振动的基本知识

合集下载

振动基础必学知识点

振动基础必学知识点

振动基础必学知识点
以下是振动基础必学的知识点:
1. 振动的定义:振动是物体围绕某个平衡位置来回周期性地运动。

2. 振动的周期和频率:振动的周期是振动一个完整循环所需要的时间,单位是秒;频率是单位时间内振动的次数,单位是赫兹。

它们之间有
以下关系:频率 = 1/周期。

3. 振动的幅度:振动的幅度是指物体离开平衡位置的最大距离。

4. 简谐振动:简谐振动是指物体在没有阻力的情况下,围绕平衡位置
做匀速往复运动的振动。

简谐振动的特点是周期恒定、频率固定且幅
度不断变化。

5. 谐振:谐振是指当外力作用频率与物体固有频率相同时,物体容易
发生共振现象,振幅会明显增大的现象。

6. 弹簧振子:弹簧振子是指一个质点通过与弹簧连接,形成一个可以
进行振动的系统。

弹簧振子的运动方程可以用简谐振动的方程表示。

7. 摆钟:摆钟是指一个由质点与一个固定的绳或杆连接,形成可以进
行振动的系统。

摆钟的运动方程可以用简谐振动的方程表示。

8. 声音的传播和振动:声音是由物体的振动引起的机械波。

声音的传
播需要介质的存在,并且介质中的分子通过相互振动来传递能量。

9. 波动的特征:波动的特征包括传播速度、波长、频率和振幅。

10. 波的类型:根据波动传播介质的性质,波可以分为机械波和电磁波两种类型。

以上是振动基础必学的知识点,掌握这些知识可以帮助理解振动和波动以及它们在不同物理现象中的应用。

大物知识点总结振动

大物知识点总结振动

大物知识点总结振动振动是物体周围环境引起的周期性的运动。

它是自然界中普遍存在的物理现象,了解振动现象对于理解物质的性质和物理规律具有重要意义。

振动现象广泛存在于自然界和人类生活中,如大地的地震、声波的传播、机械振动、弹性体的振动等等。

本文将介绍大物知识点中与振动相关的内容,并做相应总结。

一、简谐振动简谐振动是指体系对于某个平衡位置附近作微幅振动,其回复力正比于位移的现象。

它是最基本的振动形式,也是在自然界中广泛存在的振动。

简谐振动的重要特征包括振幅、周期、频率、角频率、相位等。

简谐振动的数学描述是通过简谐振动的运动方程来完成的,对于弹簧振子来说,它的运动方程是x = Acos(ωt + φ),其中x为位移,A为振幅,ω为角频率,t为时间,φ为相位。

利用这个方程,我们可以得到简谐振动的各种运动参数,如速度、加速度、动能、势能以及总机械能。

对于简谐振动系统,我们可以利用牛顿第二定律与胡克定律来进行分析。

牛顿第二定律可以得出振动体的加速度与回复力的关系,而胡克定律则是描述了挠性介质的回复力与位移的关系。

利用这两个定律,我们可以得到简谐振动的运动参数和系统的动力学性质。

二、受迫振动和共振在实际中,许多振动都是在外力的驱动下进行的,这种振动被称为受迫振动。

受迫振动是振动中的另一个重要现象,它包括了临界阻尼和过阻尼等多种振动状态。

受迫振动系统的特点是具有固有振动频率以及外力频率,当外力频率与系统的固有振动频率相近时,就会出现共振现象。

共振是指系统受到外力作用后,振幅或能量急剧增大的现象。

共振现象在实际工程中有着重要应用,如建筑结构的抗震设计、桥梁的结构设计等。

三、波的传播波是另一种重要的振动形式,它在自然界和人类生活中都有着广泛的应用。

波的传播包括机械波、电磁波、物质波等多种形式,它的传播速度和传播方式与特定介质的性质密切相关。

波的传播是通过介质中的微小振动来实现的,振动的传递使得能量和信息得以传播。

在波的传播中,我们可以通过波动方程来描述波的传播规律,如弦上的横波传播可以通过波动方程来描述,光波的传播也可以通过麦克斯韦方程来描述。

物体振动有关知识点总结

物体振动有关知识点总结

物体振动有关知识点总结一、振动的基本概念振动是指物体在受外力作用下,围绕平衡位置或平衡形态做不规则往复运动的现象。

它包括简谐振动和非简谐振动两种。

简谐振动是指当物体受到一个恢复力与它的位移成正比时,它将做简谐振动。

而非简谐振动是指当物体的振幅很大或受到摩擦等非弹性力时,它将做非简谐振动。

二、物体振动的特征1. 幅度:振动物体在平衡位置附近往复运动的最大位移称为振幅。

2. 频率:振动物体单位时间内完成振动往复运动的次数称为振动频率。

3. 周期:振动物体完成一次往复运动所需的时间称为振动周期。

4. 相位:描述振动物体在振动往复运动过程中所处的位置状态的物理量。

三、振动的分类振动可以根据其运动形式、受力形式或系统形式进行分类。

1. 按运动形式分类:振动可以分为直线振动和旋转振动两种。

2. 按受力形式分类:振动可以分为简谐振动和非简谐振动两种。

3. 按系统形式分类:振动可以分为单自由度系统和多自由度系统两种。

四、振动的频率和周期振动频率是指单位时间内完成振动往复运动的次数,通常用赫兹(Hz)作为单位,频率的倒数即为振动周期。

振动频率与振动周期有密切的关系,它们分别可以用以下公式表示:\[f = \frac{1}{T}\]\[T = \frac{1}{f}\]其中,f表示振动频率,T表示振动周期。

振动频率与振动周期是振动的基本特征,可以描述物体振动的快慢和规律性。

五、振幅和相位1. 振幅是振动物体在平衡位置附近往复运动的最大位移,它是振动物体振动能量的大小。

2. 相位是用来描述振动物体在振动往复运动过程中所处的位置状态的物理量,通常用角度或弧度表示。

六、阻尼振动阻尼振动是指振动系统受到外界阻力作用而发生的振动现象。

阻尼振动可以分为过阻尼、临界阻尼和欠阻尼三种情况。

过阻尼是指振动系统具有很大的阻尼,振动会迅速减弱并趋于平衡。

临界阻尼是指振动系统的阻尼刚好能使振动系统在最短的时间内达到平衡状态。

欠阻尼是指振动系统的阻尼不足,振动系统会发生频繁的振荡。

振动学知识点总结

振动学知识点总结

振动学知识点总结振动学知识点总结如下:一、振动的基本概念1. 振动的定义:指物体在某一平衡位置附近作来回运动的现象。

2. 振幅:振动物体在做往复运动时,离开平衡位置的最远距离。

3. 周期:振动物体完成一个完整的往复运动所需要的时间。

4. 频率:振动物体每秒钟完成的往复运动次数。

5. 相位:描述振动物体在振动周期中的位置关系。

二、单自由度振动系统1. 单自由度振动系统的概念:由一个自由度由一个自由度运动的质点和它的运动机构构成。

2. 自由振动:指单自由度振动系统在没有外力作用下的振动。

3. 阻尼振动:指单自由度振动系统的振动受到阻尼力的影响。

4. 强迫振动:指单自由度振动系统受到外力作用的振动。

三、非线性振动1. 非线性振动的概念:指振动系统的振动特性不满足线性振动方程的振动现象。

2. 非线性系统的分类:按系统的非线性特征分为几何非线性、材料非线性和边界非线性等。

3. 非线性振动的分析方法:包括解析法和数值法等。

四、多自由度振动系统1. 多自由度振动系统的概念:由多个自由度组成的振动系统。

2. 自由振动:指多自由度振动系统在没有外力作用下的振动。

3. 阻尼振动:指多自由度振动系统的振动受到阻尼力的影响。

4. 特征值问题:多自由度振动系统的固有振动特征。

5. 模态分析:多自由度振动系统振动特征的分析方法。

五、控制振动1. 振动控制的目的:减小系统振动、防止系统振动引起的损伤。

2. 主动振动控制:通过主动装置对系统进行振动控制。

3. 被动振动控制:通过被动装置对系统进行振动控制。

4. 半主动振动控制:融合了主动和被动振动控制的特点。

六、振动信号与分析1. 振动信号的特点:包括时间域特征、频域特征和相位特征等。

2. 振动信号采集与处理:使用传感器采集振动信号,并通过信号处理方法对其进行分析。

3. 振动分析方法:包括频谱分析、波形分析、振动模态分析和振动信号诊断分析等。

七、振动与工程应用1. 振动在机械领域的应用:包括减振、振动吸收、振动监测及振动诊断等。

振动监测基础知识

振动监测基础知识

一、名词和术语1. 振动的基本参量:幅值、周期(频率)和相位机械振动是指物体围绕其平衡位置附近来回摆动并随时间变化的一种运动。

振动通常以其幅值、周期(频率)和相位来描述,它们是描述振动的三个基本参量。

a.幅值:表示物体动态运动或振动的幅度,它是机械振动强度的标志,也是机器振动严重程度的一个重要指标。

机器运转状态的好坏绝大多数情况是根据振动幅值的大小来判别的。

针对机械设备的振动信号,选择有效的特征参数指标,是实现状态监测的关键,常用的特征参数包括:有量纲参数: 均方根(RMS),峰值(Peak),峰峰值(Peak-Peak)。

均方根(RMS):表征信号的能量,其定义为:均方根是对机组进行状态监测最重要的指标,由于均方根振动信号的能量,当机组正常运转时,振动信号的能量处于比较稳定的状态,当机组某个零部件出现异常后,信号的能量增加,当增知到超过设定阅值时,就可以判断出机组出现异常、对于速度信号的评估,通常用均方根表示。

均方根的稳定性和趋势性较好,许多标准都采用均方根来作为状态监测的参数.ISO 10816是针对通用机械的状态监测标准,采用速度信号的RMS作为特征参数。

VDI 3834作为唯一一个针对风电机组的振动标准,采用速度和加速度的RMS作为监测指标.峰值是指某段采集的信号中的最高值和最低值,其中,最高值表示为Peak(+),最低值表示为Peak(-),由于加速度信号主要表征受力的大小,因此通常用峰值来表征加速度的大小.峰峰值(Peak-Peak)是指某段采集的信号中,最高值和最低值之间的差值,它是峰值(+)和峰值(-)之间的范围,由于峰峰值描述的是信号值的变化范围大小,因此对于位移信号,通常用峰峰值表示。

峰-峰值等于正峰和负峰之间的最大偏差值,峰值等于峰-峰值的 1/2。

只有在纯正弦波的情况下,均方根值才等于峰值的0.707 倍,平均值等于峰值的0.637倍。

而平均值在振动测量中一般则很少使用。

振动学知识点归纳总结

振动学知识点归纳总结

振动学知识点归纳总结1. 振动的基本概念振动是指物体在一定时间内来回或往复运动的现象。

振动可以是机械系统、电磁场系统、声场系统以及量子力学中的原子和分子系统等特有的运动形式。

振动的基本要素包括振幅、周期、频率和相位,它们分别代表着振动的振幅大小、周期的长度、振动的频率以及相位的大小。

振动还可表现为往复振动、旋转振动和波动等形式。

2. 自由振动自由振动是指物体在受到外力作用之后,不再受到外力的干扰而自行振动的过程。

对于线性弹簧振子系统而言,自由振动的周期与该系统的质量、弹簧的刚度和振幅有关,产生自由振动的物体称为振动体。

3. 受迫振动受迫振动是指振动体受到外力作用时的振动过程。

当振动体受到强迫振动时,它会与外力同频振动,当频率接近振动体的固有频率时,振动体可能产生共振现象。

4. 谐振动谐振动是指振动体在受到外力作用时,如果外力的频率与振动体的固有频率相等或接近,振动体便会产生谐振现象,即振幅较大,这一现象在机械工程、电子电路、音响等领域有着广泛的应用。

5. 阻尼振动阻尼振动是指振动体在振动过程中受到阻尼力的作用,通过与外界环境的摩擦力相互作用,使振动体逐渐减弱、停止振动并回到平衡位置的过程。

阻尼振动可分为欠阻尼振动、临界阻尼振动和过阻尼振动三种情况。

6. 共振现象共振是指振动体在受到频率相同或接近的外力作用时,振幅急剧增大的现象。

共振现象广泛存在于物理、工程、地震学和生物学等领域,如桥梁共振振动、建筑结构共振破坏、音乐乐器共鸣等。

7. 振动的能量振动体在振动过程中的能量变化主要包括动能和势能的转换。

在自由振动中,当振动体距离均衡位置最远时,动能最大,势能最小;当振动体通过均衡位置时,动能最小,势能最大。

振动的能量守恒定律形成了机械振动中的一个重要原理。

8. 振动的控制与应用振动的控制手段包括消除外力、减小振幅、增大阻尼和改变系统的固有频率等方法。

振动学在工程、航空航天、地震学、声学和生物学等领域都具有重要的应用价值,如利用振动传感器检测机械故障、利用振动分析技术改善建筑结构的抗震性能、利用谐振技术改善声音品质等。

振动的基本知识

振动的基本知识

高频
总振动
低ind频ividual vibration signals
combine to form a complex time waveform showing overall vibration
简单时域波形转换到频谱
例子
一般时域波形转换到频谱
频谱与采样
公式
1. 谱线- Line 100 200 400 800 1600 3200 6400线 2. 频宽- Fmax 0-20kHz,可编程
振动周期/频率
频率(Hz)=转速(转每分钟,RPM)/60 频率f(Hz)=1/ 周期T(秒)
振动相位(1)
振动相位-(相位差)
振动相位(2)
振动相位-(相位差)
振动相位应用(1)
振动相位- 例子
振动相位应用(2)
振动相位- 例子
振动时域波型
齿轮啮合
轴承故障
振动幅值
不平衡
总振动
时间
complex time waveform 合成后的时域波形
因传感器输出的是模拟信号,而用计算机处理的 信号必须是数字信号,因此必须对采集的信号进 行模/数转换:包括采样、量化、采样保持等
信号分析系统-数字信号处理器
这是信号分析系统的核心环节,通常是由仪器中 的CPU来执行的,它包括对信号的时域、幅值域 及频域分析,同时它还有运算功能,如时域或频 域的微分、积分等
10
振幅 (mils, in/sec, g’s) 1.0
100 Displacement (mils)
Acceleration (g's)
Velocity (in/sec)
0.1 1
0.01
Common Machinery Operating Range

振动的基本知识

振动的基本知识

振动筛分具有筛分效率高、处 理能力大、结构紧凑、易于维 护等优点,广泛应用于煤炭、 选矿、化工、建材等行业的固
体物料筛分。
振动筛分的原理是利用激振器 使筛面产生一定频率和振幅的 振动,使物料在筛面上跳跃和 滚动,从而实现不同粒度物料 的分离。
振动筛分的主要参数包括筛面 材质、筛孔尺寸、振动参数等 ,这些参数的选择直接影响着 筛分效率和筛分质量。
01
03
振动输送的主要参数包括振幅、频率、倾斜角度等, 这些参数的选择直接影响着输送效率和物料特性。
04
振动输送的原理是利用激振器使输送带产生周期性振 动,使物料在输送带上受到周期性挤压和推动,从而 沿输送带向前移动。
振动筛分
振动筛分是利用振动原理,使 物料在筛面上产生周期性振动 ,从而使不同粒度的物料通过 筛孔进行分离的一种筛分方式
互易法
通过测量输入和输出信号,利用互易原理计算系统的动态特性。
模态分析法
通过对系统施加激励,测量系统的响应,利用模态分析技术识别系统 的模态参数。
振动监测的设备
振动传感器
用于测量结构的振动位移、速度和加速度等 参数。
信号分析仪
用于对采集到的振动数据进行频谱分析、时 域分析和相关分析等。
数据采集器
用于采集振动传感器的数据,并进行处理和 分析。
振动破碎
振动破碎是利用振动原理,使物料在 振动过程中产生周期性应力变化,从 而使大块物料破碎成小块的一种破碎 方式。
振动破碎的原理是利用激振器使破碎 机产生一定频率和振幅的振动,使物 料在破碎腔内受到周期性挤压和碰撞 ,从而逐渐破碎成小块。
振动破碎具有破碎效率高、能耗低、 易于维护等优点,广泛应用于采矿、 冶金、建筑等行业的硬物料破碎。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幅值参数
当比较振动总值和信号时,必须在同样的频率范围内采用 同样的幅值参数
峰值
峰-峰值
测量值和单位
位移 mils, micrometer,mm
速度(位移的变化率) in/sec,mm/sec
加速度(速度的变化率) G’s,in/sec²,mm/sec²
设置最大频率
测量方向
• 径向 -水平方向 -垂直方向
振动周期和频率的转换
振动周期/频率
频率(Hz)=转速(转每分钟,RPM)/60 频率f(Hz)=1/ 周期T(秒)
振动相位(1)
振动相位-(相位差)
振动相位(2)
振动相位-(相位差)
振动相位应用(1)振Βιβλιοθήκη 相位- 例子振动相位应用(2)
因传感器输出的是模拟信号,而用计算机处理的 信号必须是数字信号,因此必须对采集的信号进 行模/数转换:包括采样、量化、采样保持等
信号分析系统-数字信号处理器
这是信号分析系统的核心环节,通常是由仪器中 的CPU来执行的,它包括对信号的时域、幅值域 及频域分析,同时它还有运算功能,如时域或频 域的微分、积分等
频谱分析技术
搜集设备数据
频谱分析技术
确认频谱:位移、速度、加速度、包络 分析主要振动频率与工频的关系
当转速频率占主导地位时,确认频谱频率范围:
• 确认工频的谐波
1X1X
• 确认轴承故障频率
振 幅
• 确认叶片通过频率
amplitude
22XX 3X3X 4X 4X
频率frequency
振动三要素(2)
• 轴向
测量点布置
测量点的布置要按如下顺序: 电机非驱动端-NDE 电机驱动端-DE 设备非驱动端-NDE 设备驱动端-DE
参数选择
速度频谱
进行低频测量时最 好用速度频谱(如 平衡、对中等)
加速度频谱
进行高频测量时最 好用加速度频谱 (如轴承失效、齿 轮故障等)
振动总值趋势图
频谱图
频段频谱图
10
振幅 (mils, in/sec, g’s) 1.0
100 Displacement (mils)
Acceleration (g's)
Velocity (in/sec)
0.1 1
0.01
Common Machinery Operating Range
10
100
1,000
频率 (Hz)
10,000
信号分析系统-D/A转换
D/A转换器是将计算机的分析处理结果以模拟量 的形式输出,提供波形显示或其它用途。
传感器
加速度传感器 速度传感器 电涡流式位移传感器
加速度传感器
•体积小 •频率范围宽(0- 40KHz) •好的高频响应性能 •特殊型号可用于高温环境 •应用范围最广 •配电荷放大器或电压放大器
-10KHz)
传感器电缆
安装方式
1 螺栓连接 2 胶粘剂连接 3 磁性座连接 4 手持式
螺栓连接
wrong wrong
Rriigghhtt
wrong wrong
胶粘剂连接
胶粘剂
磁性座连接
1 方便、快速 2 应用范围广 3 重复性
手持式
1 方便、快速 2 几乎可用于所
有场合 3 可重复性差 4 人为影响大
振幅和频率
振幅:指故障的烈度 频率:指故障的根源
测量参数
速度:指位移的变化率,即位移的微分值 加速度:指速度的变化率,即速度的微分值
0
90 180 270 360
Ac c eleration
Velocity
Dis plac ement
参数选择
低频:振动强度与位移成正比 中频:振动强度与速度成正比 高频:振动强度与速度成正比
一个周期 幅值
位移(峰值)
时间
相位角 振动最高点
轴键相
键相器
振幅及其描述
振动幅值
位移/速度/加速度-加速度包络 峰值/峰峰值/有效值(均方根值)/平均值/振动
总值 单位制-英制/公制 转换关系
位移、速度和加速度与故障程度
振动幅值的转换图
RMS=0.707PEAK
振动幅值的转换表
傅立叶变换
对于复杂周期信号和非周期信号,单单从时域波形 直观的观察,往往很难看出设备状态及故障信息, 因此必须借助傅立叶级数展成一系列离散的简谐分 量之和。 傅立叶变换是信号处理技术的基础,除了实现时域 和频域的转换之外,它还是研究系统特性的主要工 具。
FFT转换
频谱显示不同频 率下的振动信号
amplitude
2倍频,3倍频……-即2倍,3倍的工作频率, 100Hz,200Hz,……
时域波形
振动总值 复合时域波形
每一个单独的振动信号叠加组成 一个复合的时域信号
振动总值
振动总值是指在测量 的频率范围内振动能量 的总和
-包括测量频率范围内所有信 号的叠加
-不包括测量频率范围之外的 信号
-产生一个数字值
frequency
信号分析系统
设备
信号输入 传感器
预处理
A/D转换
信号输出
数字信号 处理器
D/A转换
信号分析系统-传感器
将待分析的物理量(振动 位移、速度、加速度)转 化为电信号
信号分析系统-预处理
信号在采样之 前须经预处理, 如放大、滤波 等
带通滤波器
滤波器的作用
信号分析系统-A/D转换
速度传感器
• 测量精度高 • 易受磁场影响 • 由于内部微分电路的误差
随着频率的增加而增加,而 积分电路的误差随着频率的 降低而增加,因此对高频的 微分和低频的积分都是比较 困难的,所以使用频率范围 受限,通常在10Hz—1500Hz
位移传感器/电涡流传感器
• 测量两物体的相对 位移 • 精确的低频响应 特性 • 需要前置器供电 • 频率范围宽(DC
振动基本知识
振动系统
振动幅值响应=动态力/动态阻尼
振动表述
振动三要素(1)
振动幅值A 振动周期T/频率f 振动相位
什么是振动?
弹簧
上限位置
中间位置
重量块
下限位置
一个周期 位移
时间
振动周期
概念介绍
工频-工作频率,1倍频 电机转速3000RPM,则其工频为 3000(转/分)/60秒=50Hz
相位
振动标准
ISO 2372 振动总值标准 适用于工作转速600 -12000r/min,共将 机器分为 I,II,III,IV四类, 每类机器都有A、B、 C、D四个品质等级
振动标准
ISO3945:该标准为大型旋转机械的机械振动, 现场振动烈度的测量和评定
我国国标GB11347-89的规定与ISO3945相同 石化行业-美国石油协会API-622标准
相关文档
最新文档