锂离子电池保护电路基本知识

合集下载

深入剖析锂电池保护电路工作原理

深入剖析锂电池保护电路工作原理

深入剖析锂电池保护电路工作原理1. 锂离子电池介绍锂离子电池是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。

在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌,充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。

锂离子电池电压范围2.8V~4.2V,典型电压3.7V,低于2.8V或者高于4.2V,电池都会有损坏风险。

2. 1C和0.1C的概念电池容量的单位是mAh,C指的是电池充放电的倍率,比如一个2000mAh的电池,以1C放电指的是放电电流大小为2000mA,0.1C为200mA,充电也是同样的道理。

3. 锂离子电池的优缺点锂离子电池的主要优点:锂离子电池电压高,能量密度高;循环寿命长,一般可循环500,甚至达到1000次以上;自放电小,室温下充满电的Li-ion储存1个月后的自放电率为10%左右;可快速充电,1C充电时容量可以达到标称的80%;工作温度范围宽,一般为-25~45°C,后面有望突破-40-70°C;没有Ni-Cd、Ni-Mh一样的记忆效应,在充电前不必将剩余电量用完;相比较Ni-Cd、Ni-Mh来说环保无污染(不含镉,汞等重金属);锂离子电池的主要缺点:成本高;需要加保护电路板,包括过充和过放保护;不能大电流放电,一般放电电流在0.5C以下,过大的电流导致电池内部发热;安全性差,容易爆炸、起火。

4. 锂电池和锂离子电池的区别锂电池和锂离子电池是两个不同的概念,主要有如下的区别:锂电池的正极材料是二氧化锰或亚硫酰氯,负极是锂;锂离子电池是以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子;锂电池也称一次锂电池,可以连续放电,也可以间歇放电,一旦电能耗尽便不能再用,不能进行充电;锂离子电池也称二次锂电池,可以充放电;5. 锂离子电池充电模式锂离子电池理想充电模式被称为CC CV模式,即恒流恒压模式。

锂电池保护电路三线接法

锂电池保护电路三线接法

锂电池保护电路三线接法
锂电池保护电路通常有三个线,包括正极正电源线、负极负电源线和负极电流检测线。

以下是锂电池保护电路的三线接法:
1. 正极连接:将锂电池的正极与正电源线连接。

正电源线一般是保护电路的VCC供电线,用来为保护电路和连接电子设备提供正电源。

2. 负极连接:将锂电池的负极与负电源线连接。

负电源线被用作保护电路的GND线,它可以提供回路的接地。

3. 电流检测线:连接在负极电流检测引脚上,用来测量和监控电池的电流。

负极电流检测引脚输出的电流信号可以用于保护电路控制电池的充放电情况,以便保护电池。

需要注意的是,锂电池保护电路的具体接法可能会根据不同的电路设计有所不同,建议在使用保护电路时,根据其所附的说明书或者技术规范进行正确的接线。

此外,为了确保电路的安全和稳定性,需要遵守电路设计的要求,使用合适的线材和连接方式。

锂电池基础知识讲解

锂电池基础知识讲解

锂电池基础知识讲解理想的锂离子电池,除了锂离子在正负极之间嵌入和脱出外,不发生其他副反应,不出现锂离子的不可逆消耗。

实际的锂离子电池,每时每刻都有副反应存在,也有不可逆的消耗,如电解液分解,活性物质溶解,金属锂沉积等,只不过程度不同而己。

实际电池系统,每次循环中,任何能够产生或消耗锂离子或电子的副反应,都可能导致电池容量平衡的改变。

一旦电池的容量平衡发生改变,这种改变就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。

⑴正极材料的溶解尖晶石LiMn2O4中Mn的溶解是引起LiMn2O4可逆容量衰减的主要原因,对于Mn的溶解机理,一般有两种解释:氧化还原机制和离子交换机制。

氧化还原机制是指放电末期Mn3+的浓度高,在LiMn2O4表面的Mn+会发生歧化反应:2Mn3+(固) Mn4+(固)+Mn2+(液)歧化反应生成的二价锰离子溶于电解液。

离子交换机制是指Li+和H+在尖晶石表面进行交换,最终形成没有电化学活性的HMn2O4。

Xia等的研究表明,锰的溶解所引起的容量损失占整个电池容量损失的比例随着温度的升高而明显增大(由常温下的23%增大到55℃时的34%)[14]。

⑵正极材料的相变化[15]锂离子电池中的相变有两类:一是锂离子正常脱嵌时电极材料发生的相变;二是过充电或过放电时电极材料发生的相变。

对于第一类相变,一般认为锂离子的正常脱嵌反应总是伴随着宿主结构摩尔体积的变化,同时在材料内部产生应力,从而引起宿主晶格发生变化,这些变化减少了颗粒间以及颗粒与电极间的电化学接触。

第二类相变是Jahn-Teller效应。

Jahn-Teller效应是指由于锂离子的反复嵌入与脱嵌引起结构的膨胀与收缩,导致氧八面体偏离球对称性并成为变形的八面体构型。

由于Jahn-Teller效应所导致的尖晶石结构不可逆转变,也是LiMn2O4容量衰减的主要原因之一。

在深度放电时,Mn的平均化合价低于3.5V,尖晶石的结构由立方晶相向四方晶相转变。

锂离子电池保护电路基本知识

锂离子电池保护电路基本知识

锂离子电池保护电路1.什么是锂离子电池保护ic答:在锂离子电池使用过程中,过充电、过放电对锂电池的电性能都会造成一定的影响,为避免使用中出现这种现象,专门设计了一套电路,并用微电子技术把它小型化,成为一个芯片,该芯片俗称锂电池保护ic;2.保护ic外形是什么样的答:保护ic外形常用的有两种:一种称为SOT-23-5封装;另一种较薄,称TSSOP-8封装;3.Ic内部有些什么电路,能大概介绍一下吗答:ic内部的简化的逻辑图如下:其各个端口的功能简述如下:V DD:1;IC芯片电源输入端;2.锂电池电压采样点;V SS:1;IC芯片测量电路基准参考点;2.锂电池负极和IC连接点;D O:IC对放电MOS管的输出控制端C O:IC对充电MOS管的输出控制端V M:IC芯片对锂电池工作电流的采样输入端从简化的逻辑图可见:电池过充电、过放电,放电时电流过大过电流,外围电路短路,该ic都会检测出来,并驱动相应的电子器件动作;4.Ic有哪些主要技术指标答:1过充电检测电压:V CU±25mv2过充电恢复电压:V CL±30mv3 过放电检测电压:V DL±80mv4 过放电恢复电压:V DU±5 过电流检测电压:VIOV1±30mvVIOV2±6 短路检测电压:VSHORT7 过充电检测延时:tcu 1s 1 28 过放电检测延时:tdl 125ms 125 2509 过流延时:TioV1 8ms 4 8 16TioV2 2ms 1 2 410短路延时:Tshort 10us 10 50us11正常功耗:10PE 3uA 1 3 6uA12静电功耗:1PDN uA5.锂电池保护电路的PCB板上,除了保护ic外,还需要哪些元件,才能组成一个完整的保护PCB答:还需要作为开关功能用的两只场效应管、若干电阻、电容;6.场效应管是什么样子答:场效应管也称MOS FET,在锂电池保护PCB上,都是成对使用,因此制造商把两只独立的其内部接法如下图:答:MOS FET通常有三只脚,分别称为漏极D、源极S、栅极G;它在电子线路中的功能可用下图简单说明;电平,右图的开关就闭合;电流在之间通过;当栅极G得到的不是高电平,而是低电平,则之间开关看作开路,电流不能通过;8.常听人说MOS FET的内阻是多少、多少,到底什么是MOS FET的内阻答:如上图所示,之间的开关闭合时总存在一定的电阻,这个电阻相当于MOS FET的内阻,一般这个电阻很小,都在10~30mΩ之间;可见,电流通过MOS FET,由于存在内阻,根据欧姆定律,必然存在电压降,从而损耗掉一部份电能,可见MOS FET 的内阻应越小越好;9.除内阻外,MOS管还有哪些主要技术指标答:MOS管有以下主要技术指标:1漏源极耐压值:V DSS 20V2漏栅极耐压值:V DGR20V3栅源极耐压值:V GSS 12V4漏极最大电流I D DC 6APolse 24A5漏源极内阻R DS VGS 2V I D 3A 22mΩ——45mΩVGS I D 3A 19mΩ——30mΩVGS 4V I D 3A 16mΩ——20mΩ10上图中B 是电池,P+、P-是电池块接充电器电源或与手机相接的正负极; 充电状态:充电时,充电电流由P+进入→B+→ MOS 1→MOS 2→P-;在充电的同时,ic 通过V cc 和R 1对电池连续进行测量;当检测到电池电压充电到时这个电压随不同ic 而异,ic 内的过充电检测电路将检测到的这个信号并将它转换成一系列的电平信号,其中的一个低电平信号传送到ic 的输出端CO,促使MOS 2关断,从而终止充电; 放电状态:放电时,放电电流从电池正极B+→P+→负载手机→P-→MOS 2→MOS 1→B-在放电的同时,ic 内的过放检测电路连续测量电池两端的电压,当电池电压随着用电时间的加长而下降到时这个电压值随不同的ic 而异,该检测电路输出信号,使输出端DO 为低电平,从而使MOS 1关断,终止电池放电;在某种特殊情况下,如果电池放电时,电流大于某一额定值,ic 内的过电流检测器会输出一个低电平信号到DO 端,使MOS 1在5~15ms 的时间内关断这个值随不同的电流和不同的MOS 管内阻而异;在极端情况下,P+、P-端发生短路,则ic 内部的短路检测电路,将会检测到这个信号,并将这个信号转换成低电平,输出到DO 端,从而使MOS 1在10~50us 的时间内关闭,从而切断电路;11.ic 的功耗是怎么回事怎样测量答:ic 是一个完整的电子线路,它在工作时要消耗掉一部份电能,当电池块在手机中工作时,ic 将从锂电池中以吸取电能,可见,要求ic 的功耗越小越好;电池电压V CU V CLV DUV DL保护IC 工作时序图ic的功耗是用消耗的电流来度量的,一般这个电流值在3~6uA之间;由电原理图可见,ic通过电阻R1,从电池中吸取电流,因此只要测量出R1两端的电压降V1,根据欧姆定律可算得ic的功耗,电流值为I=V1/R1;12.一般的电池块有四个输出端四个弹簧片接点,能介绍一下各自的功能吗答:一般的电池块外露有四个簧片接点,其中两点是P+、P-,另外两点各有不同;见下图:13.锂电池的保护PCB板有互换性吗答:答案是否定的,主要原因是:1不同的锂电生产厂生产的锂电的性能不一,从而所选用的ic也不一样,主要指过充电检测电压;2采用不同的MOS管由于其内阻不一,所以根据工作电流应选用不同的ic;3识别电阻不一样;14.保护电路的发展方向怎样答:一;向更小型化发展;1.MOS和ic封装在一起称MCPMuIti chip package2.MOS、ic、电阻、电容全部封装在一起称COBChip On Board二.二次保护电路在实际使用锂电池保护电路中,人们发现,由于某些电子元器件的失效,导致整个保护电以上是一节锂电池保护电路的基本概念, 2 、3、4节的锂电池保护电路与此类似;见下图;欢迎各位垂询谢谢。

锂离子电池的基本知识

锂离子电池的基本知识

锂离子电池的基本知识一般而言,电池有三部分构成:1.锂离子电芯2.保护电路(pcm)3.外壳即胶壳锂离子电芯是一种新型的电池能源,它不含金属锂,在充放电过程中,只有锂离子在正负极间往来运动,电极和电解质不参与反应。

锂离子电芯的能量容量密度可以达到300wh,重量容量密度可以达到125wh。

一、电芯原理锂离子电芯的反应机理是随着充放电的进行,锂离子在正负极之间嵌入脱出,往返穿梭电芯内部而没有金属锂的存在,因此锂离子电芯更加安全稳定。

其反应示意图及基本反应式如下所示:二、电芯的构造锂电池的负极材料是锂金属,正极材料是碳材。

习惯上称为锂电池。

锂离子电池的正极材料是氧化钴锂,负极材料是碳材。

为了区别于传统意义上的锂电池,称之为锂离子电池。

锂离子电池的主要构成:(1)电池盖(2)正极----活性物质为氧化钴锂(钴酸锂)(3)隔膜----一种特殊的複合膜(4)负极----活性物质为碳(5)有机电解液(6)电池壳电芯的正极是licoo2加导电剂和粘合剂,涂在铝箔上形成正极板,负极是层状石墨加导电剂及粘合剂涂在铜箔基带上,目前比较先进的负极层状石墨颗粒已採用奈米碳。

根据上述的反应机理,正极採用licoo2、linio2、limn2o2,其中licoo2本是一种层结构很稳定的晶型,但当从licoo2拿走xli后,其结构可能发生变化,但是否发生变化取决于x的大小。

通过研究发现当x>时li1-xcoo2的结构表现为极其不稳定,会发生晶型瘫塌,其外部表现为电芯的压倒终结。

所以电芯在使用过程中应通过限制充电电压来控制li1-xcoo2中的x值,一般充电电压不大于那幺x小于,这时li1-xcoo2的晶型仍是稳定的。

负极c6其本身有自己的特点,当第一次化成后,正极licoo2中的li被充到负极c6中,当放电时li回到正极licoo2中,但化成之后必须有一部分li留在负极c6中,心以保证下次充放电li的正常嵌入,否则电芯的压倒很短,为了保证有一部分li留在负极c6中,一般通过限制放电下限电压来实现。

锂电池过充电-过放-短路保护电路详解

锂电池过充电-过放-短路保护电路详解

该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。

充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。

在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。

放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。

二次锂电池的优势是什么?1. 高的能量密度2. 高的工作电压3. 无记忆效应4. 循环寿命长5. 无污染6. 重量轻7. 自放电小锂聚合物电池具有哪些优点?1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。

2. 可制成薄型电池:以3.6V400mAh的容量,其厚度可薄至0.5mm。

3. 电池可设计成多种形状4. 电池可弯曲变形:高分子电池最大可弯曲900左右5. 可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由于本身无液体,可在单颗内做成多层组合来达到高电压。

7. 容量将比同样大小的锂离子电池高出一倍IEC规定锂电池标准循环寿命测试为:电池以0.2C放至3.0V/支后1. 1C恒流恒压充电到4.2V截止电流20mA搁置1小时再以0.2C放电至3.0V(一个循环)反复循环500次后容量应在初容量的60%以上国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准).电池在25摄氏度条件下以0.2C放至3.0/支后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20+_5下储存28天后,再以0.2C放电至2.75V计算放电容量什么是二次电池的自放电不同类型电池的自放电率是多少?自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。

锂电池过压保护电路

锂电池过压保护电路

锂电池过压保护电路
锂电池过压保护电路是一种用于保护锂电池免受过压损害的电路。

当锂电池的电压超过设定值时,过压保护电路会自动切断电池的充电或放电电路,以避免电池过压。

锂电池过压保护电路通常由电压检测电路、控制电路和切断电路组成。

电压检测电路用于实时检测锂电池的电压,并将检测结果反馈给控制电路。

控制电路根据检测结果判断是否需要切断充电或放电电路。

当需要切断时,控制电路会发出控制信号,切断电路会执行切断操作,以保护锂电池。

锂电池过压保护电路的设计需要考虑电池的额定电压、过压保护电压、切断时间等因素。

在设计过程中,需要选择合适的电子元件,并进行合理的电路布局,以确保电路的可靠性和稳定性。

锂电池过压保护电路是锂电池充电和放电过程中必不可少的保护措施,它可以有效地保护锂电池免受过压损害,延长锂电池的使用寿命。

锂电池是怎样保护的原理

锂电池是怎样保护的原理

锂电池是怎样保护的原理锂电池是一种利用锂离子在正负极之间的迁移来获得电能的电池。

锂电池的保护原理主要分为电池内部保护和外部电路保护两个方面。

一、电池内部保护:1. 过充保护:锂电池充电时,电流经过电解质中的锂离子在正负极间迁移,当电池达到额定电压后,继续充电会导致锂离子在正极蓄积过多,形成金属锂,引起电池过热、短路等问题。

为了防止过充,锂电池内部通常会设置电压检测电路,当电池电压达到设定值时,会通过控制器切断充电回路,停止继续充电,从而保护电池。

2. 过放保护:锂电池在放电过程中,如果继续放电,会导致电池电压降低,影响电池性能甚至损坏电池。

因此,为了防止过放,锂电池内部设有放电保护电路,当电池电压低于设定值时,会通过控制器切断放电回路,停止继续放电。

3. 过流保护:过流指电池充放电时电流超过设计范围,这会使电池内部产生大量热量,引起电池过热、电化学反应速率增加等问题,甚至引发火灾或爆炸。

为了防止这种情况发生,锂电池内部通常会设置过流保护电路,当电流超过一定阈值时,会通过控制器切断电流回路,停止继续充放电。

4. 温度保护:锂电池在过高或过低温度下工作会影响电池性能,甚至引起电池损坏。

为了保护锂电池,通常会在电池内部设置温度检测电路,当温度超过安全范围时,会通过控制器切断充放电回路,停止继续工作。

5. 短路保护:短路是指电流在电池内部或外部电路中由于故障或意外原因产生的异常通过,导致大电流通过电池。

为了防止短路引发火灾或爆炸,锂电池内部通常会设置短路保护电路,一旦检测到短路情况,通过控制器切断电流回路,停止继续充放电。

二、外部电路保护:锂电池的外部电路保护主要包括充电管理系统和电池包保护系统。

充电管理系统主要负责监控和管理电池的充电过程,通过控制充电器输出电压和电流,遵循适当的充电算法,保证充电过程安全可靠。

电池包保护系统则负责监控和管理电池包的状态,包括电池电压、温度、电流等,一旦发现异常情况,例如过充、过放、过流、温度过高等,会通过控制继电器切断电池与外部电路的连接,从而保护电池免受损坏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锂离子电池保护电路
1.什么是锂离子电池保护ic?
答:在锂离子电池使用过程中,过充电、过放电对锂电池的电性能都会造成一定的影响,为避免使用中出现这种现象,专门设计了一套电路,并用微电子技术把它小型化,成为一个芯片,该芯片俗称锂电池保护ic。

2.保护ic外形是什么样的?
答:保护ic外形常用的有两种:
一种称为SOT-23-5封装。

另一种较薄,称TSSOP-8封装。

3.Ic内部有些什么电路,能大概介绍一下吗?答:ic内部的简化的逻辑图如下:
其各个端口的功能简述如下:
V DD:1。

IC芯片电源输入端。

2.锂电池电压采样点。

V SS:1。

IC芯片测量电路基准参考点。

2.锂电池负极和IC连接点。

D O:IC对放电MOS管的输出控制端
C O:IC对充电MOS管的输出控制端
V M:IC芯片对锂电池工作电流的采样输入端
从简化的逻辑图可见:电池过充电、过放电,放电时电流过大(过电流),外围电路短路,该ic都会检测出来,并驱动相应的电子器件动作。

4.Ic有哪些主要技术指标?
答:1)过充电检测电压:V CU 4.275±25mv (4.25 4.275 4.30)2)过充电恢复电压:V CL 4.175±30mv (4.145 4.175 4.205)
3) 过放电检测电压:V DL 2.3±80mv (2.22 2.3 2.38 )
4) 过放电恢复电压:V DU 2.4±0.1mv (2.3 2.4 2.5 )
5) 过电流检测电压:VIOV10.1±30mv (0.07V 0.1 0.13V)
VIOV20.5±0.1mv (0.4 0.5 0.6 )
6) 短路检测电压:VSHORT -1.3V (-1.7 -1.3 -0.6 )
7) 过充电检测延时:tcu 1s (0.5 1 2 )
8) 过放电检测延时:tdl 125ms (62.5 125 250 )
9) 过流延时:TioV1 8ms (4 8 16 )
TioV2 2ms (1 2 4 )
10)短路延时:Tshort 10us (10 50us)
11)正常功耗:10PE 3uA (1 3 6uA)
12)静电功耗:1PDN 0.1 uA
5.锂电池保护电路的PCB板上,除了保护ic外,还需要哪些元件,才能组成一个完整的保护PCB?
答:还需要作为开关功能用的两只场效应管、若干电阻、电容。

6.场效应管是什么样子?
答:场效应管也称MOS FET,在锂电池保护PCB上,都是成对使用,因此制造商把两只独
可用下图简单说明。

高电平,右图的开关就闭合;电流在D.S之间通过。

当栅极G得到的不是高电平,而是低电平,则D.S 之间开关看作开路,电流不能通过。

8.常听人说MOS FET的内阻是多少、多少,到底什么是MOS FET的内阻?
答:如上图所示,D.S之间的开关闭合时总存在一定的电阻,这个电阻相当于MOS FET 的内阻,一般这个电阻很小,都在10~30mΩ之间。

可见,电流通过MOS FET,由于存在内阻,根据欧姆定律,必然存在电压降,从而损耗掉一部份电能,可见MOS FET 的内阻应越小越好。

9.除内阻外,MOS管还有哪些主要技术指标?
答:MOS管有以下主要技术指标:
1)漏源极耐压值:V DSS 20V
2)漏栅极耐压值:V DGR20V
3)栅源极耐压值:V GSS 12V
4)漏极最大电流I D DC 6A
Polse 24A
5)漏源极内阻R DS VGS 2V I D 3A 22mΩ——45mΩ
VGS 2.5V I D 3A 19mΩ——30mΩ
VGS 4V I D 3A 16mΩ——20mΩ
10.你能较完整地介绍一下保护PCB的工作原理吗?
答:保护PCB的完整电原理图如下:
上图中B 是电池,P+、P-是电池块接充电器电源或与手机相接的正负极。

充电状态:
充电时,充电电流由P+进入→B+→ MOS 1→MOS 2→P-。

在充电的同时,ic 通过V cc 和R 1对电池连续进行测量。

当检测到电池电压充电到4.2V 时(这个电压随不同ic
而异),ic 内的过充电检测电路将检测到的这个信号并将它转换
V CU V CL V DU (2.4V)
V DL (2.3V)
保护IC 工作时序图
成一系列的电平信号,其中的一个低电平信号传送到ic的输出端CO,促使MOS2关断,从而终止充电。

放电状态:
放电时,放电电流从电池正极B+→P+→负载(手机)→P-→MOS2→MOS1→B-
在放电的同时,ic内的过放检测电路连续测量电池两端的电压,当电池电压随着用电时间的加长而下降到2.3V时(这个电压值随不同的ic而异),该检测电路输出信号,使输出端DO为低电平,从而使MOS1关断,终止电池放电。

在某种特殊情况下,如果电池放电时,电流大于某一额定值,ic内的过电流检测器会输出一个低电平信号到DO端,使MOS1在5~15ms的时间内关断(这个值随不同的电流和不同的MOS管内阻而异)。

在极端情况下,P+、P-端发生短路,则ic内部的短路检测电路,将会检测到这个信号,并将这个信号转换成低电平,输出到DO端,从而使MOS1在10~50us的时间内关闭,从而切断电路。

11.ic的功耗是怎么回事?怎样测量?
答:ic是一个完整的电子线路,它在工作时要消耗掉一部份电能,当电池块在手机中工作时,ic将从锂电池中以吸取电能,可见,要求ic的功耗越小越好。

ic的功耗是用消耗的电流来度量的,一般这个电流值在3~6uA之间。

由电原理图可见,ic通过电阻R1,从电池中吸取电流,因此只要测量出R1两端的电压降V1,根据欧姆定律可算得ic的功耗,电流值为I=V1/R1。

12.一般的电池块有四个输出端(四个弹簧片接点),能介绍一下各自的功能吗?
答:一般的电池块外露有四个簧片接点,其中两点是P+、P-,另外两点各有不同。

见下图:
13.锂电池的保护PCB板有互换性吗?
答:答案是否定的,主要原因是:
1)不同的锂电生产厂生产的锂电的性能不一,从而所选用的ic也不一样,主要指过充电检测电压。

2)采用不同的MOS管由于其内阻不一,所以根据工作电流应选用不同的ic。

3)识别电阻不一样。

14.保护电路的发展方向怎样?
答:一。

向更小型化发展。

1.MOS和ic封装在一起称MCP(MuIti chip package)
二.二次保护电路
在实际使用锂电池保护电路中,人们发现,由于某些电子元器件的失效,导致整个保护
以上是一节锂电池保护电路的基本概念,2 、3、4节的锂电池保护电路与此类似。

见下图。

欢迎各位垂询!谢谢!。

相关文档
最新文档