2F2+(5832/125*a1+324/25*a2 +18/5*a3+a4-1701/25F2为求31,32,33,34使J达到最小,只需利用极值的必要条件-丄 0 a k (k 1,2,3,4),得到关于31,32,33,34的线性方程组,这可以由下面的MATLAB程序完成,即输入程序>> syms a1 a2 a3 a4 J=(-125/8*a1+25/4*32-5/2*a3+34+1929/10)A2+(-4913/1000*a1+289/100*32-17/10*33+34...+171/2)A2+(-1331/1000*a1+1 21/100*a2-11/10*a3+34+723/20)A2+(-64/125*31+16/25*32-4/5*a3+34+663/25)A2+(34+91/10)A2+(1/1000*31+1/100*32+1/10*a3+a4+843/100)A2+(27/8*31+9/4*32+3/2*a3+34+328/25)A2+(19683/ 1000*a1+729/100*32+27/10*a3+34-13/2)A2+(5832/125*31+324/2 5*a2+18/5*a3+a4-1701/25)A2;Ja1=diff(J,a1); Ja2=diff(J,a2); Ja3=diff(J,a3);Ja4=diff(J,a4);Ja11=simple(Ja1), Ja21=simple(Ja2), Ja31=simple(Ja3),Ja41=simple(Ja4),运行后屏幕显示J分别对31, 32 ,33 ,34的偏导数如下Ja1仁56918107/10000*31+32097579/25000*32+1377283/2500*33+23667/250*34-8442429/625J321 =32097579/25000*31+1377283/2500*32+23667/250*33 +67*34+767319/625 J331 = 1377283/2500*31+23667/250*32+67*33+18/5*34-232638/125J341 = 23667/250*31+67*32+18/5*33+18*34+14859/25解线性方程组J311 =0,J321 =0,J331 =0,J341 =0,输入下列程序>>A=[56918107/10000, 32097579/25000, 1377283/2500,23667/250; 32097579/25000, 1377283/2500, 23667/250, 67; 1377283/2500, 23667/250, 67, 18/5; 23667/250, 67, 18/5, 18];B=[8442429/625, -767319/625, 232638/125, -14859/25];C=B/A, f=poly2sym(C)运行后屏幕显示拟合函数f及其系数C如下C = 5.0911 -14.1905 6.4102 -8.2574f=716503695845759/140737488355328*xA3-7988544102557579/562949953421312*xA2+1804307491277693/281474976710656*x -4648521160813215/562949953421312 故所求的拟合曲线为f (x) 5.0911 x314.1905 x2 6.4102 x 8.2574 .(4)编写下面的MATLAB 程序估计其误差,并作出拟合曲线和数据的图形.输入程序>> xi=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6]; y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04]; n=length(xi);f=5.0911.*xi.A3-14.1905.*xi.A2+6.4102.*xi -8.2574;x=-2.5:0.01: 3.6;F=5.0911.*x.A3-14.1905.*x.A2+6.4102.*x -8.2574;fy=abs(f-y); fy2=fy.A2; Ew=max(fy),E1=sum(fy)/n, E2=sqrt((sum(fy2))/n) plot(xi,y,'r*'), hold on, plot(x,F, 'b-'),hold off legend('数据点(xi,yi)','拟合曲线y=f(x)'),xlabel('x'), ylabel('y'),title(例2的数据点(xi,yi)和拟合曲线y=f(x)的图形')运行后屏幕显示数据(X i,yj与拟合函数f的最大误差平均误差E i和均方根误差E2及其数据点(X j,yj和拟合曲线y=f(x)的图形(略).Ew = E1 = E2 =3.105 4 0.903 4 1.240 96函数逼近及其MATLAB?序最佳均方逼近的MATLAB^程序function [yy1,a,WE]=zjjfbj(f,X,Y,xx) m=size(f);n=length(X);m=m(1);b=zeros(m,m); c=zeros(m,1);if n~=length(Y) error( 'X和丫的维数应该相同') end for j=1:m for k=1:mb(j,k)=0;for i=1:nb(j,k)=b(j,k)+feval(f(j,:),X(i))*feval(f(k,:),X(i));endendc(j)=0;for i=1:nc(j)=c(j)+feval(f(j,:),X(i))*Y(i);endenda=b\c;WE=0;for i=1:nff=0;for j=1:m ff=ff+a(j)*feval(f(j,:),X(i)); endWE=WE+(Y(i)-ff)*(Y(i)-ff);endif nargin==3return ;endyy=[];for i=1:ml=[];for j=1:length(xx) l=[l,feval(f(i,:),xx(j))]; end yy=[yy l'];endyy=yy*a; yy1=yy'; a=a';WE;例6. 1对数据X和Y,用函数y 1,y x, y x2进行逼近,用所得到的逼近函数计算在x 6.5处的函数值,并估计误差.其中X=(1 3 4 5 6 7 8 9); Y=(-11 -13 -11 -7 -1 7 17 29). 解在MATLA工作窗口输入程序>> X=[ 1 3 4 5 6 7 8 9]; Y=[-11 -13 -11 -7 -17 17 29];f=['fun0';'fun1';'fun2'];[yy,a,WE]=zjjfbj(f,X,Y,6.5) 运行后屏幕显示如下yy =2.75000000000003a =-7.00000000000010 -4.999999999999951.00000000000000WE =7.172323350269439e-027例 6.2 对数据X 和丫,用函数 y 1, y x, y x2,y cosx,y e x,y sinx进行逼近,其中X=(0 0.50 1.00 1.50 2.00 2.50 3.00 ),丫=(0 0.47940.8415 0.9815 0.9126 0.5985 0.1645 ) .解在MATLA工作窗口输入程序>> X=[ 0 0.50 1.00 1.50 2.00 2.50 3.00];丫=[0 0.4794 0.8415 0.9815 0.9126 0.1645];f=['fun0';'fun1';'fun2';'fun3';'fun4';'fun5'];xx=0:0.2:3;[yy,a,WE]=zjjfbj(f,X,Y,plot(X,Y,'ro',xx,yy,'b-')运行后屏幕显示如下(图略)yy = Columns 1 through 7-0.0005 0.2037 0.3939 0.5656 0.8348 0.9236Columns 8 through 140.9771 0.9926 0.9691 0.9069 0.6766 0.5191Columns 15 through 160.3444 0.1642 0.5985xx), 0.7141 0.8080a = 0.3828 0.4070 -0.3901 0.0765 -0.4598 0.5653 WE = 1.5769e-004 即,最佳逼近函数为y=0.3828+0.4070*x-0.3901*xA2+0.0765*exp(x) +0.5653*sin(x) .8随机数据点上的二元拟合及其MATLA 程序例 8 设节点 ( X,Y,Z ) 中的 X 和 Y 分别是在区间 [ 3,3] 和 [ 2.5,3.5]上的 5022个 随 机 数 , Z 是 函 数 Z=7-3 x 3e -x2 -y2 在 (X,Y ) 的 值 , 拟 合 点 ( X I ,Y I ) 中的 X I =-3:0.2:3, Y I =-2.5:0.2:3.5. 分别用二元拟合方法中最近邻内插法、三 角基线性内插法、三角基三次内插法和 MATLAB4 网格化坐标方法计算在 ( X I ,Y I ) 处的值,作出它们的图形,并与被拟和曲面进行比较 .解 (1 )最近邻内插法 .输入程序>> x=rand(50,1); y=rand(50,1); %生成50个一元均匀分布随机数x 和y , x , y .X=-3+(3-(-3))*x; %利用x 生成的随机变量.title( ' 用最近邻内插法拟合函数 z =7-3 xA3 exp(-xA2 - yA2) 的曲面和节点的图形 ' )%legend( ' 拟合曲面 ',' 节点 (xi,yi,zi)' )hold on%在当前图形上添加新图形面及其插值乙(略).(2)三角基线性内插法 输入程序>> x=rand(50,1); y=rand(50,1); %生成50个一元均匀分布随机数x 和y , x ,y .X=-3+(3-(-3))*x; %利用x 生成 上的随机变量.Y=-2.5+(3.5-(-2.5))*y;%利用 y 生成 上的随机变量 .Z=7-3* X.A3 .* exp(-X.A2 - Y.A2);%在每个随机点( X,Y )处计算Z 的值.-0.4598*cos(x)Y=-2.5+(3.5-(-2.5))*y;Z=7-3* X.A3 .* exp(-X.A2 - Y.A2);处计算Z 的值.X1=-3:0.2:3; Y1=-2.5:0.2:3.5;[XI,YI] = meshgrid(X1,Y1); ZI=griddata(X,Y,Z,XI,YI, (XI,YI )处的插值 ZI.mesh(XI,YI, ZI)xlabel( 'x' ), ylabel( 'y'%利用 y 生成的随机变量 .%在每个随机点( X,Y )%将坐标( XI,YI )网格化 .'nearest' ) %计算在每个插值点 %作二元拟合图形 . ), zlabel( 'z' ),plot3(X,Y,Z, 'bo' ) (X,Y,Z). hold of 运行后屏幕显示用最近邻内插法拟合函数%用兰色小圆圈画出每个节点 %结束在当前图形上添加新图形 .22Z=7-3 x 3e-x2 -y2在两组不同节点处的曲X1=-3:0.2:3;title('用三角基线性内插法拟合函数z =7-3 x A3 exp(-x A2 -y A2)的曲面和节点的图形’) %legend( ' 拟合曲面',' hold on plot3(X,Y,Z, 'bo' ) (X,Y,Z). hold of22运行后屏幕显示用三角基线性内插法拟合函数Z=7-3 x 3e-x -y在两组不同节点处的曲面和节点的图形及其插值 乙(略).(3)三角基三次内插法 . 输入程序>> x=rand(50,1); y=rand(50,1); %生成50个一元均匀分布随机数x 和y , x ,y .title( ' 用三角基三次内插法拟合函数 z =7-3 xA3 exp(-xA2 -22运行后屏幕显示用三角基三次内插法拟合函数 Z=7-3 x 3e -x -y 在两组不同节点处的曲面和节点的图形及其插值 Z I (略).( 4 ) MATLAB 4网格化坐标方法 . 输入程序>> x=rand(50,1); y=rand(50,1); %生成50个一元均匀分布随机数x 和y , x ,y .X=-3+(3-(-3))*x;%利用x 生成 上的随机变量.Y1=-2.5:0.2:3.5;[XI,YI] = meshgrid(X1,Y1); ZI=griddata(X,Y,Z,XI,YI,XI,YI )处的插值 ZI.mesh(XI,YI, ZI)xlabel( 'x' ), ylabel( 'y%将坐标( XI,YI )网格化 .'linear' ) %计算在每个插值点 %作二元拟合图形 . ), zlabel( 'z' ),节点 (xi,yi,zi)' )%在当前图形上添加新图形 .%用兰色小圆圈画出每个节点 %结束在当前图形上添加新图形 . X=-3+(3-(-3))*x; %利用x 生成上的随机变量.Y=-2.5+(3.5-(-2.5))*y;Z=7-3* X.A3 .* exp(-X.A2 - Y.A2);处计算Z 的值.X1=-3:0.2:3; Y1=-2.5:0.2:3.5;[XI,YI] = meshgrid(X1,Y1); ZI=griddata(X,Y,Z,XI,YI,( XI,YI )处的插值 ZI.mesh(XI,YI, ZI) xlabel( 'x' ), ylabel( 'y'%利用y 生成上的随机变量•%在每个随机点( X,Y )%将坐标( XI,YI )网格化 .'cubic' ) %计算在每个插值点 %作二元拟合图形 . ), zlabel( 'z' ),yA2) 的曲面和节点的图形 ' )%legend( ' 拟合曲面','hold on 节点 (xi,yi,zi)' )%在当前图形上添加新图形plot3(X,Y,Z,'bo' ) (X,Y,Z).hold of%用兰色小圆圈画出每个节点%结束在当前图形上添加新图形 .22运行后屏幕显示用MATLAB 网格化坐标方法拟合函数Z=7-3 x 3e -x-y 在两组不同 节点处的曲面和节点的图形及其插值 ZI (略).22(5) 作被拟合曲面Z=7-3x 3e -x-y 和节点的图形. 输入程序>> x=ra nd(50,1); y=rand(50,1); %生成50个一元均匀分布随机数x 和y , x ,y .X=-3+(3-(-3))*x; %利用x 生成随机变量.Y=-2.5+(3.5-(-2.5))*y;%利用y 生成随机变量.Z=7-3* X.A3 .* exp(-X.A2 - Y.A2);%在每个随机点( X,Y )处计算Z 的值.X1=-3.:0.1:3.;Y1=-2.5:0.1:3.5;[XI,YI] = meshgrid(X1,Y1);%将坐标( XI,YI )网格化 .ZI=7-3* XI.A3 .* exp(-XI.A2 - YI.A2); mesh(XI,YI, ZI) %作二元拟合图形 .xlabel( 'x'), ylabel('y' ), zlabel( 'z' ),title( ' 被拟合函数 z =7-3 xA3 exp(-xA2 - yA2) 的曲面和节点的图形 ' )%legend('被拟合函数曲面','节点(xi,yi,zi)' )hold on%在当前图形上添加新图形 .plot3(X,Y,Z, 'bo' )%用兰色小圆圈画出每个节点 (X,Y,Z).hold of%结束在当前图形上添加新图形 .22运行后屏幕显示被拟合函数 Z=7-3 x 3e -x-y 的曲面和节点的图形及其函数值 ZI(略) .Y=-2.5+(3.5-(-2.5))*y;Z=7-3* X.A3 .* exp(-X.A2 - Y.A2);处计算Z 的值.X1=-3:0.2:3; Y1=-2.5:0.2:3.5; [XI,YI] = meshgrid(X1,Y1); ZI=griddata(X,Y,Z,XI,YI, (XI,YI )处的插值 ZI.mesh(XI,YI, ZI) xlabel( 'x' ), ylabel( 'y' %利用y 生成上的随机变量.%在每个随机点( X,Y )'v4'%将坐标( XI,YI )网格化 . ) %计算在每个插值点%作二元拟合图形 . ), zlabel( 'z' ),' 用 MATLAB 4 网格化坐标方法 拟合函数 z =7-3 xA3 的曲面和节点的图形 ' )%legend( ' 拟合曲面 ',' 节点 (xi,yi,zi)' ) hold on %在当前图形上添加新图形 . plot3(X,Y,Z, 'bo' ) %用兰色小圆圈画出每个节点(X,Y,Z).hold oftitle(exp(-x A2 - y A2)'bo' ) %结束在当前图形上添加新图形 .。

最小二乘法拟合matlab

最小二乘法拟合matlab

最小二乘法拟合matlab
最小二乘法拟合MATLAB
最小二乘法是一种有效地估计未知参数值的统计学方法,它假定误差服从正态分布,然后进行极大似然估计。

下面我们就来介绍一下如何使用MATLAB来拟合最小二乘法。

1.第一步:绘制出要拟合的数据,这里我们绘制出了一个简单的抛物线数据:
x=[-3 -2 -1 0 1 2 3];
y=[6 3 1 0 -2 -4 -7];
plot(x,y);
2.第二步:根据你要拟合的函数,构建出你所要拟合的模型。

这里,我们想拟合一条抛物线:y=ax2+bx+c ;
3.第三步:定义拟合函数:
fun=@(x,xdata)x(1)*xdata.^2+x(2)*xdata+x(3);
4.第四步:调用最小二乘法函数:
[x,resnorm,residual,exitflag,output,lambda,jacobian]=lsqcur vefit(fun,[1 1 1],x,y);
现在你已经可以看到拟合函数的参数了:
x的值为[1.7, 0.3, -1.5],
而拟合函数为: y=1.7x2+0.3x-1.5
因此,使用MATLAB调用最小二乘法可以很方便地拟合出任意复
杂的函数,并且可以得到准确的参数值。

(完整word版)最小二乘法拟合圆公式推导及matlab实现

(完整word版)最小二乘法拟合圆公式推导及matlab实现

2009-01-17 |最小二乘法(least squares analysis) 是一种数学优化技术,它通过最小化误差的平方和找到一组数据的最佳函数匹配。

最小二乘法是用最简的方法求得一些绝对不可知的真值,而令误差平方之和为最小。

小二乘法通常用于曲线拟合(least squares fitti ng) 。

这里有拟合圆曲线的公式推导过程和vc实现。

最小二乘法拟會圆曲线;= (x- +R2 = +- 2By4-B2令a=-2J4b = -2Bc = J^ +矿-0可得圆曲线方程的另一个册式Ix2 -\-y3十切十u = 0只要求出参数就可以求得圆心半径的参教;d)样本集(禺<并e (123…N)中点到圆心的距离为a:打=(禺・4)2+(E傢点(耳乙)到圆边嫌的距离的平方与和半径平方的差为:@=£2_衣=(圣.4)2+(込.8)2_氏2=血2+込2+込+&乙+卍令Q(a,b,c)为Q的平方和:Q(aM = Z^2=工【(*/ + §2 + 込+b 齐+C)]2求参数a f b,c使得Q(a,g的值最小值。

解・PTT •平方差Qgg大于0,因此函数存在大于或等于0的极小值,极大值为无穷大.F(a,M)对a,吐求偏导,令偏导等于0,得到极值点,比较所有极值点的函数值即可得到最小值.绘仏"疋)=工2窗 +里+込+埒+c)Xjda —=0 迤(a,bQ =匸2阳+貯+込+坷+训=0範仏上疋)=工2(禺2+乙2+込 +空+° = 0 d解这个方程组。

(2)(3)(4)di(诵先消去c(2) W ⑷*工扎得:Ng 代'+Y-+aX +bY + c)X -工莎‘ +严 +aX +bY+c)x^X = 0 N^(X 2 +Y : +bY)X -^(X : +Y : +aX +bY)x^X =0("工禺2_工兀工兀)a + (“Y*占一工禺工齐仏(*+ + M 工*必2 -工牡丁 +去2)工禺=0(3) *N_⑷*工£得:N 工(X’ + y' + oZ +bY+c)Y-^(X 2 +Y- +aX +bY + c)x^Y =Q 吧(/+护 +aX +bY)Y +Y : +aX +dK)xVy =o (N'X 必一工禺工齐归+ (“丫呼一工§工齐)3 +“Y+N 工厅一 g af +严)三齐=o C =〔NgQ -gX 二X)D = (N 工尤F -工龙三卩)E-N^X 、+N^XY -工疔+丫‘)工XG = (NM 旷-三丫工丫)H =NW X'Y 七NT H -工 2’ +K-)YK可解得:|G? + Db + 5 = 0Da+Gb + H = 0HD-EG a = r CG-D 、v HC- ED o =D' _GC 工(疔+齐2)+幺工兀+c ―― ---------------------------------------------- N得A 、B 、R 的估计拟合值:R= - Ja‘ +2?' -牡 2(6)matlab 实现:function [R,A,B]=circ(x,y,N)x1 = 0;x2 = 0;x3 = 0;y1 = 0;y2 = 0;y3 = 0;x1y1 = 0;x1y2 = 0;x2y1 = 0;for i = 1 : Nx1 = x1 + x(i);x2 = x2 + x(i)*x(i);x3 = x3 + x(i)*x(i)*x(i);y1 = y1 + y(i);y2 = y2 + y(i)*y(i);y3 = y3 + y(i)*y(i)*y(i); x1y1 = x1y1 + x(i)*y(i); x1y2 = x1y2 +x(i)*y(i)*y(i); x2y1 = x2y1 + x(i)*x(i)*y(i); endC = N * x2 - x1 * x1;D = N * x1y1 - x1 * y1;E = N * x3 + N * x1y2 - (x2 + y2) * x1;G = N * y2 - y1 * y1;H = N * x2y1 + N * y3 - (x2 + y2) * y1;a = (H * D - E * G)/(C * G - D * D);b = (H * C - E * D)/(D * D - G * C);c = -(a * x1 + b * y1 + x2 + y2)/N;A = a/(-2); %x 坐标B = b/(-2); %y 坐标R = sqrt(a * a + b * b - 4 * c)/2;void CViewActionImageTool::LeastSquaresFitting(){if (m_nNum<3){ return; } int i=0;double X1=0;double Y1=0;double X2=0;double Y2=0;double X3=0;double Y3=0;double X1Y1=0;double X1Y2=0;double X2Y1=0;for (i=0;i<m_nNum;i++){X1 = X1 + m_points[i].x;Y1 = Y1 + m_points[i].y;X2 = X2 + m_points[i].x*m_points[i].x;Y2 = Y2 + m_points[i].y*m_points[i].y;X3 = X3 + m_points[i].x*m_points[i].x*m_points[i].x;Y3 = Y3 + m_points[i].y*m_points[i].y*m_points[i].y;X1Y1 = X1Y1 + m_points[i].x*m_points[i].y;X1Y2 = X1Y2 + m_points[i].x*m_points[i].y*m_points[i].y;X2Y1 = X2Y1 + m_points[i].x*m_points[i].x*m_points[i].y; } double C,D,E,G ,H,N;double a,b,c;N = m_nNum;C = N*X2 - X1*X1;D = N*X1Y1 - X1*Y1;E = N*X3 + N*X1Y2 - (X2+Y2)*X1;G = N*Y2 - Y1*Y1;H = N*X2Y1 + N*Y3 - (X2+Y2)*Y1;a = (H*D-E*G)/(C*G-D*D);b = (H*C-E*D)/(D*D-G*C);c = -(a*X1 + b*Y1 + X2 + Y2)/N;double A,B,R;A = a/(-2);B = b/(-2);R = sqrt(a*a+b*b-4*c)/2; m_fCenterX = A; m_fCenterY = B;m_fRadius = R; return;}。

最小二乘法圆拟合及matlab程序

最小二乘法圆拟合及matlab程序

X i2 Yi2 +aX i bYi c
3
令Q(a,b,c)为
的平方和:
i
Q(a, b, c) i2 [( Xi2 Yi2 aXi bYi c)]2
下面求参数a,b,c使得Q(a,b,c)的值最小即可
4
F(a,b,c)对a,b,c求偏导,令偏导等于0,得到极值点,比较所有极值点的函 数值即可得到最小值。
② × N- ③ × Yi
且令 C (N Xi2 Xi Xi )
D (N XiYi Xi Yi )
E N
X
3 i
N
X iYi2
( X i2 Yi2 )
Xi
G (N Yi2 Yi Yi )
H N Yi3 N Xi2Yi ( X i2 Yi2 ) Yi
最小二乘法拟合圆曲线: R2 (x A)2 ( y B)2
R2 x2 2Ax A2 y2 2By B2
令a=-2A,b=-2B, c A2 B2 R2
则:圆的另一形式为:
x2 y2 ax by c 0
1
只需求出参数a,b,c即可以求的圆半径参数:
a A
2
B a 2
Q(a,b, c)
a
2( X i2 Yi2 aX i bYi c) X i 0

Q(a,b, c)
b
2( X i2 Yi2 aX i bYi c)Yi 0 ②
Q(a,b, c)
c
2( X i2 Yi2 aX i bYi c) 0 ③
5
由 ① × N- ③ × Xi
9
6
解得: Ca+Db+E=0
Da+Gb+H=0
a

matlab中最小二乘法

matlab中最小二乘法

matlab中最小二乘法最小二乘法是一种常用的数学方法,可以用来拟合一组数据,得到一个近似函数。

在Matlab 中,可以使用内置函数“polyfit”来进行最小二乘法拟合。

具体步骤如下:1.准备数据:将样本数据存储在一个向量或矩阵中。

2.选择一个合适的拟合函数:确定拟合函数的形式(线性、二次、指数等),并用该函数创建一个匿名函数。

3.使用“polyfit”函数拟合数据:将数据和拟合函数作为输入,使用“polyfit”函数进行最小二乘法拟合。

4.绘制拟合曲线:使用“polyval”函数和拟合系数,以及一组测试点,生成拟合曲线。

5.计算拟合误差:使用“norm”函数和拟合曲线,计算实际数据和拟合数据之间的平均误差。

以下是一个简单的示例代码,演示如何使用最小二乘法拟合一组数据到一个线性函数:x = [1,2,3,4,5,6,7];y = [1.1,1.9,3.2,4.1,5.1,5.8,7.2];p = polyfit(x,y,1); % 使用一次多项式进行拟合f = @(x) p(1)*x + p(2); % 创建匿名函数xtest = linspace(1,7); % 生成测试点ytest = f(xtest); % 计算拟合曲线plot(x,y,'o',xtest,ytest,'-'); % 绘制实际数据和拟合曲线legend('data','fit');xlabel('x');ylabel('y');err = norm(ytest - y)/sqrt(length(y)); % 计算拟合误差disp(['The root-mean-square error is ',num2str(err)]);代码输出:The root-mean-square error is 0.22777这表明,拟合误差的均方根值为0.22777,表示拟合效果良好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最小二乘法拟合椭圆
设平面任意位置椭圆方程为:
x 2+Axy +By 2+Cx +Dy +E =0
设P i (x i ,y i )(i =1,2,…,N )为椭圆轮廓上的N (N ≥5) 个测量点,依据最小二乘原理,所拟合的目标函数为:
F (A,B,C,D,E )=∑(x i 2+Ax i y i +By i 2+Cx i +Dy i +E)2
N
i=1
欲使F 为最小,需使
∂F ∂A =∂F ∂B =∂F ∂C =∂F ∂D =∂F ∂E
=0 由此可以得方程:
[ ∑x i 2y i 2∑x i y i 3∑x i 2y i ∑x i y i 2∑x i y i ∑x i y i 3∑y i 4∑x i y i 2∑y i 3∑y i 2∑x i 2y i ∑x i y i 2∑x i 3∑x i y i ∑x i ∑x i y i 2∑y i 3∑x i y i ∑y i 2∑y i 2∑x i y i ∑y i 2∑x i ∑y i N ] [ A B C D E ] =-[
∑x i 3y i ∑x i 2y i 2∑ x i 3∑x i 2y i ∑ x i 2] 解方程可以得到A ,B ,C ,D ,E 的值。

根据椭圆的几何知识,可以计算出椭圆的五个参数:位置参数(θ,x 0,y 0)以及形状参数(a,b )。

x 0=2BC−AD
A 2−4B
y 0=2D −AD A 2−4B
a =√2(ACD −BC 2−D 2+4BE −A 2E )(A 2−4B )(B −√A 2+(1−B 2)+1)
b =√2(ACD −BC 2−D 2+4BE −A 2E )(A 2−4B )(B +√A 2+(1−B 2)+1)
θ=tan
−1√
a 2−
b 2B a 2B −b 2
附:MATLAB程序
function [semimajor_axis, semiminor_axis, x0, y0, phi] = ellipse_fit(x, y)
%
% Input:
% x —— a vector of x measurements
% y ——a vector of y measurements
%
% Output:
%semimajor_axis—— Magnitude of ellipse longer axis
%semiminor_axis—— Magnitude of ellipse shorter axis
%x0 ——x coordinate of ellipse center
%y0 ——y coordinate of ellipse center
%phi——Angle of rotation in radians with respect to x-axis
%
% explain
% 2*b'*x*y + c'*y^2 + 2*d'*x + 2*f'*y + g' = -x^2
% M * p = b M = [2*x*y y^2 2*x 2*y ones(size(x))],
% p = [b c d e f g] b = -x^2.
% p = pseudoinverse(M) * b.
x = x(:);
y = y(:);
%Construct M
M = [2*x.*y y.^2 2*x 2*y ones(size(x))];
% Multiply (-X.^2) by pseudoinverse(M)
e = M\(-x.^2);
%Extract parameters from vector e
a = 1;
b = e(1);
c = e(2);
d = e(3);
f = e(4);
g = e(5);
%Use Formulas from Mathworld to find semimajor_axis, semiminor_axis, x0, y0, and phi delta = b^2-a*c;
x0 = (c*d - b*f)/delta;
y0 = (a*f - b*d)/delta;
phi = 0.5 * acot((c-a)/(2*b));
nom = 2 * (a*f^2 + c*d^2 + g*b^2 - 2*b*d*f - a*c*g);
s = sqrt(1 + (4*b^2)/(a-c)^2);
a_prime = sqrt(nom/(delta* ( (c-a)*s -(c+a))));
b_prime = sqrt(nom/(delta* ( (a-c)*s -(c+a))));
semimajor_axis = max(a_prime, b_prime); semiminor_axis = min(a_prime, b_prime); if (a_prime < b_prime)
phi = pi/2 - phi;
end
欢迎交流:
邮箱:*****************。

相关文档
最新文档