旋转、平移和轴对称

合集下载

旋转平移和轴对称的知识点

旋转平移和轴对称的知识点

旋转平移和轴对称的知识点
嘿,朋友!今天咱来好好唠唠旋转、平移和轴对称这些超有意思的知识点!
先说旋转吧,你就想象一下,一个东西像个小陀螺一样围着一个中心点转圈,这就是旋转啦!比如说,家里的电风扇在呼呼转,那就是在做旋转运动呀!旋转可是有角度的哦,转多少度可是很关键的呢!
平移呢,就好像一个小玩具车在直直地往前跑,没有拐弯,也没有转圈,就是平平地移动。

就像你在操场上笔直地向前走,这就是平移呀!教室里的桌子从这边挪到那边,也是平移呢!
接下来就是轴对称啦!哎呀呀,这就像是有个神奇的镜子,能把一个东西分成两边,两边完全对称,可神奇啦!你看,蝴蝶的翅膀不就是轴对称的嘛!
旋转、平移和轴对称在生活中可到处都是呢!它们可不只是书本上的知识哟!你想想看,那些漂亮的图案、建筑,不都有它们的功劳嘛!它们就像隐藏在生活中的小魔法,让一切变得更有趣、更有秩序!难道不是吗?所以呀,好好了解它们,会发现好多好玩的东西呢!。

《轴对称图形》平移旋转和轴对称

《轴对称图形》平移旋转和轴对称
《轴对称图形》平移旋转和 轴对称
汇报人: 日期:
目录
• 轴对称图形 • 平移 • 旋转 • 轴对称、平移和旋转的关系
01
轴对称图形
轴对称图形的定义
轴对称图形
如果一个平面图形沿着一条直线 折叠后,直线两旁的部分能够互 相重合,那么这个图形叫做轴对 称图形,这条直线叫做对称轴。
举例
正方形、长方形、圆形、等腰三 角形等都是轴对称图形。
自然界中存在着许多轴对称的现象, 如蝴蝶、花等,这为艺术家和设计 师提供了丰富的创作灵感。
图案设计
轴对称的图案设计广泛应用于服装、 家居、包装等领域,如徽标、商标等 。
02
平移
平移的定义
01
平移是指在平面内,将一个图形 沿某一方向移动一定的距离,而 图形的大小和形状保持不变。
02
平移不改变图形的形状、大小和 方向,只是改变了图形的位置。
轴对称图形的性质
01
02
03
对称性
轴对称图形具有对称性, 即图形关于对称轴对称。
唯一性
每一个轴对称图形都只有 一条对称轴,且通过该对 称轴折叠后才能完全重合 。
稳定性
轴对称图形具有较好的稳 定性,因为其对称性使得 图形在受力时能够保持平 衡。
轴对称图形的应用
建筑设计
自然界中的轴对称现象
轴对称的建筑外观给人以稳重、平衡 和和谐的感觉,如故宫、天坛等建筑 群。
平移的性质
平移是刚性变换,即平移过程中不会 改变图形之间的相对位置关系。
平移后的图形与原图形全等,即平移 前后的图形在大小和形状上完全相同 。

轴对称平移与旋转轴对称轴对称的再认识

轴对称平移与旋转轴对称轴对称的再认识

2023-10-30•轴对称平移•旋转轴对称•轴对称的再认识目录•总结与展望01轴对称平移轴对称平移是指将图形以某条直线为轴,将图形上所有点沿该直线方向作对应平移。

定义轴对称平移不改变图形的形状和大小,只改变图形的位置和方向。

性质定义与性质轴对称平移的应用图像处理在图像处理中,轴对称平移可用于对图像进行平移、旋转等操作,实现图像的几何变换。

晶体学在晶体学中,轴对称平移是描述晶体结构的重要工具之一,可以帮助科学家更好地理解晶体的性质和结构。

图形设计在图形设计中,轴对称平移是一种常见的变换方式,可以用来创建新的图形或图案。

实例展示矩形平移将一个矩形以某条直线为轴,将矩形上所有点沿该直线方向作对应平移,得到一个新的矩形。

螺旋图案通过连续的轴对称平移和旋转操作,可以创建一个美丽的螺旋图案。

雪花图案通过多个轴对称平移和旋转操作,可以创建一个雪花图案。

02旋转轴对称定义旋转轴对称是指图形绕某一直线旋转一定的角度后,自身重合的现象。

性质旋转轴对称具有旋转不变性和对称性。

定义与性质旋转对称在建筑、雕塑、绘画等艺术领域中有着广泛的应用。

艺术领域自然界中许多现象,如雪花、螺旋壳等,都呈现出旋转对称性。

自然界中在计算机图形学中,旋转对称被广泛应用于图像处理和动画制作。

计算机科学旋转轴对称的应用螺旋图案是典型的旋转对称图形,其结构具有旋转不变性。

螺旋图案六角形雪花是一种典型的具有旋转对称性的自然结构。

雪花圆形花坛是常见的旋转对称建筑,其设计具有旋转不变性。

圆形花坛实例展示03轴对称的再认识轴对称是指一个物体关于某一直线(对称轴)对称,即物体在该直线的两侧或一侧,沿直线折叠后,物体两部分能够互相重合。

轴对称的定义轴对称的深入理解轴对称具有唯一性、反身性和对称性。

轴对称的性质可以通过观察物体的形状、位置、方向等是否关于对称轴对称来进行判断。

轴对称的判断如雪花、树叶等自然物的形状呈现出轴对称的特点。

自然界中的轴对称许多艺术品和建筑在设计时也会利用轴对称,如教堂、寺庙等。

华东师大版数学七年级下册10.3旋转、平移及轴对称的区别和联系

华东师大版数学七年级下册10.3旋转、平移及轴对称的区别和联系

旋转、平移及轴对称的区别和联系旋转、平移及轴对称都是图形之间的变换,是探索图形关系以及作图中必须了解和掌握的知识点,它们之间既有区别又有联系.为了帮助同学们更好地掌握这局部知识,下面就三个方面对它们进展比拟分析,供同学们参考.一、三者概念之间的区别1.旋转:在平面内,将一个图形饶一个定点旋转一定的角度,这样的图形运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角.2.平移:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动称为平移.3.轴对称:把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形完全重合,那么就说这两个图形关于这条直线成轴对称,这条直线就是对称轴,两个图形中的对应点叫做对称点.由此可以看出,平移只改变图形的位置,不改变形状、方向和大小;而旋转既改变图形的位置,同时又改变了图形的方向;轴对称不改变图形的大小和形状,但改变了图形的方向.二、三者概念和性质之间的一样点对三者概念和性质之间进展比拟发现,它们之间具有这样的三点一样点:1.三者都是在平面内进展的图形变换,不涉及立体图形的变换.2.三种变换都只改变图形的位置,而不改变图形的形状和大小,所以变换前后的两个图形都是全等形,其对应边相等,对应角相等.3.它们在作图中都要应用三角形全等的有关知识.三、三者性质之间的区别旋转、平移及轴对称它们有各自的性质,通过比拟发现它们之间有以下三点的区别:1.旋转、平移及轴对称它们的运动方式不同.旋转的运动方式是将一个图形旋转一定角度;而平移的运动方式是将一个图形沿一定方向移动;对称轴的运动方式那么是将一个图形沿一条直线进展翻折.2.旋转、平移及轴对称的对应线段、对应角之间的关系不同.旋转前后两个图形的任意一对对应点与旋转中心所连线段的夹角都是旋转角;而平移前后两个图形的对应线段平行〔或共线〕,对应点所连线段平行〔或共线〕,对应角的两边分别平行〔或共线〕;如果轴对称的对应线段或其延长线相交,那么交点在对称轴上.成轴对称的两个图形对应点连线被对称轴垂直平分.3.旋转、平移及轴对称作图时所需的条件不同.旋转作图需要确定三个元素,即旋转中心的位置,旋转角的大小及旋转的方向;平移作图需要确定两个元素,即平移的距离和平移的方向;而作一个图形的轴对称图形只要确定一个元素就行,即对称轴.。

平移、旋转、轴对称对比

平移、旋转、轴对称对比

对称轴 任意一对对应点所连线 段被对称轴垂直平分.
应点到旋转中心的距离相等; 任意一对对应点所连线
线)且相等.
对应点与旋转中心所连线段的夹 段被对称轴垂直平分.
角等于旋转角, 即:对应点与旋
转中心连线所成的角彼此相等.
平移
旋转
轴对称
相同点 变换前后的图形形状大小完全相同.
定义
把一个图形沿某一方 向移动一定距离的图 形变换.
把一个图形绕着某一定点转动一 个角度的图形变换.
把一个图形沿着某一条 直线折叠的图形变换
图形
不 同 点
要素 平移方向平移距离 旋转中心、旋转方向、旋转角度 连接各组对应点的线 对应点到旋转中心的距离相等; 段平行(或共线)且 对应点与旋转中心所连线段的夹
对称轴 任意一对对应点所连线 段被对称轴垂直平分.
相等.
角都等于旋转角.
性质 对应线段平行(或共 对应点到旋转中心的距离相等; 任意一对对应点所连线
线)且相等.
对应点与旋转中心所连线段的夹 段被对称轴垂直平分.
角等于旋转角, 即:对应点与旋
转中心连线所成的角彼此相等.
平移、旋转、轴对称对比
平移
旋转
轴对称
相同点 变换前后的图形形状大小完全相同.
定义
把一个图形沿某一方 向移动一定距离的图 形变换.
把一个图形绕着某一定点转动一 个角度的图形变换.
把一个图形沿着某一条 直线折叠的图形变换
图形
不 同 点
要素 平移方向平移距离 旋转中心、旋转方向、旋转角度 连接各组对应点的线 对应点到旋转中心的距离相等; 段平行(或共线)且 对应点与旋转中心所连线段的夹

平移、旋转和轴对称

平移、旋转和轴对称

第一单元平移、旋转和轴对称第一课时课题:平移课标要求:通过观察、操作等,在方格纸上认识图形的平移与旋转,能在方格纸上按水平或垂直方向将简单图形平移,会在方格纸上将简单图形旋转90度。

教学目标:1.通过生活事例,使学生初步认识物体或图形的平移,能正确判断简单图形在方格纸上平移的方向和距离,初步建立图形的位置关系及其变化的表象。

2.通过观察、操作等活动,使学生能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。

3使学生体会到生活中处处有数学,运用数学知识可以解决生活中的简单数学问题。

教材分析:平移、旋转和轴对称是初步认识平移现象、旋转现象和轴对称图形的基础上编排的。

平移、旋转和轴对称都是平面图形常见的、有规则的运动与变化。

平移与旋转只是改变了图形的位置,不改变图形的形状与大小。

继续教学平面图形的平移与旋转,要在方格纸上把简单水平或竖直平移,在方格纸上把简单图形按顺时针或逆时针方向旋转90度。

学情分析:学生已经在三年级认识了生活中的平移与旋转现象,已有一定的经验基础,要充分主动和唤醒学生已有的知识与经验,经历探索平移和旋转的过程,认识平移与旋转的要素。

会把说出物体平移和旋转的方向和距离,也会根据绘的平移和旋转方向和距离画出平移旋转后的图形。

教学重点:理解图形平移的含义;探索图形平移的特征和要素。

教学难点:学生在方格纸上正确画出平移后的简单图形。

教学具准备:投影仪、课件、练习纸等。

教学方法:讲授法自主探究法演示法教学过程:一、导入课题。

1.创计情境:出示“游乐园”的图片,请学生观察它们是怎样运动变化的。

并请学生用手势逐一进行比划!问:能根据它们的运动方式分分类?怎么分的?你为什么要这样分?教师提醒:能不能用一个词语来说?同桌商量商量。

揭示课题:像缆车、游乐船、碰碰车都是沿着直线运动的,我们把这样的运动方式称为平移(板书:平移)物体可以上下平移、左右平移、前后平移今天我们就一起来研究物体的“平移”。

《图形的平移》平移旋转和轴对称


04
平移、旋转和轴对称的对比与 联系
对比
平移
图形在平面内沿某一方向 等距移动,不改变形状和 大小。
旋转
图形围绕某一点旋转一定 的角度,不改变形状和大 小。
轴对称
图形关于某一直线对称, 不改变形状和大小。
联系
01
02
03
04
平移和旋转都是图形在平面内 的运动,但方向和中心点不同
。ቤተ መጻሕፍቲ ባይዱ
平移和轴对称都可以视为一种 特殊的旋转,其中旋转中心是
《图形的平移》平移旋转和 轴对称
汇报人: 2024-01-09
目录
• 平移 • 旋转 • 轴对称 • 平移、旋转和轴对称的对比与
联系 • 生活中的平移、旋转和轴对称
01
平移
平移的定义
平移是指在平面内,将一个图形沿某 一方向移动一定的距离,而图形本身 不发生旋转或翻转,只是位置发生了 变化。
平移的距离可以是固定的,也可以是 变化的。
03
轴对称
轴对称的定义
轴对称
如果一个图形关于某条直线(对称轴)对称,那 么这个图形被称为轴对称图形。
对称轴
将图形分为两个完全相同的部分的直线。
对称点
关于对称轴的对称点。
轴对称的性质
对称性
轴对称图形关于对称轴对称,即 如果图形上有一个点,那么在对 称轴的另一侧存在一个与其完全
相同的点。
稳定性
轴对称图形在平衡状态下是稳定的 ,即不会发生旋转或倾斜。
个美丽例子。
建筑物
02
许多建筑物,如中国的天坛、美国的自由女神像等,都是轴对
称的。
雪花
03
雪花的形状常常是六边形的,并且具有轴对称性。

《轴对称图形》平移、旋转和轴对称


旋转对称性
旋转对称图形具有旋转对称性 ,即经过一定角度的旋转后,
图形可以与自身重合。
旋转应用
建筑设计
建筑师可以利用旋转对称 性来设计优美的建筑外形 ,如旋转餐厅、圆形剧场 等。
图案设计
旋转对称图形在图案设计 中有广泛的应用,如地毯 、壁纸、纺织品等。
艺术创作
艺术家可以利用旋转对称 性创作出独特的艺术作品 ,如旋转雕塑、水墨画等 。
根据平行四边形对边平行的性质,可以将一个四边形沿一条对角线平移得到另 一个四边形,如果这个四边形的对角线互相平分,那么这个四边形就是平行四 边形。
梯形的判定
根据梯形一组对边平行的性质,可以将一个四边形沿一条对角线平移得到另一 个四边形,如果这个四边形的对角线互相平分,那么这个四边形就是梯形。
02 旋转对称图形
《轴对称图形》平移、旋转和轴对 称
汇报人: 2023-12-02
contents
目录
• 平移对称图形 • 旋转对称图形 • 轴对称图形 • 总结与展望
01 平移对称图形
平移定义
01
02
03
平移
在平面内,将一个图形沿 某个方向移动一定的距离 ,这样的图形运动称为平 移。
平移变换
把一个图形经过平移变换 后得到的图形称为平移变 换图形。
通过本节课的学习,学生可以培养 空间观念和几何直觉,提高解决几 何问题的能力。
THANKS FOR WATCHING
感谢您的观看
03 轴对称图形
轴对称定义
轴对称定义
一个图形如果能够经过一条直线分割 成两个部分,其中一部分与另一部分 的图形关于这条直线对称,那么这个 图形就叫做轴对称图形。
轴对称图形的特点

平移_旋转_轴对称_知识点总结

线,做其垂直平
线找其中点
分线。找两组
两组对应点连
对应点连线,过
线的交点
两条中点的直线
找关键点
找关键点
找关键点
找关犍点
过每个关键点
过每个关犍点做
连接关键点与旋
连接关键点与
做对称轴的垂线
平移方向的平行线
转中心,将这条线
对称中心,延长

截取与之相等的
截取与之相等的距
段按方向和角度旋
并截取相等的长
距离,标出对应
旋转.平移.轴对称、中心对称知识点总结
轴对称
平移
旋转
中心对称
全等
一个(两个)平
平面图形在它所在
一个平面图形绕一
一个图形旋转
能够完全重合的
面图形沿某条直
平面上的平行移动。
定点按一定的方向
180°能与自身
两个图形
线对折能够完全
决定要素:平移的方
旋转一定的角度的
重合
表示方法:

重合
向.平移的距离
运动。
AABC^ADEF
离,标出对应点
转.标出对应点
度.标出对应点

连接对应点。
连接对应点。
连接对应点。
连接对应点。
线段是轴对称
多次平移相当于
线段旋转90°
中心对称一定
一个图形经过
图形,对称轴是
一次平移
后与原來的位置垂
是旋转对称.旋
轴对称、平移或选
它的垂直平分
两条对称轴平行

转对称不一定是
转等变换得到的
线。
时,两次轴对称相当

轴对称
成轴对
中心对

旋转与平移轴对称的异同点

旋转与平移轴对称的异同点
旋转和平移都是刚体的变换方式,而且它们都可以维持物体的形状和大小不变,只是改变了物体所处的位置或方向。

但是它们的变换方式有所不同。

相同点:
1. 维持物体形状不变:旋转和平移都是刚体变换,对物体的形状没有影响,不会改变物体的大小、形状和空间结构。

2. 不改变物体在空间中的朝向:旋转和平移都可以保持物体的朝向不变,只是改变物体所处的位置或方向。

3. 不改变物体的中心点:旋转和平移都是以物体中心点为基准进行变换,不会改变物体的中心点。

差异点:
1. 变换方式不同:旋转是通过以物体中心为基准旋转物体一定角度,平移是通过以物体中心为基准将物体整体移动到新的位置。

2. 变换效果不同:旋转会使物体在空间中绕着中心点旋转一定角度,改变物体的方向;平移会使物体整体移动到新的位置,但不改变物体的方向。

3. 相应参数不同:旋转可以用角度来描述旋转的大小和方向,平移可以用位移向量来描述平移的大小和方向。

总结:
旋转和平移都是刚体变换的方式,它们都可以维持物体的形状和大小不变,只是改变了物体所处的位置或方向。

旋转是以物体中心为基准旋转物体一定角度,改变物体的方向;平移是以物体中心为基准将物体整体移动到新的位置,但不改变物体的方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生活中的旋转现象
你在生活中见过哪些 旋转现象?
开关门,钟摆、 秋千的运动也是 旋转现象
方向和位置
发生变化
大小和形状
不发生变化
物体或图形沿着一个方向作 直线运动就是平移现象
生活中的平移现象
动一动
你能将手中的笔在桌面上 向不同的方向平移吗?
议一议
物体或图形发生平移运动 时,方向、位置、大小、形状 有变化吗?
45cm 45cm
? 比较两个图形的大小
? 比较两个图形的大小
? 比较两个图形的大小
? 比较两个图形的大小
? 比较两个图形的大小
图形的面积 = 图形的面积

太阳

拓展训练习, 你学到了什么?
谢谢!
西师版三年级数学 高明二小:毛江兰
课时目标:
1、结合实例感受旋转、平移现象。
2、能辨认简单图形平移后的图形。 3、充分感受到生活中处处充满数
学问题,提高学习兴趣。
? 比较两个图形的大小
中心点

物体或图形绕着一个中心点
或轴转动像的水现龙象头的就开是与旋关转、滚。筒、风
车的转动都是旋转现象。
说出他们的运动是旋转,还是平移。
(平移)
(旋转)
(平移)(平移)
(旋转)
下面的图形通过平移能完全重合吗?
图1: 图2: 图3: 图4:
为什么只有第四幅图中的两条小鱼通过平移 能互相重合?
图1:
图2:
图3:
图4:
发现:大小、形状、方向相同的物体或
图形,通过平移可以互相重合。
45cm 45cm
相关文档
最新文档