1离散试题A
离散数学卷2018-2019第二学期A卷 (1)

贵州大学软件学院软件工程专业2018-2019学年第二学期考试试卷A离散数学注意事项:1. 请考生按要求在试卷装订线内填写姓名、学号和年级专业。
2. 请仔细阅读各种题目的回答要求,在规定的位置填写答案。
3. 不要在试卷上乱写乱画,不要在装订线内填写无关的内容。
4. 满分100分,考试时间为120分钟。
题 号一 二 三 四 总分 统分人得 分一.单项选择题(每小题2分,共20分)1. p :小王学习用功,q :小王聪明,则命题“小王不仅学习用功而且聪明.”的符号化为( )。
A .p →qB .q →pC .p ∨qD .p ∧ q2.n 个命题变元可产生( )个互不等价的极小项。
A . nB . n 2C . 2nD . 2n3.设个体域为整数集,下列公式中假命题的有( )。
A .x ∃y(x ·y=0)B .∃x y(x ·y=0)C .x ∃y(x ·y=1)D .x ∃y(x ·y=x)4. 集合A={1,2,3}上的关系R={<1,2>,<1,3>},则R 的性质为( )。
A.自反的B.对称的C.传递的,对称的D.传递的5. 若,f g 是双射,则复合函数g f 必是( )。
A .映射B .单射C .满射D .双射6.给定下列序列,可构成无向简单图的结点度数序列的是( )。
A .(1,1,2,2,5)B .(1,1,2,2,2)C .(1,1,3,3,3)D .(1,5,4,4,5)得 分评分人7. 给定无向图如下图所示,割点是( )。
A .dB .gC .bD . a8. 7阶连通平面图G 有6个面,则G 的边数为( )。
A .9B .10C .11D .129. 无向图G 是简单图,则图G 中一定不含有( )。
A .环和平行边B .平行边C .环D .圈10. Z 是整数集,〈Z ,*〉(其中*是普通乘法)不能构成( )。
离散数学考试试题A

7. (15 points) Use the labeling algorithm (Ford-Fulkerson’s) to find a maximum flow for the following transport network in Fig. 1. Use of figures is required to show the variety of
(2). if A × B = A × C, A ≠ ∅, then 问题的任何反例都可以)
例如, A={1,2}, B={1}, C={1,3}.
离散数学试题(A卷答案)

离散数学试题(A 卷答案)一、(10分)求(P ↓Q )→(P ∧⌝(Q ∨⌝R ))的主析取范式 解:(P ↓Q )→(P ∧⌝(Q ∨⌝R ))⇔⌝(⌝( P ∨Q ))∨(P ∧⌝Q ∧R ))⇔(P ∨Q )∨(P ∧⌝Q ∧R ))⇔(P ∨Q ∨P )∧(P ∨Q ∨⌝Q )∧(P ∨Q ∨R ) ⇔(P ∨Q )∧(P ∨Q ∨R )⇔(P ∨Q ∨(R ∧⌝R ))∧(P ∨Q ∨R ) ⇔(P ∨Q ∨R )∧(P ∨Q ∨⌝R )∧(P ∨Q ∨R ) ⇔0M ∧1M⇔2m ∨3m ∨4m ∨5m ∨6m ∨7m二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。
乙说:王教授不是上海人,是苏州人。
丙说:王教授既不是上海人,也不是杭州人。
王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。
试判断王教授是哪里人?解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。
则根据题意应有: 甲:⌝P ∧Q 乙:⌝Q ∧P 丙:⌝Q ∧⌝R王教授只可能是其中一个城市的人或者3个城市都不是。
所以,丙至少说对了一半。
因此,可得甲或乙必有一人全错了。
又因为,若甲全错了,则有⌝Q ∧P ,因此,乙全对。
同理,乙全错则甲全对。
所以丙必是一对一错。
故王教授的话符号化为:((⌝P ∧Q )∧((Q ∧⌝R )∨(⌝Q ∧R )))∨((⌝Q ∧P )∧(⌝Q ∧R ))⇔(⌝P ∧Q ∧Q ∧⌝R )∨(⌝P ∧Q ∧⌝Q ∧R )∨(⌝Q ∧P ∧⌝Q ∧R ) ⇔(⌝P ∧Q ∧⌝R )∨(P ∧⌝Q ∧R ) ⇔⌝P ∧Q ∧⌝R ⇔T因此,王教授是上海人。
三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。
证明 设R 是非空集合A 上的二元关系,则由定理4.19知,tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。
桂林电子科技大学《离散数学》2019-2020学年期末考试试卷A

桂林电子科技大学试卷A学年第 学期 课号课程名称 离散数学(闭卷) 适用班级分钟 班级 学号 姓名考试时间 120一.单项选择题:(每小题2分,共12分)1.以下4个命题公式中,哪个是永真式? ( )A.p→(p→q); B.(p→q)∨┓q→┓p;C.(p→q)∧┓q→┓p; D.┓(p↔┓p∨q)。
2.设P(x)表示“x在桂林上学”,Q(x)表示“x是桂林人”,则“在桂林上学的人未必是桂林人”可以表示为: ( )A. x┓(P(x)→Q(x)); B.┓ x(P(x)→Q(x));C. x(P(x)→┓Q(x)); D.┓ x(P(x)→┓Q(x))。
3.某个集合的元素个数为10,这个集合有多少个不同的子集?( )。
A.10; B.20; C.102; D.210。
4.设R为实数集,映射σ:R→R定义为σ(x)=2x-1,则σ是:( )A.单射而非满射; B.满射而非单射;C.双射; D.既不是单射,也不是满射。
5. 设R是实数集,C是复数集合,试问下列各个代数系统哪一个是交换群?( )A.<M(n×n;R),·>,其中M(n×n;R)是所有元素为实数的n×n 矩阵集,·是矩阵的普通乘法;B.<A,*>,其中A={1,2,3,4,6,12},a*b为a与b的最大公约数,a,b∈A;C.<M(m×n;R),+>,其中M(m×n;R)是所有元素为实数的m×n矩阵集,+是矩阵的加法;D.<Z,+>,其中Z={z|z∈C且z的实部为非负数},+是复数的加法。
6.给定有向图见下图,则其邻接矩阵是: ( )V V 34A .B .C .D . 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0二.填空题:(每个空2分,共16分)1.在谓词公式 x (∃w (P (x,w )∧P (x,y ))→(Q (x,y,z )∨Q (x,z,y )))中,约束变元为 ___________,自由变元为 __________。
(完整版)离散数学试题及答案,推荐文档

11 设 A,B,R 是三个集合,其中 R 是实数集,A = {x | -1≤x≤1, xR}, B = {x | 0≤x < 2, xR},则
A-B = __________________________ , B-A = __________________________ ,
A∩B = __________________________ , . 13. 设集合 A={2, 3, 4, 5, 6},R 是 A 上的整除,则 R 以集合形式(列举法)记为___________ _______________________________________________________. 14. 设一阶逻辑公式 G = xP(x)xQ(x),则 G 的前束范式是__________________________
二、选择题
1. C. 2. D. 3. B. 4. B.
5. D. 6. C. 7. C.
8. A. 9. D. 10. B. 11. B.
第 5 页 共 18 页
13. {(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}.
14. x(P(x)∨Q(x)). 15. 21.
16. (R(a)∧R(b))→(S(a)∨S(b)). 17. {(1, 3),(2, 2)}; {(1, 1),(1, 2),(1, 3)}.
8. 设命题公式 G=(P(QR)),则使公式 G 为真的解释有
__________________________,_____________________________,
__________________________.
离散数学习题集(十五套) - 答案

离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。
2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。
3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。
4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为。
5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为。
6.设A={1,2,3,4},A 上关系图为则 R 2 = 。
7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。
8.图的补图为 。
9.设A={a ,b ,c ,d} ,A 上二元运算如下:* a b c dA BCa b cda b c db c d ac d a bd a b c那么代数系统<A,*>的幺元是,有逆元的元素为,它们的逆元分别为。
10.下图所示的偏序集中,是格的为。
二、选择20% (每小题2分)1、下列是真命题的有()A.}}{{}{aa⊆;B.}}{,{}}{{ΦΦ∈Φ;C.}},{{ΦΦ∈Φ;D.}}{{}{Φ∈Φ。
2、下列集合中相等的有()A.{4,3}Φ⋃;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。
3、设A={1,2,3},则A上的二元关系有()个。
A.23 ;B.32 ;C.332⨯;D.223⨯。
4、设R,S是集合A上的关系,则下列说法正确的是()A.若R,S 是自反的,则SR 是自反的;B.若R,S 是反自反的,则SR 是反自反的;C.若R,S 是对称的,则SR 是对称的;D.若R,S 是传递的,则SR 是传递的。
5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下|}||(|)(,|,{tsApt st sR=∧∈><=则P(A)/ R=()A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“⊆”的哈斯图为()7、下列函数是双射的为()A.f : I→E , f (x) = 2x ;B.f : N→N⨯N, f (n) = <n , n+1> ;C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。
资料:离散数学试题 (1)

离散数学考试题库(A卷及答案)一、(10分)证明⌝(A∨B)→⌝(P∨Q),P,(B→A)∨⌝P A。
证明:(1)⌝(A∨B)→⌝(P∨Q)P(2)(P∨Q)→(A∨B) T(1),E(3)P P(4)A∨B T(2)(3),I(5)(B→A)∨⌝P P(6)B→A T(3)(5),I(7)A∨⌝B T(6),E(8)(A∨B)∧(A∨⌝B) T(4)(7),I(9)A∧(B∨⌝B) T(8),E(10)A T(9),E二、(10分)甲、乙、丙、丁4个人有且仅有2个人参加围棋优胜比赛。
关于谁参加竞赛,下列4种判断都是正确的:(1)甲和乙只有一人参加;(2)丙参加,丁必参加;(3)乙或丁至多参加一人;(4)丁不参加,甲也不会参加。
请推出哪两个人参加了围棋比赛。
解符号化命题,设A:甲参加了比赛;B:乙参加了比赛;C:丙参加了比赛;D:丁参加了比赛。
依题意有,(1)甲和乙只有一人参加,符号化为A⊕B⇔(⌝A∧B)∨(A∧⌝B);(2)丙参加,丁必参加,符号化为C→D;(3)乙或丁至多参加一人,符号化为⌝(B∧D);(4)丁不参加,甲也不会参加,符号化为⌝D→⌝A。
所以原命题为:(A⊕B)∧(C→D)∧(⌝(B∧D))∧(⌝D→⌝A)⇔((⌝A∧B)∨(A∧⌝B))∧(⌝C∨D)∧(⌝B∨⌝D)∧(D∨⌝A)⇔((⌝A∧B∧⌝C)∨(A∧⌝B∧⌝C)∨(⌝A∧B∧D)∨(A∧⌝B∧D))∧((⌝B∧D)∨(⌝B∧⌝A)∨(⌝D∧⌝A))⇔(A∧⌝B∧⌝C∧D)∨(A∧⌝B∧D)∨(⌝A∧B∧⌝C∧⌝D)⇔T但依据题意条件,有且仅有两人参加竞赛,故⌝A∧B∧⌝C∧⌝D为F。
所以只有:(A∧⌝B∧⌝C∧D)∨(A∧⌝B∧D)⇔T,即甲、丁参加了围棋比赛。
三、(10分)指出下列推理中,在哪些步骤上有错误?为什么?给出正确的推理形式。
(1)∀x(P(x)→Q(x)) P(2)P(y)→Q(y) T(1),US(3)∃xP(x) P(4)P(y) T(3),ES(5)Q(y) T(2)(4),I(6)∃xQ(x) T(5),EG解(4)中ES错,因为对存在量词限制的变元x引用ES规则,只能将x换成某个个体常元c,而不能将其改为自由变元。
吉林大学2005软件学院离散数学I试题(A)

吉林大学软件学院2005级本科《离散数学I》试题(A)一、简答题(本大题共20小题,每小题2分,共40分)1、设集合A={∅},则幂集合ρ(ρ(A))的基数是多少?2、设命题公式的集合S={P,Q,P∧Q,P∨Q},⇒是S上的公式蕴涵关系,则部分序集(S, ⇒)中的最大元和最小元是什么?3、设集合A={a, b},请给出集合A上所有的等价关系。
4、设R是集合A={1,2,3}上的二元关系,R={(1,1),(2,3),(3,1)},问R满足反自反性吗?R满足反对称性吗?5、是否存在集合A,使得A与ρ(A)等势?若存在,请举例说明。
6、命题公式(P∧(⌝P→Q))→Q是恒真公式吗?若不是,请给出一个弄假G的解释。
7、写出关于3个原子P、Q、R的极小项m3。
8、若短语恒假,则该短语中一定包含互补对吗?若子句中包含互补对,则该子句一定恒真吗?9、对于包含4个不同原子的恒假公式,其主析取范式共包含多少个极小项?10、蕴含式∀xP(x)⇒∃xP(x)一定成立吗?11、设G=∀xP(x)∨∀xQ(x),H=∀x(P(x)∨Q(x)),个体域D={a,b},请给弄假公式G,但满足H的一个解释。
12、有向树中所有点都只发出一条弧吗?有向树一定强连通吗?13、没有孤立点的Euler图一定是强连通的吗?其中的Euler路一定经过图中每个点吗?14、若有限树T中共有m(m≥2)个度为1的点,则树T中任意点的度一定≤m,对吗?15、给出mod 9的一个完全剩余系和一个简化剩余系。
16、任意整数都能写成质数乘积吗?若不能,请举例。
17、若a|b且b|a,则a=b,对吗?18、对任意正整数m、n,都有n m≡n(mod m)成立吗?若不成立,请举反例。
19、对任意两个整数a、b的最高公因数d,都有d=sa+tb,s、t为整数,请问s和t的最高公因数是多少?20、画出右图的闭合图,在该图的闭合图中共有多少条不同的Hamilton回路?(注:若两条Hamilton回路包含的边完全相同(可能顺序不同),则这两条Hamilton回路相同;两条不同的Hamilton回路中至少存在一条不同的边,)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东外语外贸大学信息学院
《离散数学》课程2010-2011学年第二学期期末考试试卷(A)
考卷适应信息学院2010级计算机、软件工程专业时间:120分钟
学号班级姓名成绩
一、选择题:(从四个答案中选取唯一的正确答案填到右边空格内,每题2分,共20分):1.下列语句中是命题的为()
A.他正在说谎; B.不准喧哗;
C.雪是黑的, 还是白的? D. 1+Y=X。
2.设A(x):x是人,B(x):x犯错误,命题“如果是人,必然会犯错误”符号为()A.∀x(A(x) →B(x));
B. ∀x(A(x)∧B(x));
C. ﹁(∃x(A(x)→⌝B(x)));
D. ﹁(∃x(A(x)∧B(x))).
3.设A={1,{1,2,3},{4,5},{6,7,8}},下列选项正确的为()
A.1∈A;B. φ∈A,C。
{{4,5}}∈A;D。
{1,2}∈A.
4.集合A上的相容关系和等价关系之间的关系是()
A.相容关系是等价关系;B。
他们都有传递性;
C.等价关系是相容关系;D。
等价关系与相容关系无关.
5.设A={a,b,c}, B={1,2} 令f:A→B,则不同的函数的个数为()
A.2+3个;B。
2³个C。
2×3个,D。
3²个.
6.I是整数集合,函数f定义为I→I,f(x)=5x,则f是()
A.单射;B。
满射;C。
双射;D。
非单射也非满射。
7.在自然数集N上,下列哪个运算是可结合的()
A.a*b=min(a,b); B. a*b=a-b; C.a*b=a+2b;D.a*b=|a-b| .
8.下列运算中,哪个运算关于自然数集不能构成半群()
A.a هb=max(a,b); B. a هb=b ; C. a هb= -b ; D. a هb=a+b .
9.在有n个结点的连通图中,其边数()
A.最多有n(n-1)/2条;B。
至少有n/2条;C。
最多有n条;D。
至少有n条。
10.判定2个图同构,可靠的方法为()
A.边数一样多;B。
点数一样多;C。
边和点一样多;D。
邻接矩阵置换等价。
二、填空题(每空1分,共20分)
1.等价关系的3个条件是、和传递。
2.(P→Q)的主析取范式为,主合取范式的编码表示为。
3. 前提:P→R, ﹁R∨S, ﹁S的有效结论是。
4. 设R是集合X上的二元关系,则r(R)= 、s(R)=、t(R)=。
5.设代数系统为:
* a b c
a a
b c
b b
c a
c c a b
幺元是,满足交换率吗?,每个元素是否有逆元。
6.设G=<V, E>, 点|V|=m, 边|E|=n, v是G中度数为L的结点,e是G的一条边,则G\v(删去结点v)后还有个结点,条边;G\e(删去边e)中有个结点,条边。
7.无向图G具有一条欧拉路,当且仅当G是,且具有
奇数度结点。
8.路与迹的区别是.
9.一个图含有K3,3子-图,还有可能是平面图吗?。
10.下图的对偶图共有个结点。
三、判断题(在括号内填上“√”或“×”,每题1分,共10分)
1.()A:小张或小李是广外大学生,则﹁A:小张和小李都不是广外大学生。
2.()二元关系矩阵主对角线上全是0,则必为反自反的。
3.()每一个有限的全序集合,一定是良序集合。
4.()实数集R上的大于等于关系“≥”是偏序关系。
5.()设<A,﹡> 是一个代数系统,a∈A ,如果a 有左零元则必有右零元。
6.()具有n个结点的简单图,每对结点度数之和>n,则图一定是汉密尔顿图。
7.()具有两个元素的集合A,它的幂集中的元素数是5个。
8.()连通图必有桥。
9.()有一条欧拉回路的图是汉密尔顿图。
10.()连通平面图的点数v,边数e,面数r的关系是v + e –r =2。
四、画出具有下列条件的有5个结点的无向图.
(1)不是哈密顿图,也不是欧拉图;
(2) 有哈密顿回路,没有欧拉回路;
(3) 没有哈密顿回路,有欧拉回路;
(4) 是哈密顿图,也是欧拉图.(10分)
五、偏序集< A, >的哈斯图如右图,请写出所有的序偶,A的最大元,最小元,极大元和
极小元.(10分)
b
六、每个大学生不是文科学生就是理工科学生,有的大学生是优等生,小张不是理工科学生,但他是优等生,因而如果小张是大学生,他就是文科学生。
(10分)
七、对于任何图G,其边的连通度为λ(G),图的各点的最小度为δ(G)。
证明:λ(G)≤δ(G)(6分)
八、试证明下图中两个无向图是不同构的。
(8分)
九.设<G, >为群,G中元素a的阶为k,那么,a n = e当且仅当k整除n(6分)。