离散数学模拟试卷和答案

合集下载

离散数学样卷十二套(含答案)

离散数学样卷十二套(含答案)

一、证明下列各题1、 (10分)证明蕴涵式:()P P Q Q ∧→⇒2、(10分)证明:,1111f g f g -⇒-I 为函数为函数。

5、 3、(10分)给定代数结构,N ⨯和{}0,1,⨯,其中N 是自然数集合,⨯是数的乘法。

设{}:0,1f N →,定义为:12,,()0k n n k N f n ⎧=∈=⎨⎩否则试证}01N ⨯≅⨯,,,。

4、(10分)给定代数结构,R *,其中R 是实数集合,对R 中任意元a 和b ,*定义如下:a b a b a b *=++⨯ 试证明:,R *是独异点。

二、求下列各题的解:1、试求下列公式的主析取范式和主合取范式(15分):()()P Q P Q ⌝∨⌝→⌝€2、(15分){}010*********R =设,,,,,,,,,,,,试求(1)、R R *,(2)、{}1R ↑,(3)、{}11R -↑,(4)、{}1R ⎡⎤⎣⎦,(5)、{}11R -⎡⎤⎣⎦3、(15分给定无向图,G V E =,如图,试求: F E DCA B(1) 从A 到D 的所有基本链; (2) 从A 到D 的所有简单链;(3) 长度分别是最小和最大的简单圈; (4) 长度分别是最小和最大的基本圈; (5) 从A 到D 的距离。

4、(15分)给定二部图12,,G E V =,如图 9v 8v 7v 6v 1V1v 2v 3v 4v 5v 2V 试求1V 到2V 的最大匹配一、证明下列各题1、 (10分)证明蕴涵式:()P Q P P Q →⇒→∧2、(10分)证明:()()()A B C A B A C ⨯-=⨯-⨯3、(10分)给定群,G ,则,G 为Abel 群⇔222()()(,())∀∀∈→=a b a b G a b a b4、(10分)给定代数结构,S *,其中S 中元为实数有序对,*定义为 ,,,2a b c d a c b d bd *=+++,试证,S *是可交换独异点。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、单项选择题(每题2分,共10分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(3,4)属于()。

A. {1,2,3}B. {3,4,5}C. {1,2,3,4,5}D. {1,2,3}×{3,4,5}答案:D2. 命题“若x>2,则x>1”的逆否命题是()。

A. 若x≤2,则x≤1B. 若x≤1,则x≤2C. 若x≤1,则x≤2D. 若x≤2,则x≤1答案:C3. 函数f: A→B的定义域是集合A,值域是集合B的()。

A. 子集B. 真子集C. 任意子集D. 非空子集答案:D4. 以下哪个图是无向图()。

A. 有向图B. 无向图C. 完全图D. 树答案:B5. 以下哪个命题是真命题()。

A. 所有的马都是白色的B. 有些马是白色的C. 没有马是白色的D. 以上都不是答案:B二、填空题(每题2分,共10分)6. 集合{1,2,3}的子集个数为______。

答案:87. 命题“若x>0,则x>1”的逆命题是:若x>1,则______。

答案:x>08. 函数f: A→B中,若A={1,2},B={3,4},则f的值域可以是{3}或{4}或{3,4},但不能是______。

答案:{1,2}9. 在有向图中,若存在从顶点A到顶点B的有向路径,则称A到B是______的。

答案:可达10. 命题逻辑中,合取(AND)的符号是______。

答案:∧三、解答题(每题15分,共30分)11. 证明:若p∧q为真,则p和q都为真。

证明:根据合取(AND)的定义,p∧q为真当且仅当p和q都为真。

因此,若p∧q为真,则p和q都为真。

12. 给定函数f: A→B,其中A={1,2,3},B={4,5,6},且f(1)=4,f(2)=5,f(3)=6。

请找出f的值域。

答案:根据函数的定义,f的值域是其所有输出值的集合。

因此,f的值域为{4,5,6}。

《离散数学》考试试卷(试卷库20卷)及答案

《离散数学》考试试卷(试卷库20卷)及答案

《离散数学》考试试卷(试卷库20卷)及答案第 1 页/共 4 页《离散数学》考试试卷(试卷库20卷)试题总分: 100 分考试时限:120 分钟、选择题(每题2分,共20分)1. 设论域为全总个体域,M(x):x 是人,Mortal(x):x 是要死的,则“人总是要死的”谓词公式表示为( )(A ))()(x Mortal x M → (B ))()(x Mortal x M ∧(C )))()((x Mortal x M x →?(D )))()((x Mortal x M x ∧?2. 判断下列命题哪个正确?( )(A )若A∪B=A∪C,则B =C (B ){a,b}={b,a}(C )P(A∩B)≠P(A)∩P (B)(P(S)表示S 的幂集)(D )若A 为非空集,则A ≠A∪A 成立3. 集合},2{N n x x A n∈==对( )运算封闭(A )乘法(B )减法(C )加法(D )y x -4. 设≤><,N 是偏序格,其中N 是自然数集合,“≤”是普通的数间“小于等于”关系,则N b a ∈?,有=∨b a ( )(A )a(B )b(C )min(a ,b)(D ) max(a ,b)5. 有向图D=,则41v v 到长度为2的通路有( )条(A )0 (B )1 (C )2 (D )36. 设无向图G 有18条边且每个顶点的度数都是3,则图G 有( )个顶点(A )10 (B )4 (C )8 (D )127. 下面哪一种图不一定是树?()(A )无回路的连通图(B )有n 个结点n-1条边的连通图(C )每对结点间都有通路的图(D )连通但删去一条边则不连通的图 8. 设P :我将去镇上,Q :我有时间。

命题“我将去镇上,仅当我有时间”符号化为()(A )P →Q (B )Q →P (C )P Q (D )Q P ?∨? 9. 下列代数系统中,其中*是加法运算,()不是群。

离散数学样卷参考答案

离散数学样卷参考答案

参考答案试卷一一、选择填空1.C2.A3.D4.D5.A6.A7.B8.C9.D 10.B二、填空1.主合取范式)()(q p q p ⌝∨∧∨⌝.前束范式))()((x G x F x →∀或))()((y G x F y x →∀∀ 2. n-k,93.=)(A ρ{Φ,{1},{2},{1,2}},B A ⨯={〈1,a 〉,<1,b>,<2,a>,<2,b>}4. [b]R ={1,2,3}, X/R={{1,2,3},{4},{5}}.5. ,,G y x ∈∀ )()()(y f x f y x f *= 。

6.=-)(1R r { <2,1>,< 4,2>,<1,1>,<3,3>,<2,2>},=S R {<1,4>,<2,2>}。

7.15,12.8. =τσ⎪⎪⎭⎫ ⎝⎛42134321 =(132) =-1στ⎪⎪⎭⎫ ⎝⎛41324321=(123) 9.0, 45 10.2,0三 1.× 2.√ 3. √ 4.× 5.×四.1.一棵树具有3个2度结点,2个3度结点,2个4度结点,其余为叶。

试求其共有多少个结点?多少片叶?解: 设该树其有x 片叶,则顶点数为x+7, 根据树的性质知,该树有x+6边,由握手定理有:3*2+2*3+2*4+x*1=2(x+6), 得x=8故该树共有15个结点,8 片叶 .2.已知X={a,b,c},给出X 上的所有等价关系。

解:X 的划分其有五种:S 1={{a,b,c}}, S 2={{a,b},{c}}, S 3={{a,c},{b}}, S 4={{a},{b,c}},S 5={{a},{b},{c}},因为X 上划分与等价关系一一对应,故x 上共有五个等价关系,它们是:R 1={<a,b>,<b,a>,<a,c><c,a>,<b,c>,<c,b>}X I ⋃R 2={<a,b>,<b,a>}X I ⋃, R 3={<a,c><c,a>}X I ⋃R 4={<b,c>,<c,b>}X I ⋃, R 5=X I3..画一棵权为2,3,3,4,5,6,7,8 的最优二叉树,并计算出它的树权。

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学练习题(含答案)题目1. 对于集合 $A={1,2,3,...,10}$ 和 $B={n|n是偶数,2<n<8}$,求 $A \cap B$ 的元素。

2. 存在三个可识别的状态A,B,C。

置换群 $S_3$ 作用在状态集上。

定义四个动作:$α: A → C, β: A → B, γ: C→ A, δ: B→ C$。

确定式子,描述 $\{α,β,γ,δ\}$ 的乘法表。

3. 证明 $\forall n \in \mathbb{N}$,合数的个数不小于$n$。

4. 给定一个无向带权图,图中每个节点编号分别是$1,2,...,n$,证明下列结论:a. 如果从节点$i$到$j$只有一条权值最小的路径,则这条路径的任意子路径都是最短路径。

b. 如果从节点$i$到$j$有两条或两条以上权值相等的路径,则从$i$到$j$的最短路径可能不唯一。

答案1. $A \cap B = \{2,4,6\}$。

2. 乘法表:3. 对于任意$n$,我们可以选择$n+1$个连续的自然数$k+1,k+2,...,k+n,k+n+1$中的$n$个数,其中$k \in \mathbb{Z}$。

这$n$个数构成的$n$个正整数均为合数,因为它们都至少有一个小于它自身的因子,所以不是质数。

所以合数的个数不小于任意$n$。

4.a. 根据题意,从$i$到$j$只有一条权值最小的路径,即这条最短路径已被确定。

如果从这条路径中任意取出一段子路径,假设这段子路径不是这个节点到$j$的最短路径,那么存在其他从$i$到$j$的路径比这段子路径更优,又因为这条路径是最短路径,所以这段子路径也一定不优于最短路径,矛盾。

所以从这条路径中任意取出的子路径都是最短路径。

b. 如果从节点$i$到$j$有多条权值相等的路径,则这些路径权值都是最短路径的权值。

因为所有最短路径的权值相等,所以这些路径的权值就是最短路径的权值。

所以从$i$到$j$的最短路径可能不唯一。

离散数学考试题及详细参考答案

离散数学考试题及详细参考答案

离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。

b)我今天进城,除非下雨。

c)仅当你走,我将留下。

2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。

c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R)) (R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。

(4分)4.判断下面命题的真假,并说明原因。

(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。

(每小题5分,共10分)a)A→(B∧C),(E→ F)→ C, B→(A∧ S) B→Eb)x(P(x)→ Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠ 且B≠ ,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。

离散数学试卷及答案

离散数学试卷及答案

一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。

1.一个连通的无向图G,如果它的所有结点的度数都是偶数,那么它具有一条( )A.汉密尔顿回路B.欧拉回路C.汉密尔顿通路D.初级回路2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( )A.10B.12C.16D.143.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( )A.b∧(a∨c)B.(a∧b)∨(a’∧b)C.(a∨b)∧(a∨b∨c)∧(b∨c)D.(b∨c)∧(a∨c)4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( )A.<{1},·>B.〈{-1},·〉C.〈{i},·〉D.〈{-i},·〉5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,下列系统中是代数系统的有( )A.〈Z,+,/〉B.〈Z,/〉C.〈Z,-,/〉D.〈P(A),∩〉6.下列各代数系统中不含有零元素的是( )A.〈Q,*〉Q是全体有理数集,*是数的乘法运算B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算C.〈Z, 〉,Z是整数集, 定义为x xy=xy,∀x,y∈ZD.〈Z,+〉,Z是整数集,+是数的加法运算7.设A={1,2,3},A上二元关系R的关系图如下:R具有的性质是A.自反性B.对称性C.传递性D.反自反性8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( )A.R∪I AB.RC.R∪{〈c,a〉}D.R∩I A9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的等价关系,R应取( )A.{〈c,a〉,〈a,c〉}B.{〈c,b〉,〈b,a〉}C.{〈c,a〉,〈b,a〉}D.{〈a,c〉,〈c,b〉}10.下列式子正确的是( )A. ∅∈∅B.∅⊆∅C.{∅}⊆∅D.{∅}∈∅11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x<y.下列公式在R下为真的是( )A.( ∀x)( ∀y)( ∀z)(A(x,y))→A(f(x,z),f(y,z))B.( ∀x)A(f(a,x),a)C.(∀x)(∀y)(A(f(x,y),x))D.(∀x)(∀y)(A(x,y)→A(f(x,a),a))12.设B是不含变元x的公式,谓词公式(∀x)(A(x)→B)等价于( )A.(∃x)A(x)→BB.(∀x)A(x)→BC.A(x)→BD.(∀x)A(x)→(∀x)B13.谓词公式(∀x)(P(x,y))→(∃z)Q(x,z)∧(∀y)R(x,y)中变元x( )A.是自由变元但不是约束变元B.既不是自由变元又不是约束变元C.既是自由变元又是约束变元D.是约束变元但不是自由变元14.若P:他聪明;Q:他用功;则“他虽聪明,但不用功”,可符号化为( )A.P∨QB.P∧┐QC.P→┐QD.P∨┐Q15.以下命题公式中,为永假式的是( )A.p→(p∨q∨r)B.(p→┐p)→┐pC.┐(q→q)∧pD.┐(q∨┐p)→(p∧┐p)二、填空题(每空1分,共20分)16.在一棵根树中,仅有一个结点的入度为______,称为树根,其余结点的入度均为______。

网络学院《离散数学》模拟-答案

网络学院《离散数学》模拟-答案

网络学院离散数学模拟试题1 考试时间120 分钟考试方式:开卷专业年级姓名学号一、选择填空题(每个空格3分,共30分)1.设A,B是集合,且φA,则_____必定成立。

D-B=A.A=B B.B⊆A C.A∩B=φD.A⊆B 2.{φ,{φ}}-φ=_____;CA. φ B. {φ} C. {φ,{φ}} D. {{φ}}3.设集合A={{0}},则P(A) =_____。

DA. P(P({0}))B. P({0})∪φC. P({0})∪{{0}}D. {φ,{{0}}}4.设有集合A={1,2,3,4},则从A到{0,1}的不同的函数有____个。

EA.0 B.1 C.4 D.12 E. 16 F. 24 G. 32 5.设G=(a)为12阶循环群,则G没有____阶子群。

EA.1 B.2 C.3 D.4 E. 5 F. 66.凡_____都满足消去律。

DA. 代数系统B. 半群C. 独异点D. 群7.从无向完全图K中至少删除____条边后,所得的图将成为平面图。

B5A.0 B.1 C.2 D.38.若无向图G是有99个结点,9个连通分量,则G中的边数必_____。

C A. ≤90 B. =90 C. ≥90 D. =100 E. ≥1009.下列句子中为命题的是_____。

AA.今天不是星期六。

B.考场内禁用手机!C.今天是周末吗?D.今天真冷呀!10. 任意两个不同极大项的析取式必为______。

AA. 永真公式B. 可满足公式C. 永假公式D. 等值公式二、求出谓词公式(,)(,,)u v F u v w G u v w ∃∃→∀的前束范式。

(10分)解:(,)(,,)u v F u v w G u v w ∃∃→∀ ⇔1111(,)(,,)u u F u v w G u v w ∃∃→∀ ⇔111(,)(,,)u v F u v w G u v w ⌝∃∃∨∀ ⇔1111(,)(,,)u y F u v w G u v w ∀∀⌝∨∀⇔1111(,)(,,)u v wF u vG u v w ∀∀∀⌝∨()三、用形式证明的方法证明下列论证的有效性:“本班有些同学是有经验的C++程序员,任何C++程序员都知道对象的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[A] 3,8
[B]3
[C]8 [D]3,8
3、若 X 是 Y 的子集,则一定有( )。 [A]X 不属于 Y [C]X 真包含于 Y
[B]X∈Y [D]X∩Y=X
4、下列关系中是等价关系的是( )。
[A]不等关系
[B]空关系
[C]全关系
[D]偏序关系
5、对于一个从集合 A 到集合 B 的映射,下列表述中错误的是( )。
()
17、设 S,T 为任意集合,如果 S—T= ,则 S=T。
()
18、在命题逻辑中,任何命题公式的主合取范式都是存在的,并且是唯一的。 ( )
19、关系的复合运算满足交换律。
()
20、集合 A 上任一运算对 A 是封闭的。
()
21、 0,1, 2,3, 4, max, min 是格。
()
22、强连通有向图一定是单向连通的。
精品文档
《离散数学》模拟试卷二 答案
一、【单项选择题】(本大题共 15 小题,每小题 3 分,共 45 分)
题号 1
2
3
4
5
6
7
8
答案 B
B
B
A
A
B
B
A
题号 11 12 13 14 15
答案 A
D
A
B
D
9
标准答案:令 p:他是计算机系本科生 q:他是计算机系研究生 r:他学过 DELPHI 语言
s:他学过 C++语言
t:他会编程序
前提:(p∨q)→(r∧s),(r∨s)→t
结论:p→t
证①p
P(附加前提)
②p∨q
T①I
③(p∨q)→(r∧s) P(前提引入)
④r∧s
T②③I
⑤r
T④I
⑥r∨s
T⑤I
⑦(r∨s)→t ⑧t
16、陈述句“x+y>4”是个命题。
()
17、命题“如果 1+2=3,那么雪是黑的”是真命题。
()
18、(P∨(Q∧R))是一个合式命题公式,其中 P、Q、R 是命题变元。
()
19、(P(Q∧RQ)是一个合式命题公式,其中 P、Q、R 是命题变元。 ( )
20、基本联结词“,,,”是可交换的
()
21、p∧┐(q→p)是永假式
()
22、命题公式“(P∧(PQ))Q”是重言式。
()
23、如果 f 是 g 的逆映射,则 g 是 f 的逆映射。
()
三、【解答题】(本大题共 3 小题,24、25 每小题 10 分,26 小题 11 分,共 31 分)请将 答案填写在答题卷相应题号处。
24、如果 和 是 A 上的自反关系,判断结论:“ 、
P(前提引入) T⑤⑥I
.
精品文档
复习范围或考核目标:考察数理逻辑的应用,详见课件数理逻辑中命题逻辑的命题演算 的推理理论。
北京语言大学网络教育学院
《离散数学》模拟试卷二
注意: 1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。请监考老师负责监督。 2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。 3.本试卷满分 100 分,答题时间为 90 分钟。 4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。
[A]无零因子环 [C]整环
[B]除环 [D]域
15、无向图 G 中有 16 条边,且每个结点的度数均为 2,则结点数是( )。
[A]8
[B]16
[C]4
[D]32
.
精品文档
二、【判断题】(本大题共 8 小题,每小题 3 分,共 24 分)正确的填 T,错误的填 F,填 在答题卷相应题号处。
16、 是空集。
[A]对 A 的每个元素都要有象
[B] 对 A 的每个元素都只有一个象
[C]对 B 的每个元素都有原象
[D] 对 B 的元素可以有不止一个原象
6、设 p:小李努力学习,q:小李取得好成绩,命题“除非小李努力学习,否则他不能取
得好成绩”的符号化形式为( )。
[A]p→q
[B]q→p
[C]┐q→┐p
[D]┐p→q
[B] { 2,0 , 3,0 , 2,1 , 3,1 }
[C] { 0,3 ,1, 2 , 1,3 }
7、下列式子正确的是( )。
[A] p q q p [B] p q p q [C] p q q p [D] p q q p
[D] { 0, 2 , 0,3 , 1, 2 }
复习范围或考核目标:考察集合的基本运算,包括交集,并集,见课件第一章第 二节,集合的运算。
25、设非空集合 A,验证( P(A),,, ~, , A)是布尔代数 标准答案:证明 因为集合 A 非空,故 P(A)至少有两个元素,显然,是 P(A)上的 二元运算. 由定理 10 ,任给 B,C,DP(A), H1 BD=DC CD=DC H2 B(CD)=(BC)(BD) B(CD)=(BC)(BD) H3 P(A)存在和 A,BP(A), 有 B=B, BA=B
一、【单项选择题】(本大题共 15 小题,每小题 3 分,共 45 分)在每小题列出的四个选 项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。
1、若集合 A={2,a,{ a },4},则下列表述正确的是(
)。
[A]
[B]
[C]
[D]
2、若集合 A={a,b,{ 1,2 }},B={ 1,2},则(
[A]A=>(A∨B) (附加律)
[B](A∨B)∧┐A=>B (析取三段论)
[C](A→B)∧A=>B (假言推理)
[D](A→B)∧┐B=>A (拒取式)
13、在右图中过 v1, v2 的初级回路有多少条( )
[A] 1
[B] 2
[C] 3
[D] 4
14、若 R,, 是环,且 R 中乘法适合消去律,则 R 是( )。

是自反的”
是否成立?并说明理由。
25、设集合 A 1,2,3,4,5,A 上的二元关系 R 为 R 1,1,2,2,3,3,3,4,4,4,5,3,5,4,5,5
(1)写出 的关系矩阵,画出 的关系图;
(2)证明 是 A 上的半序关系,画出其哈斯图。 26、化简下列各式:
.
(1)A∨(A∨(B∧B)) (2)(A∧B∧C)∨(A∧B∧C)
[A] { 0, 2 , 0,3 , 1, 2 , 1,3 } [B] { 0, 2 ,1, 2 ,1,3 }
[C] { 0,3 ,1, 2 , 1,3 }
[D] { 0, 2 , 0,3 , 1, 2 }
6、设 A {0,1}, B {2,3} ,则 B A (
)。
[A] { 2,0 , 3,0 ,1, 2 ,1,3 }
8、设 P,Q,R 是命题公式,则 P→R,Q→R,P∨┐Q ( )。
[A] P
[B] Q
[C] R
[D] ┐R
9、 f1 : Z R, f1(i) 3i ,则 f1 是(
[A] 单射 [B] 满射
[C] 双射
)。 [D] 以上说法都不对
10、 f1 : Z {0,1, 2,3}, f2 (i) res4 (i) ,则 f1 是(
.
精品文档
《离散数学》模拟试卷一 答案
一、【单项选择题】(本大题共 15 小题,每小题 3 分,共 45 分)
题号 1
2
3
4
5
6
7
8
答案 B
D
D
C
C
C
B
A
题号 11 12 13 14 15
答案 A
D
C
B
B
9
10
B
D
二、【判断题】(本大题共 8 小题,每小题 3 分,共 24 分)
题号
16
17
18
19
一、【单项选择题】(本大题共 15 小题,每小题 3 分,共 45 分)在每小题列出的四个选 项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。
1、在由 3 个元素组成的集合上,可以有 ( ) 种不同的关系。
[A] 3
[B] 8
[C]9
[D]27
2、设 A 1, 2,3,5,8, B 1, 2,5,7,则A B ( )。
.
精品文档
H4,BP(A), BA,存在 A~B,有 BA~B)= A B(A~B)=
所以( P(A),,, ~, , A)是布尔代数.
复习范围或考核目标:考察布尔代数的基本概念,集合的运算,见课件代数系 统中布尔代数小节。
26、如果他是计算机系本科生或者是计算机系研究生,那么他一定学过 DELPHI 语言 而且学过 C++语言。只要他学过 DELPHI 语言或者 C++语言,那么他就会编程序。因 此如果他是计算机系本科生,那么他就会编程序。请用命题逻辑推理方法,证明该推理 的有效结论。
7、设 A={a,b,c},则 A 到 A 的双射共有( )。
[A]3 个
[B]6 个
[C]8 个
[D]9 个
.
精品文档
8、一个连通图 G 具有以下何种条件时,能一笔画出:即从某结点出发,经过图中每边
仅一次回到该结点( )。
[A] G 没有奇数度结点
[B] G 有 1 个奇数度结点
[C] G 有 2 个奇数度结点
[A] p→┐q
[B] p∨┐q
[C] p∧q
[D] p∧┐q
11、设图 G=<V,E>的结点集为 V={v1,v2,v3},边集为 E={<v1,v2>,<v1,v3>}.则 G 的割
相关文档
最新文档