离散数学第五版 模拟试题 及答案

合集下载

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 在集合论中,下列哪个选项表示两个集合A和B的并集?A. A ∩ BB. A ∪ BC. A - BD. A × B答案:B2. 命题逻辑中,下列哪个符号表示逻辑非?A. ∧B. ∨C. ¬D. →答案:C3. 在有向图中,如果存在一条从顶点u到顶点v的路径,那么称顶点v为顶点u的:A. 祖先B. 后代C. 邻居D. 连接点答案:B二、填空题1. 一个命题函数P(x)表示为“x是偶数”,那么其否定形式为________。

答案:x是奇数2. 在关系R上,如果对于所有的a和b,如果(a, b)∈R且(b, a)∈R,则称R为________。

答案:自反的三、简答题1. 简述什么是等价关系,并给出其三个基本性质。

答案:等价关系是一种特殊的二元关系,它满足自反性、对称性和传递性。

自反性指每个元素都与自身相关;对称性指如果a与b相关,则b也与a相关;传递性指如果a与b相关,b与c相关,则a与c也相关。

2. 解释什么是图的连通分量,并给出如何判断一个图是否是连通图。

答案:连通分量是指图中最大的连通子图,即图中任意两个顶点之间都存在路径。

判断一个图是否是连通图,可以通过深度优先搜索或广度优先搜索算法遍历整个图,如果所有顶点都被访问,则图是连通的。

四、计算题1. 给定命题公式P:((p → q) ∧ (r → ¬p)) → (q ∨ ¬r),证明P是一个重言式。

答案:通过使用命题逻辑的等价规则和真值表,可以证明P在所有可能的p, q, r的真值组合下都为真,因此P是一个重言式。

2. 给定一个有向图G,顶点集合V(G)={1, 2, 3, 4},边集合E(G)={(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)}。

找出所有强连通分量。

答案:通过Kosaraju算法或Tarjan算法,可以找到图G的强连通分量,结果为{1, 4}和{2, 3}。

离散数学模拟题及答案

离散数学模拟题及答案

一、填空1.不能再分解的命题称为____________,至少包含一个联结词的命题称为____________。

2.一个命题公式A(P, Q, R)为真的所有真值指派是000, 001, 010, 100,则其主析取范式是__________________,其主合取范式是_________________。

3.设A={a,b,c},B={b,c,d,e},C={b,c},则( A ⋃ ⊕=____________。

4.幂集P(P(∅)) =________________。

5.设A为任意集合,请填入适当运算符,使式子A________A=∅;A________A’=∅成立。

6.设A={0,1,2,3,6},R={〈x,y〉|x≠y∧(x,y∈A)∧y≡x(mod 3)},则D(R)=____________,R(R)=____________。

7.称集合S是给定非空集合A的覆盖:若S={S1,S2,…,S n},其中S i⊆A,S i≠Ø,i=1,2,…,n,且______ _____;进一步若_____ _______,则S是集合A的划分。

8.两个重言式的析取是____ ____式,一个重言式和一个永假式的合取式是式。

9.公式┐(P∨Q) ←→(P∧Q)的主析取范式是。

10. 已知Π={{a}{b,c}}是A={a,b,c}的一个划分,由Π决定的A上的一个等价关系是。

二、证明及求解1.求命题公式(P→Q)→(Q∨P)的主析取范式。

2.推理证明题1)⌝P∨Q,⌝Q∨R,R→S⇒P→S。

2) (∀x)(P(x)→Q(y)∧R(x)),(∃x)P(x)⇒Q(y)∧(∃x)(P(x)∧R(x))x)},S={〈x,y〉|x,y∈A∧(x=y+2)}。

3.设A={0,1,2,3},R={〈x,y〉|x,y∈A∧(y=x+1∨y=2试求R S R。

4.证明:R是传递的⇔R*R⊆R。

5.设R是A上的二元关系,S={<a, b>| 存在c∈A,使<a, c>∈R,且<c, b>∈R}。

离散数学第五版--模拟试题--及答案

离散数学第五版--模拟试题--及答案

离散数学第五版--模拟试题--及答案《离散数学》模拟试题3⼀、填空题(每⼩题2分,共20分)1. 已知集合A ={φ,1,2},则A得幂集合p(A)=_____ _。

2. 设集合E ={a, b, c, d, e}, A= {a, b, c}, B = {a, d, e}, 则A∪B =___ ___,A∩B =____ __,A-B =___ ___,~A∩~B =____ ____。

3. 设A,B是两个集合,其中A= {1, 2, 3}, B= {1, 2},则A-B =____ ___,ρ(A)-ρ(B)=_____ _ _。

4. 已知命题公式RQPG→∧=)(,则G的析取范式为。

5. 设P:2+2=4,Q:3是奇数;将命题“2+2=4,当且仅当3是奇数。

”符号化,其真值为。

⼆、单项选择题(选择⼀个正确答案的代号填⼊括号中,每⼩题4分,共16分。

)1. 设A、B是两个集合,A={1,3,4},B={1,2},则A-B为().A.{1}B. {1, 3}C. {3,4}D. {1,2}2. 下列式⼦中正确的有()。

A. φ=0B. φ∈{φ}C. φ∈{a,b}D. φ∈φ3. 设集合X={x, y},则ρ(X)=()。

A. {{x},{y}}B. {φ,{x},{y}}C. {φ,{x},{y},{x, y}}D. {{x},{y},{x, y}}4. 设集合A={1,2,3},A上的关系R={(1,1),(2,2),(2,3),(3,3),(3,2)},则R不具备().三、计算题(共50分)1. (6分)设全集E=N,有下列⼦集:A={1,2,8,10},B={n|n2<50 ,n∈N},C={n|n可以被3整除,且n<20 ,n∈N},D={n|2i,i<6且i、n∈N},求下列集合:(1)A∪(C∩D) (2)A∩(B∪(C∩D))(3)B-(A∩C) (4)(~A∩B) ∪D2. (6分)设集合A={a, b, c},A上⼆元关系R1,R2,R3分别为:R1=A×A,R2 ={(a,a),(b,b)},R3 ={(a,a)},试分别⽤定义和矩阵运算求R1·R2 ,22R,R1·R2 ·R3 , (R1·R2 ·R3 )-1 。

离散数学第5版答案

离散数学第5版答案

⇔0↔q
(矛盾律)
⇔ ( p → q) ∧ (q → 0)
(等价等值式)
⇔ (¬0 ∨ q) ∧ (¬q ∨ 0)
(蕴含等值式)
⇔ (1∨ q) ∧ ¬q
(同一律)
⇔ 1∧ ¬q
(零律)
⇔ ¬q
(同一律)
到最后一步已将公式化得很简单。由此可知,无论 p 取 0 或 1 值,只要 q 取 0 值,原公式取值为 1,即 00 或 10 都为原公式的成真赋值,而 01,11 为成假赋 值,于是公式为非重言式的可满足式。
(蕴含等值式)
⇔ p ∨ ¬q ∧ q
(德·摩根律)
⇔ p ∨ (¬q ∧ q)
(结合律)
⇔ p∧0
(矛盾律)
⇔0
(零律)
由最后一步可知,(3)为矛盾式。
(5)用两种方法判(5)为非重言式的可满足式。
真值表法
p
q
¬p
¬p → q q → ¬p (¬p → q) → (q → ¬p)
0
0
1
0
1
1
0
1
1
(10)p:小李在宿舍里. p 的真值则具体情况而定,是确定的。 (12) p ∨ q ,其中, p : 4 是偶数,q : 4 是奇数。由于 q 是假命题,所以,q 为假命题, p ∨ q 为真命题。 (13)p ∨ q ,其中,p : 4 是偶数,q : 4 是奇数,由于 q 是假命题,所以,p ∨ q 为假命题。 (14) p:李明与王华是同学,真值由具体情况而定(是确定的)。 (15) p:蓝色和黄色可以调配成绿色。这是真命题。 分析 命题的真值是唯一确定的,有些命题的真值我们立即可知,有些则不 能马上知道,但它们的真值不会变化,是客观存在的。 1.3 令 p : 2 + 2 = 4, q : 3 + 3 = 6, 则以下命题分别符号化为 (1) p → q (2) p → ¬q (3) ¬p → q (4) ¬p → ¬q (5) p ↔ q (6) p ↔ ¬q (7) ¬p → q (8) ¬p ↔ ¬q 以上命题中,(1),(3),(4),(5),(8)为真命题,其余均为假命题。 分析 本题要求读者记住 p → q 及 p ↔ q 的真值情况。p → q 为假当且仅当 p 为真,q 为假,而 p ↔ q 为真当且仅当 p 与 q 真值相同.由于 p 与 q 都是真命题, 在 4 个蕴含式中,只有(2) p → r ,其中,p 同(1),r:明天为 3 号。 在这里,当 p 为真时,r 一定为假, p → r 为假,当 p 为假时,无论 r 为真 还是为假, p → r 为真。

离散数学第五版课后答案

离散数学第五版课后答案

离散数学第五版课后答案【篇一:离散数学课后答案(四)】txt>4.1习题参考答案-------------------------------------------------------------------------------- 1、根据结合律的定义在自然数集n中任取 a,b,c 三数,察看 (a。

b)。

c=a。

(b。

c) 是否成立?可以发现只有 b、c 满足结合律。

晓津观点:b)满足结合律,分析如下: a) 若有a,b,c∈n,则(a*b)*c =(a-b)-c a*(b*c) =a-(b-c)在自然数集中,两式的值不恒等,因此本运算是不可结合的。

b)同上,(a*b)*c=max(max(a,b),c) 即得到a,b,c中最大的数。

a*(b*c)=max(a,max(b,c))仍是得到a,b,c中最大的数。

此运算是可结合的。

c)同上,(a*b)*c=(a+2b)+2c 而a*(b*c)=a+2(b+2c),很明显二者不恒等,因此本运算也不是可结合的。

d)运用同样的分析可知其不是可结合的。

-------------------------------------------------------------------------------- 2、d)是不封闭的。

--------------------------------------------------------------------------------其不满足交换律、满足结合律、不满足幂等律、无零元、无单位元晓津补充证明如下:(1)a*b=pa+qb+r 而b*a=pb+qa+r 当p,q取值不等时,二式不相等。

因此*运算不满足交换律。

(2)设a,b,c∈r则(a*b)*c=p(pa+qb+r)+qc+r=p^2a+pab+pr+qc+r 而a*(b*c)=pa+q(pb+qc+r)+r=pa+qpb+q^2c+qr+r 二式不恒等,因此*运算是不满足结合律的。

离散数学模拟试卷和答案

离散数学模拟试卷和答案

北京语言大学网络教育学院《离散数学》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。

请监考老师负责监督。

2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。

3.本试卷满分100分,答题时间为90分钟。

4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。

一、【单项选择题】(本大题共15小题,每小题3分,共45分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。

1、在由3个元素组成的集合上,可以有 ( ) 种不同的关系。

[A] 3[B] 8[C]9[D]272、设{}{}1,2,3,5,8,1,2,5,7A B A B ==-=,则( )。

[A] 3,8 [B]{}3 [C]{}8 [D]{}3,83、若X 是Y 的子集,则一定有( )。

[A]X 不属于Y [B]X ∈Y [C]X 真包含于 Y [D]X∩Y=X4、下列关系中是等价关系的是( )。

[A]不等关系 [B]空关系 [C]全关系 [D]偏序关系5、对于一个从集合A 到集合B 的映射,下列表述中错误的是( )。

[A]对A 的每个元素都要有象 [B] 对A 的每个元素都只有一个象 [C]对B 的每个元素都有原象 [D] 对B 的元素可以有不止一个原象6、设p:小李努力学习,q:小李取得好成绩,命题“除非小李努力学习,否则他不能取得好成绩”的符号化形式为( )。

[A]p→q [B]q→p [C]┐q→┐p [D]┐p→q7、设A={a,b,c},则A 到A 的双射共有( )。

[A]3个 [B]6个 [C]8个 [D]9个8、一个连通图G具有以下何种条件时,能一笔画出:即从某结点出发,经过图中每边仅一次回到该结点()。

[A] G没有奇数度结点 [B] G有1个奇数度结点[C] G有2个奇数度结点[D] G没有或有2个奇数度结点9、设〈G,*〉是群,且|G|>1,则下列命题不成立的是()。

《离散数学》考试试卷(试卷库14卷)及答案

《离散数学》考试试卷(试卷库14卷)及答案

第 1 页/共 4 页《离散数学》考试试卷(试卷库14卷)试题总分: 100 分 考试时限:120 分钟一、选择题(每题2分,共20分)1. 下述命题公式中,是重言式的为( )(A ))()(q p q p ∨→∧ (B )q p ∨))()((p q q p →∨→⇔(C )q q p ∧→⌝)((D )q q p →⌝∧)(2. 对任意集合A,B,C,下列结论正确的是( )(A )若A ⊆B,B ∈C,则A ⊆C ; (B )若A ∈B,B⊆C,则A ⊆C ; (C )若A ⊆B,B ∈C,则A ∈C ; (D )若A ∈B,B ⊆C,则A ∈C ; 3. 设} 3 ,2 ,1 {=S ,定义S S ⨯上的等价关系,,则由R 产生的S S ⨯上一个划分共有( )个分块。

(A )4(B )5(C )6(D )94. 下列偏序集( )能构成格5. 连通图G 是一棵树当且仅当G 中( )(A )有些边是割边 (B )每条边都是割边(C )所有边都不是割边 (D )图中存在一条欧拉路径6. 有n 个结点)3(≥n ,m 条边的连通简单图是平面图的必要条件( )(A ) 63-≤n m(B )63-≤m n (C )63-≥n m (D ) 63-≥m n7. 设P,Q 的真值为0,R,S 的真值为1,则下面命题公式中真值为1的是( )(A )R →P (B )Q ∧S (C )P S (D )Q ∨R 8. 在图G=<V,E>中,结点总度数与边数的关系是( )(A )deg()2||i v E =(B )deg()||i v E =(C )deg()2||iv Vv E ∈=∑(D )deg()||iv Vv E ∈=∑9. 设有33盏灯,拟公用一个电源,则至少需有五插头的接线板数( )(A )7 (B )8 (C )9 (D )14 10. 设集合A 上有四个元素,则A 上的不同的等价关系的个数为( )(A )11 (B )14 (C )17(D )15二、填空题(每题2分,共20分)1. 设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则R= 。

离散数学(第五版)清华大学出版社第

离散数学(第五版)清华大学出版社第

离散数学(第五版)清华大学出版社第1章习题解答1.1除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。

分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。

本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。

其次,4)这个句子是陈述句,但它表示的判断结果是不确定。

又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。

(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。

这里的“且”为“合取”联结词。

在日常生活中,合取联结词有许多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,一面……”、“……和……”、“……与……”等。

但要注意,有时“和”或“与”联结的是主语,构成简单命题。

例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。

1.2(1)p:2是无理数,p为真命题。

(2)p:5能被2整除,p为假命题。

(6)p→q。

其中,p:2是素数,q:三角形有三条边。

由于p与q都是真命题,因而p→q为假命题。

(7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。

由于p为假命可编辑范本题,q为真命题,因而p→q为假命题。

(8)p:2000年10月1日天气晴好,今日(1999年2月13日)我们还不知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。

(9)p:太阳系外的星球上的生物。

它的真值情况而定,是确定的。

1(10)p:小李在宿舍里. p的真值则具体情况而定,是确定的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《离散数学》模拟试题3
一、填空题(每小题2分,共20分)
1. 已知集合A ={φ,1,2},则A得幂集合p(A)=_____ _。

2. 设集合E ={a, b, c, d, e}, A= {a, b, c}, B = {a, d, e}, 则A∪B =___ ___,
A∩B =____ __,A-B =___ ___,~A∩~B =____ ____。

3. 设A,B是两个集合,其中A= {1, 2, 3}, B= {1, 2},则A-B =____ ___,
ρ(A)-ρ(B)=_____ _ _。

4. 已知命题公式R
Q
P
G→


=)
(,则G的析取范式为。

5. 设P:2+2=4,Q:3是奇数;将命题“2+2=4,当且仅当3是奇数。

”符号化
,其真值为。

二、单项选择题(选择一个正确答案的代号填入括号中,每小题4分,共16分。


1. 设A、B是两个集合,A={1,3,4},B={1,2},则A-B为().
A.{1}
B. {1, 3}
C. {3,4}
D. {1,2}
2. 下列式子中正确的有()。

A. φ=0
B. φ∈{φ}
C. φ∈{a,b}
D. φ∈φ
3. 设集合X={x, y},则ρ(X)=()。

A. {{x},{y}}
B. {φ,{x},{y}}
C. {φ,{x},{y},{x, y}}
D. {{x},{y},{x, y}}
4. 设集合A={1,2,3},A上的关系R={(1,1),(2,2),(2,3),(3,3),(3,2)},
则R不具备().
三、计算题(共50分)
1. (6分)设全集E=N,有下列子集:A={1,2,8,10},B={n|n2<50 ,n∈N},C=
{n|n可以被3整除,且n<20 ,n∈N},D={n|2i,i<6且i、n∈N},求下列集合:(1)A∪(C∩D) (2)A∩(B∪(C∩D))
(3)B-(A∩C) (4)(~A∩B) ∪D
2. (6分)设集合A={a, b, c},A上二元关系R1,R2,R3分别为:R1=A×A,
R2 ={(a,a),(b,b)},R3 ={(a,a)},试分别用
定义和矩阵运算求R1·R2 ,
2
2
R,R
1
·R2 ·R3 , (R1·R2 ·R3 )-1 。

3.(6分)化简等价式(﹁P∧(﹁Q∧R))∨(Q∧R)∨(P∧R).
4.(8分) 设集合A={1,2,3},R为A上的二元关系,且 M R=
写出R的关系表达式,画出R的关系图并说明R的性质.
5. (10分)设公式G的真值表如下.
试叙述如何根据真值表求G的
主析取范式和主合取范式,并
写出G的主析取范式和主合取范式.
1 0 0 1 1 0 1 0 0
6. (8分) 设解释I 为:
(1) 定义域D ={-2,3,6}; (2) F (x ): x ≤3 G (x ): x >5
在解释I 下求公式 ∃ x (F(x)∨G(x))的真值.
7. (6分) 试用克鲁斯卡尔算法求下图所示权图中的最优支撑树.要求画出
其最优支撑树,并求出权和.
四、证明题(每小题8分,共16分)
1. 设A ,B ,C 为三个任意集合,试证明: ( 8分) (1)(A -B )-C =(A -C )-(B -C ) (2)A ∪(B ∩C )=A ∪((B -A )∩(A ∪C )) (3)(A ∪(B -A ))-C =(A -C )∪(B -C ) (4)((A ∪B ∪C )∩(A ∪B ))-((A ∪(B -C ))∩A )=B -A
2. 证明下面的等价式: ( 8分) (1)(⌝ P ∧(⌝ Q ∧R ))∨(Q ∧R )∨(P ∧R )=R (2)(P ∧(Q ∧S ))∨(⌝ P ∧(Q ∧S ))=(Q ∧S ) (3)P → (Q → R )=(P ∧Q )→ R
(4)⌝( P ↔Q )=(P ∧⌝ Q )∨(⌝P ∧Q )
《离散数学》模拟试题3参考答案
一、填空题
1. {φ,{φ},{1},{φ,1},{φ,2},{1,2},A}
2. {a ,b ,c ,d ,e };{a };{b ,c };φ
3. {3};{{3},{1,3},{2,3},{1,2,3}} 4 R Q P ∨⌝∨. 5. P ↔Q ,1
二、单项选择题
1. C
2. B
3. C
4. B
三、计算题
1. (1)A ;(2){1};(3)B ;(4){2,4,8,9,16,32}
2. R 1 ·R 2 =={(a ,a ),(a ,b ),(b ,a ),(b ,b ),(c ,a ),(c ,b )};
2
2
R ={( a ,a ),(a ,b )};
R 1·R 2 ·R 3 = {( a ,a ),(b ,a ),(c ,a )};
(R1·R2 ·R3)-1 = {( a,a),(a,b),(a,c)};
3.解:
(﹁P∧(﹁Q∧R))∨(Q∧R)∨(P∧R)
=(﹁P∧(﹁Q∧R))∨((Q∨P)∧R)
=((﹁P∧﹁Q)∧R))∨((Q∨P)∧R)
=((﹁P∧﹁Q)∨(Q∨P))∧R
=(﹁(P∨Q)∨(P∨Q))∧R
=1∧R
=R
4.解:
R={(1,1),(2,1),(2,2),(3,1) }
其关系图如下:
R是反对称的和传递的.
5. 解:
将真值表中最后一列的1左侧的二进制数,所对应的极小项写出后,将其析取起来,就得到G的主析取范式.
于是,G=(﹁P∧﹁Q∧﹁R)∨(﹁P∧ Q∧﹁R)∨(﹁P∧ Q∧R)∨(P∧﹁ Q∧R).
将真值表中最后一列的0左侧的二进制数,所对应的极大项写出后,将其合取起来,就得到G的主合取范式.
于是,G=(P∨Q∨﹁R)∧(﹁P∨ Q∨R)∧(﹁P∨﹁Q∨R)∧(﹁P∨﹁ Q∨﹁R).
6. 解:
∃ x ( F(x) ∨G(x))
⇔ ( F(-2) ∨G(-2)) ∨ ( F(3) ∨G(3)) ∨ ( F(6) ∨G(6))
⇔(1∨0) ∨(1∨0) ∨(0∨1)
⇔ 1
7. 解:
下图的粗线条为该权图的最优支撑树,5条边.
权和为2+2+3+3+5=15.
四、证明题
1.(1)
左边=(A-B)∩~C=A∩~B∩~C
2
2
3
5
3
右边=(A∩~C)∩~(B∩~C)
=(A∩~C)∩(~B∪C)
=(A∩~C∩~B)∪(A∩~C∩C)
=(A∩~B∩~C)∪0
=A∩~B∩~C
=左边
(2)
左边=(A∪B)∩(A∪C)
右边=A∪((B∩~A)∩(A∪C))
=A∪((B∩~A∩A)∪(B∩~A∩C))
=A∪(B∩~A∩C)
=(A∪B)∩(A∪~A)∩(A∪C)
=(A∪B)∩(A∪C)
=左边
(3)
左边=(A∪(B∩~A))∩~C
=((A∪B)∩(A∪~A))∩~C
=(A∪B)∩~C
=(A∩~C)∪(B∩~C)
=(A-C) ∪(B-C)
=右边
(4)
左边=(A∪B)-A
=(A∪B)∩~A
=(A∩~A)∩(B∩~A)
=B-A
=右边
2.(1)(⌝P∧(⌝Q∧R))∨(Q∧R)∨(P∧R)
=(⌝P∧(⌝Q∧R))∨((Q∨P)∧R)
=((⌝P∧⌝Q)∧R)∨((Q∨P)∧R)
=((⌝P∧⌝ Q)∨(Q∨P))∧R
=(⌝(P∨Q)∨(Q∨P))∧R
=1∧R
=R
(2)(P∧(Q∧S))∨(⌝P∧(Q∧S))
=((Q∧S)∧P)∨((Q∧S)∧⌝P)
=(Q∧S)∧(P∨⌝P)
=(Q∧S)∧1
=Q∧S
(3)P→ (Q→R)
=⌝ P∨(⌝ Q∨R)
=(⌝ P∨⌝ Q)∨R
=⌝(P∧Q)∨R
=(P∧Q)→ R
(4)⌝(P↔Q)
=⌝((P→ Q)∧(Q→P))
=⌝((⌝ P∨Q)∧(⌝ Q∨P))
=⌝(⌝ P∨Q)∨⌝(⌝ Q∨P)
=(⌝(⌝ P)∧⌝ Q)∨(⌝(⌝ Q)∧⌝P)
=(P∧⌝ Q)∨(Q∧⌝P)
=(P∧⌝ Q)∨(⌝P∧Q)。

相关文档
最新文档