华东理工大学高数下第12章全部答案

合集下载

高等数学下册第十二章习题答案详解

高等数学下册第十二章习题答案详解

高等数学下册第十二章习题答案详解1.写出下列级数的一般项: (1)1111357++++;2242468x x +++⋅⋅⋅⋅;(3)35793579a a a a -+-+.解:(1)121n U n =-;(2)()2!!2n n xU n =;(3)()211121n n n a U n ++=-+; 2.求下列级数的和: (1) 23111555+++;(2) 11(1)(2)n n n n ∞=++∑;(3)1n ∞=∑.解:(1) 因为21115551115511511145n n n n S =+++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎣⎦=-⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎣⎦从而1lim 4n n S →∞=,即级数的和为14. (2)()()()()()()()111111211n u x n x n x n x n x n x n x n =+-+++⎛⎫-=⎪+-++++⎝⎭从而()()()()()()()()()()()()()()11111211212231111111211nS x x x x x x xx x n x nx n x n x x x n x n ⎛-+-=+++++++⎝⎫++-⎪+-++++⎭⎛⎫-=⎪++++⎝⎭因此()1lim 21nn S x x →∞=+,故级数的和为()121x x +(3)因为nU =-从而(11n S n =-+-+-++-+=-=所以lim 1n n S →∞=13.判定下列级数的敛散性:(1)1n ∞=∑;(2)1111166111116(54)(51)n n +++++⋅⋅⋅-+;(3)231232222(1)3333nn n --+-+-+;(4)1155n ++.解:(1) (11n S n =++++=从而lim n n S →∞=+∞,故级数发散.(2) 1111111115661111165451111551n S n n n ⎛⎫=-+-+-++- ⎪-+⎝⎭⎛⎫=- ⎪+⎝⎭从而1lim 5n n S →∞=,故原级数收敛,其和为15.(3)此级数为23q =-的等比级数,且|q |<1,故级数收敛.(4)∵n U =lim 10n n U →∞=≠,故级数发散. *4.利用柯西审敛原理判别下列级数的敛散性:(1)11(1)n n n +∞=-∑;(2)1cos 2n n nx ∞=∑; (3)()0111313233n n n n ∞=+-+++∑.解:(1)当P 为偶数时,()()()()122341111112311111231111112112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n pn n n +++++++++++----=++++++++-+--=++++⎛⎫⎛⎫-=----- ⎪ ⎪+-+-++++⎝⎭⎝⎭<+当P 为奇数时,()()()()1223411111123111112311111112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n n n +++++++++++----=++++++++-+-+=++++⎛⎫⎛⎫-=---- ⎪ ⎪+-++++⎝⎭⎝⎭<+因而,对于任何自然数P ,都有12111n n n p U U U n n++++++<<+, ∀ε>0,取11N ε⎡⎤=+⎢⎥⎣⎦,则当n >N 时,对任何自然数P 恒有12n n n p U U U ε++++++<成立,由柯西审敛原理知,级数()111n n n +∞=-∑收敛.(2)对于任意自然数P ,都有()()()1212121cos cos cos 12222111222111221121112212n n n pn n n pn n n p n p n p n U U U xn p x xn n ++++++++++++++++=+++≤+++⎛⎫- ⎪⎝⎭=-⎛⎫=- ⎪⎝⎭<于是, ∀ε>0(0<ε<1),∃N =21log ε⎡⎤⎢⎥⎣⎦,当n >N 时,对任意的自然数P 都有12n n n p U U U ε++++++<成立,由柯西审敛原理知,该级数收敛.(3)取P =n ,则()()()()()121111113113123133213223231131132161112n n n pU U U n n n n n n n n n n ++++++⎛⎫=+-+++-⎪++++++⋅+⋅+⋅+⎝⎭≥++++⋅+≥+>从而取0112ε=,则对任意的n ∈N ,都存在P =n 所得120n n n p U U U ε++++++>,由柯西审敛原理知,原级数发散.习题12-21.用比较判别法法判别下列级数的敛散性: (1)1114657(3)(5)n n ++++⋅⋅++; (2)22212131112131nn +++++++++++;(3)π1sin 3n n ∞=∑;(4)n ∞=; (5)11)1(0nn aa ∞=+>∑; (6)11(21)nn ∞=-∑.解:(1)∵ ()()21135n U nn n =<++而211n n ∞=∑收敛,由比较审敛法知1n n U ∞=∑收敛. (2)∵221111n n n U n n n n++=≥=++ 而11n n ∞=∑发散,由比较审敛法知,原级数发散.(3)∵ππsinsin 33lim lim ππ1π33n nn n n n→∞→∞=⋅=而1π3n n ∞=∑收敛,故1πsin 3n n ∞=∑也收敛.(4)∵321n U n=<=而3121n n∞=∑收敛,故1n ∞=收敛.(5)当a >1时,111n n nU a a =<+,而11n n a ∞=∑收敛,故111n n a∞=+∑也收敛. 当a =1时,11lim lim022n n n U →∞→∞==≠,级数发散.当0<a <1时,1lim lim 101n nn n U a →∞→∞==≠+,级数发散.综上所述,当a >1时,原级数收敛,当0<a ≤1时,原级数发散.(6)由021lim ln 2xx x →-=知121lim ln 211nx n→∞-=<而11n n ∞=∑发散,由比较审敛法知()1121n n ∞=-∑发散.2.用比值判别法判别下列级数的敛散性:(1)213n n n ∞=∑;(2)1!31n n n ∞=+∑; (3)232233331222322n n n +++++⋅⋅⋅⋅; (4) 12!n n n n n ∞=⋅∑. 解:(1) 23n n n U =,()2112311lim lim 133n n n n n nU n U n ++→∞→∞+=⋅=<,由比值审敛法知,级数收敛.(2) ()()111!311lim lim 31!31lim 131n n n n n nn n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞所以原级数发散.(3) ()()11132lim lim 2313lim 21312n nn n n n n nn U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=> 所以原级数发散.(4) ()()1112!1lim lim 2!1lim 21122lim 1e 11n nn n nn n nnn n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭==<⎛⎫+ ⎪⎝⎭故原级数收敛.3.用根值判别法判别下列级数的敛散性:(1)1531nn n n ∞=⎛⎫⎪+⎝⎭∑; (2)()11ln(1)n n n ∞=+∑; (3)21131n n n n -∞=⎛⎫ ⎪-⎝⎭∑; (4)1nn n b a ∞=⎛⎫⎪⎝⎭∑,其中,,,()n n a a n a b a →→∞均为正数.解:(1)55lim1313n n n n →∞==>+,故原级数发散. (2) ()1lim01ln 1n n n →∞==<+,故原级数收敛.(3)121lim 1931nn n n n -→∞⎛⎫==<⎪-⎝⎭, 故原级数收敛.(4) lim limn n nb b a a →∞==, 当b <a 时,b a <1,原级数收敛;当b >a 时,b a >1,原级数发散;当b =a 时,ba=1,无法判定其敛散性.习题12-31.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?(1) 1+;(2)111(1)ln(1)n n n ∞-=-+∑;(3)2341111111153555333⋅-⋅+⋅-⋅+;(4)112(1)!n n n n ∞+=-⋅∑; (5)11ln (1)n n n n∞-=-⋅∑; (6)()11113∞--=-∑n n n n; *(6)1(1)111(1)23nnn n∞=-++++⋅∑. 解:(1)()11n n U-=-,级数1n n U ∞=∑>0n =,由莱布尼茨判别法级数收敛,又11121nn n Un∞∞===∑∑是P <1的P 级数,所以1nn U∞=∑发散,故原级数条件收敛. (2)()()111ln 1n n U n -=-+,()()1111ln 1n n n ∞---+∑为交错级数,且()()11ln ln 12n n >++,()1lim0ln 1n n →∞=+,由莱布尼茨判别法知原级数收敛,但由于()11ln 11n U n n =≥++ 所以,1nn U∞=∑发散,所以原级数条件收敛.(3)()11153n n nU -=-⋅,显然1111115353n n n n n n U ∞∞∞=====⋅∑∑∑,而113n n ∞=∑是收敛的等比级数,故1nn U∞=∑收敛,所以原级数绝对收敛.(4)由()121!+=-nn n u n2122=<==⨯⨯,由正项级数的根值判别法知,2!n n 收敛,则级数()1121!∞+=-∑nn n n 收敛,112(1)!n n n n ∞+=-⋅∑绝对收敛. (5)函数()ln =xf x x在[)e,+∞为单调递减函数,则当n 充分大时()ln 1ln 1+>+n n n n ,且ln lim 0→∞=n n n ,由莱布尼兹判别法知交错级数收敛,又ln 1>n n n ,而调和级数11∞=∑n n是发散的,则11ln (1)n n nn∞-=-⋅∑条件收敛. (6)111310333+-+---=-=>n n n n nn n n n u u ,则1+>n n u u ,又1lim 03-→∞=n n n,根据莱布尼兹判别法知()11113∞--=-∑n n n n 收敛,又由比较判别法知1131133-+=<+n n nn n n ,则级数()11113∞--=-∑n n n n 收敛,则级数()11113∞--=-∑n n n n绝对收敛. *(6)由于11111123n nn ⎛⎫⋅>++++ ⎪⎝⎭ 而11n n ∞=∑发散,由此较审敛法知级数 ()11111123nn nn ∞=⎛⎫-⋅++++ ⎪⎝⎭∑发散. 记1111123n U nn ⎛⎫=⋅++++ ⎪⎝⎭,则()()()()()()1222111111123111111112311111111231110n n U U n n n n n n n n n n n n n n +⎛⎫⎛⎫-=-++++- ⎪⎪+⎝⎭⎝⎭+⎛⎫=-++++ ⎪⎝⎭++⎛⎫⎛⎫-=++++ ⎪ ⎪⎝⎭+++⎝⎭>即1n n U U +> 又11111lim lim12311d n n n n U n n x n x→∞→∞⎛⎫=++++ ⎪⎝⎭=⎰ 由1111lim d lim 01t t t t x t x →+∞→+∞==⎰ 知lim 0n n U →∞=,由莱布尼茨判别法,原级数()11111123nn n n ∞=⎛⎫-⋅++++ ⎪⎝⎭∑收敛,而且是条件收敛. 2.如果级数23111111122!23!2!2nn ⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的和用前n 项的和代替,试估计其误差.()()()()()()()12121211111=1!22!211111!21!21111=11!222111=11!21211!2n n n n n n nn n n n n n n σ++++++⎛⎫⎛⎫++⎪⎪++⎝⎭⎝⎭⎛⎫⎛⎫++ ⎪ ⎪++⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎛⎫ ⎪+⎝⎭-=+<3.若2lim n n n u →∞存在,证明:级数1n n u ∞=∑收敛.221211lim =lim ,.1n n n n n n n u n u nnu ∞→∞→∞=∞=∑∑存在而收敛所以也收敛*4.证明:若21nn u∞=∑收敛,则1nn u n ∞=∑绝对收敛. 222211111110221,2.n n n n n n n n n n n n u u u n n nu u n n u un n∞∞∞===∞∞===≤+∑∑∑∑∑<而和都收敛,由比较审敛法得知收敛从而收敛,即绝对收敛习题12-41.求下列函数项级数的收敛域: (1)11x n n∞=∑;(2)()1111n xn n ∞+=-∑.2.求下列幂级数的收敛半径及收敛域: (1)2323nx x x nx +++++;(2)1!nnn n x n∞=∑; (3)21121n n x n ∞-=-∑;(4)21(1)2nn x n n∞=-⋅∑. 解:(1)因为11limlim 1n n n n a n a n ρ+→∞→∞+===,所以收敛半径11R ρ==收敛区间为(-1,1),而当x =±1时,级数变为()11nn n ∞=-∑,由lim(1)0nx nn →-≠知级数1(1)n n n ∞=-∑发散,所以级数的收敛域为(-1,1).(2)因为()()1111!11lim lim lim lim e 1!11nn n n n n n n n n a n n n a n n n n ρ-+-+→∞→∞→∞→∞⎡⎤+⎛⎫⎛⎫==⋅===+ ⎪⎢⎥ ⎪+⎝⎭+⎝⎭⎣⎦所以收敛半径1e R ρ==,收敛区间为(-e,e).当x =e 时,级数变为1e !∞=∑n n n n n,()()()()11111!11!11e e e e +++++++⎛⎫=== ⎪+⎝⎭+n n nnn n n nnn n n n u n n u n n n 11e =⎛⎫+ ⎪⎝⎭nn , 在→+∞n 的过程中,11+>n nu u ,又0>n u ,则e =x 时,常数项级数为单调递增函数,1e =u ,则lim 0→∞≠n n u ,由级数收敛的必要条件,级数的一般项不趋于零,则该级数必发散,同理在e =-x 时,()1e !∞=-∑nnn n n 变为交错级数,其中!lim e →∞n n n n n依旧不等于0,,则在e =-x 时也发散,则其收敛域为(),e e -.(3)级数缺少偶次幂项.根据比值审敛法求收敛半径.211212221lim lim 2121lim 21n n n n n nn U x n U n x n x n x ++-→∞→∞→∞-=⋅+-=⋅+= 所以当x 2<1即|x |<1时,级数收敛,x 2>1即|x |>1时,级数发散,故收敛半径R =1.当x =1时,级数变为1121n n ∞=-∑,当x =-1时,级数变为1121n n ∞=--∑,由1121lim 012n n n→∞-=>知,1121n n ∞=-∑发散,从而1121n n ∞=--∑也发散,故原级数的收敛域为(-1,1). (4)令t =x -1,则级数变为212nn t n n∞=⋅∑,因为()()2122lim lim 1211n n n n a n n a n n ρ+→∞→∞⋅===⋅++ 所以收敛半径为R =1.收敛区间为 -1<x -1<1 即0<x <2.当t =1时,级数3112n n ∞=∑收敛,当t =-1时,级数()31112nn n ∞=-⋅∑为交错级数,由莱布尼茨判别法知其收敛.所以,原级数收敛域为 0≤x ≤2,即[0,2] 3.利用幂级数的性质,求下列级数的和函数:(1)11n n nx∞-=∑;(2)2221n n x n ∞+=+∑. ()()()()1112111111111n n n n n n n n nx x x S x nx x x x x x ∞-=∞∞∞-==='''⎛⎫⎛⎫===== ⎪ ⎪-⎝⎭-⎝⎭∑∑∑∑解:()可求得函数在<时收敛,<(2)由2422221lim 23n n n x n x n x++→∞+=⋅+知,原级数当|x |<1时收敛,而当|x |=1时,原级数发散,故原级数的收敛域为(-1,1),记()2221002121n n n n x x S x x n n ++∞∞====++∑∑,易知级数21021n n x n +∞=+∑收敛域为(-1,1),记()211021n n x S x n +∞==+∑,则()212011nn S x x x ∞='==-∑, 故()1011d ln 21xx S x x x +'=-⎰ 即()()1111ln 021x S S x x+-=-,()100S =,所以()()()11ln 121x xS xS x x x x+==<-习题12-51.将下列函数展开成x 的幂级数,并求展开式成立的区间: (1)()()ln 2f x x =+; (2)()2cos f x x =; (3)()()()1ln 1f x x x =++; (4)()2x f =(5)()23f x xx =+;(6)()e e)12(x x f x -=-; 解:(1)()()ln ln 2ln 2ln 11222x x f x x ⎛⎫⎛⎫===++++ ⎪ ⎪⎝⎭⎝⎭由于()()0ln 111nnn x x n ∞==+-+∑,(-1<x ≤1)故()()11ln 11221n nn n x x n +∞+=⎛⎫=+- ⎪⎝⎭+∑,(-2≤x ≤2) 因此()()()11ln ln 22121n nn n x x n +∞+==++-+∑,(-2≤x ≤2)(2)()21cos 2cos 2xf x x +==由()()20cos 1!2nnn x x n ∞==-∑,(-∞<x <+∞)得()()()()()220042cos 211!!22n n n nn n n x x x n n ∞∞==⋅==--∑∑ 所以()()22011()cos cos 222114122!2n nn n f x x x x n ∞===+⋅=+-∑,(-∞<x <+∞) (3)f (x ) = (1+x )ln(1+x ) 由()()()1ln 111n nn x x n +∞==+-+∑,(-1≤x ≤1)所以()()()()()()()()()()()()()1120111111111111111111111111111n nn n n nn n n n n nn n n n n n n n n n x f x x n x x n n x x x n n n n x xn n x xn n +∞=++∞∞==++∞∞+==+∞+=-∞+==+-+=+--++=++--+++--=+⋅+-=++∑∑∑∑∑∑∑ (-1≤x ≤1)(4)()22f x x ==()()()21!!2111!!2n n n n x n ∞=-=+-∑ (-1≤x ≤1) 故()()()()221!!2111!!2n n n n x f x x n ∞=⎛⎫-+=- ⎪⎝⎭∑()()()()2211!!211!!2n n n n x x n ∞+=-=+-∑ (-1≤x ≤1)(5)()()()(220211131313313nn n n nn n x f x x x x x x ∞=+∞+==⋅+⎛⎫=⋅- ⎪⎝⎭=-<∑∑(6)由0e !nxn x n ∞==∑,x ∈(-∞,+∞)得()01e !n nxn x n ∞-=⋅-=∑,x ∈(-∞,+∞)所以()()()()()()0002101e e 2112!!1112!,!21x x n n n n n n n n n n f x x x n n x n x x n -∞∞==∞=+∞==-⎛⎫-=- ⎪⎝⎭=⋅⎡⎤--⎣⎦=∈-∞+∞+∑∑∑∑2.将()2132x x f x ++=展开成()4x +的幂级数.()()()()()()20100102101113212111114x+4141343333134713111114414224222212462241323nn nn n nn nn n nn n x x x x x x x x x x x x x x x x x x x x ∞=∞+=∞=∞+=∞+==-+++++⎛⎫⎛⎫==-=- ⎪ ⎪++-++⎝⎭⎝⎭-+=---+⎛+⎫⎛⎫==-=-< ⎪ ⎪++-++⎝⎭⎝⎭-+=--+=-++∑∑∑∑∑解:而<<<<<-从而()()()10110421146223nn n n n n n x x x ∞+=∞++=++⎛⎫=-+-- ⎪⎝⎭∑∑<<3.将函数()f x 1()x -的幂级数. 解:因为()()()()()211111111!2!!m nm m m m m m n x x x x x n ---+=++++++-<<所以()()[]()()()3221133333331121222222211111!2!!nf x x n x x x n ==+-⎛⎫⎛⎫⎛⎫⎛⎫----+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+++++---(-1<x -1<1)即()()()()()()()()()()()()()2323133131313251111111222!23!2!3152111022!nnn nn n f x x x x x n n x x n ∞=⋅⋅⋅⋅⋅⋅--+--=+++++----⋅⋅⋅⋅⋅⋅--=+-<<⋅∑4.利用函数的幂级数展开式,求下列各数的近似值: (1) ln3(误差不超过10.000); (2) cos2︒(误差不超过10.000).解:(1)35211ln 213521n x x x x x x n -+⎛⎫=+++++ ⎪--⎝⎭,x ∈(-1,1) 令131x x +=-,可得()11,12x =∈-, 故()35211111112ln3ln 212325222112n n -+⎡⎤+++++==⎢⎥⋅⋅⋅-⎣⎦- 又()()()()()()()()()()2123212121232521242122112222123222212112222123252111222212112211413221n n n n n n n n n n n r n n n n n n n n n n +++++++++-⎡⎤++=⎢⎥⋅⋅++⎣⎦⎡⎤⋅⋅++=+++⎢⎥⋅⋅+++⎣⎦⎛⎫<+++ ⎪⎝⎭+=⋅+-=+故5810.000123112r <≈⨯⨯61010.000033132r <≈⨯⨯. 因而取n =6则35111111ln32 1.098623252112⎛⎫=≈++++⎪⋅⋅⋅⎝⎭(2)()()2420ππππ909090cos 2cos 11902!4!!2nn n ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==-+-++-∵24π906102!-⎛⎫ ⎪⎝⎭≈⨯;48π90104!-⎛⎫⎪⎝⎭≈ 故2π90cos 2110.00060.99942!⎛⎫ ⎪⎝⎭≈-≈-≈ 5.将函数()d 0arctan x tF x t t=⎰展开成x 的幂级数. 解:由于()21arctan 121n nn t t n +∞==-+∑所以()()()()()20002212000arctan d d 121d 112121n xx nn n n xnnn n t t F t tx t n t x t n n ∞=+∞∞====-+==--++∑⎰⎰∑∑⎰(|x |≤1)6.求下列级数的和函数: (1) 2121n n x n ∞+=+∑;(2)10(1)!n n nx n ∞-=-∑(提示:应用e x 的幂级数展开式);解:(1)可求得原级数的收敛半径R =1,且当|x |=1时,原级数发散.记()21021n n x S x n +∞==+∑则()22011n n S x x x∞='==-∑ ()200111d d ln 121xxx S x x x x x +'==--⎰⎰,即()()11ln 021xS S x x+-=-,S (0)=0 所以()11ln 21xS x x+=-,(|x |<1)(2)由()11!lim lim 0!1n n n n n a n n a n +→∞→∞+==-知收敛域为(-∞,+∞).记()()11!1n n n S x x n ∞-==-∑则()()()111d e !!11nn xx n n x x S x x x x n n -∞∞=====--∑∑⎰,所以()()()e 1e x x S x x x '==+,(-∞<x <+∞)7.试用幂级数解法求下列微分方程的解:222(1)0;(2)0;(3)1;(4)(1);(5)(1)2.y x y y xy y y xy x x y x y x y x x y '''''-=++=''--=-=-'+=-+()()()()()()()()()1220120220120223405121,,11212021=210320435421nn n nn n n n n n n n nnn n n n nnn n n n n n y a x y na xy n n a xn n a x n n a x xa xn n a x a x a a a a a a n n a a ∞∞∞∞--+====∞∞+==∞∞+-==+-'''===-=++++-=++====++=∑∑∑∑∑∑∑∑解:()设则代入原方程得即比较同次幂系数,得一般地()()()()222001423456785801910111291134243042,3,210,,,0,3445783478,0,894589111234781112,12134589121303478414n n k k k n a a n n a a a a a a a a a a a a a a a a a a a a a a a a a a k k-+++==++===================-即所以有所以()()()14145121481221,2,1,2,4589441134347834781112145458945891213k k a a k k k x x x y C x x x C x +===+⎛⎫=++++⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⎝⎭⎛⎫+++++⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⎝⎭因此是方程的解()()()()()()()()()212120222220210211021100,1,2,10,1,2,2111122222n n n n n n n n n n n n nn n n n n n n k k y a x a n n xx a nxa x n n a n a x n n a n a n a a n n a a a k k k ∞=∞∞∞--===∞+=++-=-++=++++=⎡⎤⎣⎦++++===-=+⎛⎫⎛⎫⎛⎫=-=---= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭∑∑∑∑∑()设为该方程的解,代入该方程得即故即从而()()()()01212112242000021351111!2111112121213135211111!22!2!211313513521kk k k nnk k a k a a a a k k k k a a a y a x x x n a a x a x x k +-+⎛⎫- ⎪⎝⎭⎛⎫⎛⎫⎛⎫=-=---=- ⎪⎪ ⎪++-⋅⋅+⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫=+-+-++-++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎡-+++-+⎢⋅⋅⋅⋅⋅-⎣因而()()()()()()22222202135135212011221211111!22!2!2111131351352111313513521121!!n k k x n nn x x x x a n x a x x x k x x x a e a x k y C eC x n ++-+-⎤⎥⎦⎡⎤⎛⎫⎛⎫⎛⎫=+-+-++-+⎢⎥⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎡⎤+-+++-+⎢⎥+⎣⎦⎡⎤=+-+-+-+⎢⎥+⎣⎦-=+-故原方程的通解为11n n ∞-=∑()()()101110111120210001234567213,=,112120111111,,,,,,23243524611,,3571nn n n n n n n nn n n n nn n n y a a x y na x na xx a a x x a a a x a n a x a a a a a a a a a a a ∞∞-==∞∞-==∞++=-'=+⎛⎫-+-= ⎪⎝⎭-+--+-++=⎡⎤⎣⎦+++======⋅⋅⋅⋅==⋅⋅⋅∑∑∑∑∑()设方程的解为从而代入方程得即因而()()()()()()023521242000023521222001,352124621113!!5!!21!!24!!2!!111113!!5!!21!!22!!2!!2n n n n n a a n n a a a x x x y a x x x x n n x x x x x x a x a n n --+=⋅-⋅⋅⎡⎤⎡⎤+++=+++++++++++⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎡⎤⎛⎫⎛⎫⎛⎫=++++++++-++++++⎢⎥ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎣⎦因此()()()()()()()222321200032120212113!!21!!113!!21!!121!!x n x n x n x x a a a e x n x x a e x n x y Ce n ---⎤⎢⎥⎢⎥⎣⎦⎡⎤=-+++++++⎢⎥-⎣⎦⎡⎤=++-++++⎢⎥-⎣⎦=+-+-故方程的通解为()()()()()()01210210102321102311110,20,3=1,11041,0,,32234521123431n n n n nn n n n n n n n n n n n y a x x na xx a x n a n a x x a a a a a n a n a n a a a a n n n n n a a n n n n n y C ∞=∞∞-==∞+=+-=-=-++-=⎡⎤⎣⎦+==-+--=≥=-==-----==---=∑∑∑∑(4)令是该方程的解,代入该方程得即比较系数得以及故因而()()3412.31n n x x x n n ∞=-++-∑是方程的解()()()()10112011121101102231102315,=,2120,22,3111032,1,311nn n n n n n n n nnn n n n n n n n n n n n y a x y na x na x na xa a x x xna n a a x a a x xa a a a a n a n a n a a a a n a n ∞∞-==∞∞∞-===∞+=++'=+--=-++-+-=-⎡⎤⎣⎦-==-+=-++=≥==-=-=-+∑∑∑∑∑∑()设方程的解为则代入方程得即比较系数得从而()()()()()()()()()()()1344331234121242114641131141412411.31n n n n n n n n n n n n n a a a n n n n a n n n n n a n n n y C x x x x n n ----∞-=-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=--==--- ⎪⎪ ⎪⎪⎪++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=-=-≥++=-≥-=+-++--∑即因而原方程的通解为8. 试用幂级数解法求下列方程满足所所给定初始条件的解:2222(1)(2)2(1)20,(0)(1)1;(2),(0)0;(3)cos 0,(0),(0)0.x x y x y y y y dyx y y dx d xx t x a x dt '''-+-+====+='+===()()()()12122212121,,12121201.nn n n n n n n n n n n n n n n n n y a x y na xy n n a x xx n n a x x na x a x y x x ∞∞∞--===∞∞∞--==='''===---+-+==-+∑∑∑∑∑∑()设则代入原方程得比较同次项系数,由初始条件可得方程的解为()1001211125,,00,0..11220nn n n n n n n n n n n y a x y na x y a na x a x xy x x ∞∞-==∞∞-=='====⎛⎫-= ⎪⎝⎭=++∑∑∑∑(2)设则由得代入原方程得比较同次幂系数得方程的解为()()()()21220120123423456246230123232345(3),,10,00,,0232435465102!4!6!23243546nn n n n n n n n dx d x x a t na t n n a t dt dt x a x a a a a a t a t a t a t t t t a a t a t a t a a t a t a t ∞∞∞--======-'====+⋅+⋅+⋅+⋅+⎛⎫+++++-+-+= ⎪⎝⎭++++∑∑∑设则由初始条件所以代入原方程得即4602240012123420310421530264010213024502!2!2!4!203204302!5402!6502!4!,0,220322!434!a t a a a a a a t a t a t a t a a a a a a a aa a aa a a a a a a a a aa a a a a a ++⎛⎫⎛⎫⎛⎫++-+-+-++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+=⋅+=⋅+-=⋅+-=⋅+-+====-=-=-=⋅-+==⋅比较系数得又得到1350024246867824682!0549552!4!2!4!6,0,,656!878!1295512!4!6!8!a a a a a a a a a a a a a t x a t t t t -+==⋅-+--+-+==-===⋅⋅⎛⎫=-+-+- ⎪⎝⎭所以习题12-61.设()f x 是周期为π2的周期函数,它在(,ππ-⎤⎦上的表达式为ππ. 32,0,(),0x f x x x -<≤⎧⎪=⎨<≤⎪⎩试问()f x 的傅里叶级数在πx =-处收敛于何值?解:所给函数满足狄利克雷定理的条件,x =-π是它的间断点,在x =-π处,f (x )的傅里叶级数收敛于()()[]()33ππ11π22π222f f -+-+-=+=+ 2.写出函数ππ. 21,0,(),0x f x x x --<≤⎧⎪=⎨<≤⎪⎩的傅里叶级数的和函数.解:f (x )满足狄利克雷定理的条件,根据狄利克雷定理,在连续点处级数收敛于f (x ),在间断点x =0,x =±π处,分别收敛于()()00122f f -++=-,()()2πππ122f f -++-=,()()2πππ122f f -+-+--=,综上所述和函数.()221π00π102π1π2x x x S x x x --<<⎧⎪<<⎪⎪=-=⎨⎪⎪-=±⎪⎩3. 写出下列以π2为周期的周期函数的傅里叶级数,其中()f x 在),ππ-⎡⎣上的表达式为: (1)π,0π4()π,π04x f x x ⎧≤<⎪=⎨⎪--≤<⎩ ;(2)()2()f x x πx π=-≤<;(3)ππ,π22ππ(),22ππ,π22x f x x x x ⎧--≤<-⎪⎪⎪=-≤<⎨⎪⎪≤<⎪⎩ ; (4)()ππcos ()2f x x x=-≤≤. 解:(1)函数f (x )满足狄利克雷定理的条件,x =n π,n ∈z 是其间断点,在间断占处f (x )的傅里叶级数收敛于()()ππ0044022f f +-⎛⎫+- ⎪+⎝⎭==,在x ≠n π,有()π0π-ππ011π1πcos d cos d cos d 0ππ4π4n a f x nx x nx x nx x -⎛⎫==-+= ⎪⎝⎭⎰⎰⎰()π0π-ππ011π1πsin d sin d sin d ππ4π40,2,4,6,,1,1,3,5,.n b f x nx x nx x nx x n n n-⎛⎫==-+ ⎪⎝⎭=⎧⎪=⎨=⎪⎩⎰⎰⎰于是f (x )的傅里叶级数展开式为()()11sin 2121n f x n x n ∞==--∑(x ≠n π)(2)函数f (x )在(-∞,+∞)上连续,故其傅里叶级数在(-∞,+∞)上收敛于f (x ),注意到f (x )为偶函数,从而f (x )cos nx 为偶函数,f (x )sin nx 为奇函数,于是()π-π1sin d 0πn b f x nx x ==⎰,2π20-π12πd π3a x x ==⎰, ()()ππ22-π0124cos d cos d 1ππnn a f x nx x x nx x n===-⋅⎰⎰ (n =1,2,…) 所以,f (x )的傅里叶级数展开式为:()()221π41cos 3nn f x nx n∞==+-⋅∑ (-∞<x <∞)(3)函数在x =(2n +1)π (n ∈z )处间断,在间断点处,级数收敛于0,当x ≠(2n +1)π时,由f (x )为奇函数,有a n =0,(n =0,1,2,…)()()()πππ2π002222πsin d sin d sin d ππ212π1sin 1,2,π2n nb f x nx x x nx x nx x n n n n ⎡⎤==+⎢⎥⎣⎦=--+=⎰⎰⎰ 所以()()12112π1sin sin π2n n n f x nx n n ∞+=⎡⎤=-⋅+⎢⎥⎣⎦∑ (x ≠(2n +1)π,n ∈z )(4)因为()cos2xf x =作为以2π为周期的函数时,处处连续,故其傅里叶级数收敛于f (x ),注意到f (x )为偶函数,有b n =0(n =1,2,…),()()ππ-π0π0π1212cos cos d cos cos d π2π2111cos cos d π2211sin sin 12211π224110,1,2,π41n n x xa nx x nx xn x n x x n x n x n n n n +==⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=+⎢⎥+-⎢⎥⎣⎦⎛⎫=-= ⎪-⎝⎭⎰⎰⎰所以f (x )的傅里叶级数展开式为:()()12124cos 1ππ41n n nxf x n ∞+==+--∑ x ∈[-π,π] 4. 将下列函数()f x 展开为傅里叶级数: (1)()πππ(2)4x xf x =-<<-;(2)()π2sin (0)f x xx =≤≤.解:(1) ()ππ0-ππ11ππcos d d ππ422x a f x nx x x -⎛⎫==-= ⎪⎝⎭⎰⎰ []()ππππ-π-πππ1π11cos d cos d x cos d π4242π1sin 001,2,4n x a nx x nx x nx xnx n n--⎛⎫=-=- ⎪⎝⎭=-==⎰⎰⎰()ππππ-π-π1π11sin d sin d xsin d π4242π11n n x b nx x nx x nx x n-⎛⎫=-=- ⎪⎝⎭=-⋅⎰⎰⎰故()()1πsin 14n n nxf x n∞==+-∑ (-π<x <π)(2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f (x ),注意到f (x )为偶函数,有b n =0,()ππ0πππ011cos0d sin d ππ24sin d ππa f x x x x x x x --====⎰⎰⎰()()()()()()ππ0ππ02222cos d sin cos d ππ1sin 1sin 1d π211π10,1,3,5,4,2,4,6,π1n na f x nx x x nx xn x n x x n n n n -===+--⎡⎤⎣⎦-⎡⎤=+-⎣⎦-=⎧⎪-=⎨=⎪-⎩⎰⎰⎰所以()()2124cos2ππ41n nxf x n ∞=-=+-∑ (0≤x ≤2π) 5. 设()π1(0)f x x x =+≤≤,试分别将()f x 展开为正弦级数和余弦级数. 解:将f (x )作奇延拓,则有a n =0 (n =0,1,2,…)()()()()ππ0022sin d 1sin d ππ111π2πn nb f x nx x x nx x n==+--+=⋅⎰⎰从而()()()1111π2sin πnn f x nx n∞=--+=∑ (0<x <π)若将f (x )作偶延拓,则有b n =0 (n =1,2,…)()()ππ00222cos d 1cos d ππ0,2,4,64,1,3,5,πn a f x nx x x nx x n n n ==+=⎧⎪=-⎨=⎪⎩⎰⎰()()ππ0π012d 1d π2ππa f x x x x -==+=+⎰⎰从而()()()21cos 21π242π21n n xf x n ∞=-+=--∑ (0≤x ≤π) 6. 将()211()f x xx =+-≤≤展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和.解:f (x )在(-∞,+∞)内连续,其傅里叶级数处处收敛,由f (x )是偶函数,故b n =0,(n =1,2,…)()()1101d 22d 5a f x x x x -==+=⎰⎰()()()1112cos d 22cos d 0,2,4,64,1,3,5,πn a f x nx x x nx xn n n -==+=⎧⎪-=⎨=⎪⎩⎰⎰所以()()()221cos 21π542π21n n xf x n ∞=-=--∑,x ∈[-1,1]取x =0得,()2211π821n n ∞==-∑,故 ()()22222111111111π48212n n n n n n n n ∞∞∞∞=====+=+-∑∑∑∑ 所以211π6n n ∞==∑ 7. 将函数()12(0)f x x x =-≤≤展开成周期为4的余弦级数.解:将f (x )作偶延拓,作周期延拓后函数在(-∞,+∞)上连续,则有b n =0 (n =1,2,3,…)()()220201d 1d 02a f x x x x -==-=⎰⎰ ()()()222022221ππcos d 1cos d 2224[11]π0,2,4,6,8,1,3,5,πn nn x n xa f x x x xn n n n -==-=--=⎧⎪=⎨-=⎪⎩⎰⎰ 故()()()22121π81cos π221n n x f x n ∞=-=-⋅-∑(0≤x ≤2)8. 设11,02()122,2x x f x x x ⎧≤≤⎪=⎨⎪-<<⎩,()01cos π,2n n a a n x s x x ∞==-∞<∞+<+∑,其中πd 102()cos n a f x n x x =⎰,求()52s -.解:先对f (x )作偶延拓到[-1,1],再以2为周期延拓到(-∞,+∞)将f (x )展开成余弦级数而得到 s (x ),延拓后f (x )在52x =-处间断,所以515511122222221131224s f f f f +-+-⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+-=-+-⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎛⎫=+= ⎪⎝⎭9.设函数()21(0)f x x x =≤<,而()1sin π,n n n x b s x x ∞==-∞<<+∞∑,其中()πd 1,2,3,102()sin n f x n x xb n ==⎰.求()12s-.解:先对f (x )作奇延拓到,[-1,1],再以2为周期延拓到(-∞,+∞),并将f (x )展开成正弦级数得到s (x ),延拓后f (x )在12x =-处连续,故. 211112224s f ⎛⎫⎛⎫⎛⎫-=--=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 10. 将下列各周期函数展开成为傅里叶级数,它们在一个周期内的表达式分别为: (1)()2111 22f x x x ⎛⎫=--≤< ⎪⎝⎭ ;(2) 3. 21,30,()1,0x x f x x +-≤≤⎧=⎨≤<⎩解:(1) f (x )在(-∞,+∞)上连续,故其傅里叶级数在每一点都收敛于f (x ),由于f (x )为偶函数,有b n =0 (n =1,2,3,…)()()112221002112d 41d 6a f x x x x -==-=⎰⎰, ()()()()112221021222cos2n πd 41cos2n πd 11,2,πn n a f x x x x x xn n -+==--==⎰⎰所以()()12211111cos 2π12πn n f x n x n +∞=-=+∑(-∞<x <+∞)(2) ()()303033011d 21d d 133a f x x x x x --⎡⎤==++=-⎢⎥⎣⎦⎰⎰⎰, ()()()()330330221πcos d 331π1π21cos d cos d 3333611,1,2,3,πn nn xa f x xn x n x x x x n n --==++⎡⎤=--=⎣⎦⎰⎰⎰()()()()33033011πsin d 331π1π21sin d sin d 333361,1,2,πn n n xb f x x n x n x x x x n n --+==++=-=⎰⎰⎰而函数f (x )在x =3(2k +1),k =0,±1,±2,…处间断,故()()()122116π6π11cos 1sin 2π3π3n n n n x n x f x n n ∞+=⎧⎫⎡⎤=-+--+-⎨⎬⎣⎦⎩⎭∑ (x≠3(2k +1),k =0,±1,±2,…)习题十二1. 填空题:(1)级数1211()1n n n ∞=+∑的敛散性是 发散(2)级数1()21nn n n ∞=-∑的敛散性是 收敛 (3)已知幂级数级数级数1(2)04nn n a x x x ∞=+==-∑在处收敛,在处发散,则幂级数1(3)nn n a x ∞=-∑的处收敛域为 (1,5](4) 设函数()1()f x x x ππ=+-<<的傅里叶级数的和函数为(),(5)S x S π则等于 1(5)设函数2()(0)f x x x π=≤≤的正弦函数1sin nn bnx ∞=∑的和函数(),(,2)()S x S x ππ∈=则当x 时, 2(2)x π--2. 选择题:(1) 正项级数1nn a∞=∑收敛的充分条件是( C )。

华东理工大学概率论答案-11,12

华东理工大学概率论答案-11,12

第十一次作业一.填空题:1.设随机变量(,)X Y 的概率密度为()0,(,)0x y ae x y f x y -+⎧<<+∞=⎨⎩,,其他,则a =1 ,(2,1)P X Y ≤≤ 1231e e e -----+ 。

2.若二维随机变量(,)X Y 的联合分布列为则随机变量(,X Y 的联合分布函数为0,001/6,01,01(,)5/12,01,11/2,1,011,1,1x o r y x y F x y x y x y x y <<⎧⎪≤<≤<⎪⎪=≤<≥⎨⎪≥≤<⎪≥≥⎪⎩ 二. 计算题1. 设二维随机向量(,)ξη仅取(1,1),(2,3),(4,5)三个点,且取它们的概率相同,求(,)ξη的联合分布列。

解:2. 某箱装有100件产品,其中一、二、三等品分别为80,10,10件,现在从中随机抽取一件,记11,230i i X i ⎧==⎨⎩抽到等品(,,)其他试求随机变量12X X 和的联合分布。

解:令"1,2,3i A i i ==抽到等品",,则123,,A A A 两两不相容.123()0.8,()()0.1P A P A P A === 123(0,0)()0.1P X X P A ==== 122(0,1)()0.1P X X P A ==== 121(1,0)()0.8P X X P A ==== 12(1,1)()0P X X P φ====3. 将一硬币抛掷3次,X 表示3次中出现正面的次数,Y 表示3次中出现正面次数与反面次数之差的绝对值,求X 和Y 的联合分布率。

解:当连抛三次出现三次反面时,),(Y X 的取值为)3,0(;出现一次正面两次反面时,),(Y X 的取值为)1,1(; 出现两次正面一次反面时,),(Y X 的取值为)1,2(; 出现三次正面时,),(Y X 的取值为)3,3(。

华东理工大学继续教育学院《高等数学》(下)练习试卷(4)(答案)

华东理工大学继续教育学院《高等数学》(下)练习试卷(4)(答案)

华东理工大学继续教育学院成人教育《高等数学》(下)(专升本68学时)练习试卷(4)(答案)一、单项选择题1、设(,)ln 2y f x y x x ⎛⎫=+ ⎪⎝⎭,则(1,0)x f = 答( A )(A) 1 (B) -1(C)(D) 解:(知识点:偏导数的概念、偏导数的计算方法)22312()(,)(1)22x y x y f x y y x x xy x x-=-=++ (1,0)1x f ⇒=, 所以选(A ) 2、下列方程中哪一个是椭球面方程 答( B )(A )2229x y z ++= (B )2222149y z x ++= (C )2229x y z +-= (D )2222149y z x +-= 解:(知识点:二次曲面)2222149y z x ++=可表示为222222123x y z ++=,它是椭球面方程,所以选(B ) 3、设y x xy u +=,则22yu∂∂= 答( C )(A) 2()x x y +(B) 222()x x y -+ (C) 232()x x y -+ (D) 2x y y -解:(知识点:二阶偏导数的概念、二阶偏导数的计算方法)222222233(2)2, ()()()()u x y y x u x x x y x y x y y x y x y ∂+-∂-===⋅=-∂++∂++, 所以选(C )4、如果(,)f x y 在点00(,)x y 的某邻域内连续,则0(,)f x y 答( A ) (A )在0x 点连续 (B )在0x 点可导 (C )在0x 点可微 (D )在0x 点有极值 解:(知识点:函数连续、可导、可微、极值的概念)因为(,)f x y 在点00(,)x y 的某邻域内连续 0(,)f x y ⇒在0x 点连续,所以选(A )5、微分方程 '''28sin 2y y y x +-=的一个特解形式p y = 答( C )(A )cos2p y a x = (B )(cos2sin2)p y x a x b x =+ (C )cos2sin 2p y a x b x =+ (D )sin 2p y b x=解:(知识点:二阶线性常系数非齐次微分方程的特解形式) 特征方程:220λλ+-=,特征根:122,1λλ=-=,根据特解形式可设方程的特解为: c o s 2s i n 2p y a x b x =+, 所以选(C )二、填空题1、设方程 2sin 0x z y ye z ++= 确定的隐函数(,)z z x y =,则 zx∂=∂ 解:(知识点:多元隐函数的概念、隐函数求导法)将方程两边对x 求偏导得sin 20x z zy ye z x x∂∂++=∂∂, 解得 2sin xz ye x z y∂=-∂+2、函数y = ⎽⎽⎽ ⎽⎽⎽⎽ 。

华东理工大学级(下)高等数学期中考试试卷(学分)解答

华东理工大学级(下)高等数学期中考试试卷(学分)解答

华东理工大学级(下)高等数学期中考试试卷(学分)解答————————————————————————————————作者:————————————————————————————————日期:华东理工大学2013–2014学年第二学期《高等数学(下)11学分》课程期中考试试卷 2014.4开课学院:理学院, 专业:大面积, 考试形式:闭卷,所需时间 120 分钟考生姓名: 学号: 班级 任课教师题序 一二三四五六总分得分 阅卷人注 意:试 卷 共 两 页 六 大 题一.填空题(本大题共11小题,每小题4分,共44分):1、微分方程222'y x e yx y -=的通解为 。

答:C e xe e xx y +-=22412122、微分方程0''9)4(=+y y 的通解为 。

答:x C x C x C C y 3sin 3cos 4321+++=3、函数 zxy u )(= 对变量x 的偏导数 =x u 。

答:12)(--=z x xy x yz u 4、设 ))arctan(,,(xyz e y xze f u zy+=,其中f 关于所有变量有一阶连续偏导数, 则=∂∂yu。

答:3222211f zy x xz f f xze y u y +++=∂∂ 5、设函数z z x y =(,)由方程 ),(yzxz f z = 所确定,其中f 关于所有变量有一阶连续偏导数,则∂∂zy= 。

答:21222yf f xy y zf ---6、设1)(-=⋅⨯c b a ρρρ,则=+⨯+⋅)]()[(c b b a b ρρρρϖ 。

答: 17、函数)ln(22z y x u ++=在点)1,0,1(处最大的方向导数等于 。

答:228、微分方程 0'2''=+y xy 的通解=y 。

答: 21C xC y +-= 9、设平面π过直线⎩⎨⎧=+-=++04,05:z x z y x L 则原点到平面π距离d 的范围是 。

高数 下 典型习题及参考答案 第8、9、10、11、12章习题及答案

高数 下 典型习题及参考答案 第8、9、10、11、12章习题及答案
dx
4 f (x, y)dy
x2
0
0
0
C、
4
y
∫0 dy∫0
f
(x,
y )dx
D、
4
∫0 dy∫0
y
f
(x,
y)dx
2、设 Ω 是由 x = 0, x = 1, y = 0, y = 1, z = 0, z = 1所围成的区域,则 ∫∫∫ xyzdxdydz =

3、旋转抛物面 z = x 2 + y 2 在 0 ≤ z ≤ 2 那部分的曲面面积 S=( ) 2
−a
a2 −x2
0
−a
28、设 D 由 x 轴和 y = sin x, x ∈ [0,π ]所围成,则积分 ∫∫ dσ = D
29、设 Ω :
0

x

1,0

y
≤ 1,0

z

K
,且
∫∫∫
xdxdydz =
1 4
,则
K
=

二、解答题
( ) ( ) 1、计算三重积分 ∫∫∫ x2 + y 2 dv ,其中Ω是由曲面 2 x2 + y 2 = z 与平面 z = 4所围成的区域。

∫ ∫ ∫ ∫ ∫ ∫ ( ) 正确的(
)A、


a
1
dr
r 3dz
B、


a
dr
1
r
r2
+
z2
dz
0
0
0
0
0
0
∫ ∫ ∫ ∫ ∫ ∫ ( ) C、

高等数学(经济类)课后习题及答案第十二章 微分方程答案

高等数学(经济类)课后习题及答案第十二章 微分方程答案

习题12—1(A )1. 指出下列各微分方程的阶数:(1)y y x 3='; (2)0d 2d )(3=--y x x x y ; (3)y y x y x '='+''+2)2(; (4)22()yy y y ''''''=-;(5)(5)(3)242cos y yy y x ''+-+=; (6)232d d 2d d P P tt t t+=; (7)0222)4(=+'-''+'''-y y y y y;答案:(1)一阶;(2)一阶;(3)二阶;(4)三阶;(5)五阶;(6)二阶;(7)四阶. 2. 验证下列各函数是否为所给微分方程的解. 如果是解,请指出是通解,还是特解?(1)函数3y x =,微分方程y y x 3=';(2)函数sin 3y C x =,微分方程90y y ''+=;(3)由C x y xy =++22确定的函数)(x y y =,微分方程(1)()0y dx x y dy +++=; (4)函数xy λe =(其中λ是给定的实数),微分方程0=+'''y y .解:(1)因为23y x '=,左式233=xy x x y '==⋅=右式,所以函数3y x =是微分方程y y x 3='解.又因为函数3y x =不包含任意常数,所以是特解.(2)因为9sin39y C x y ''=-=-,即90y y ''+=,所以函数sin 3y C x =是微分方程90y y ''+=解,但是由于sin 3y C x =中只有一个任意常数,又因为微分方程是二阶的,所以sin 3y C x =既不是微分方程90y y ''+=的通解,也不是特解,只是解.(3)等式C x y xy =++22两边同时对x 求导,有d d 10d d y y y x y x x+++=,整理得(1)()0y dx x y dy +++=,所以由C x y xy =++22确定的函数)(x y y =是(1)()0y dx x y dy +++=的解,又C x y xy =++22中含有一个任意常数,而(1)()0y dx x y dy +++=是一阶微分方程,所以Cx y xy =++22是(1)()0y dx x y dy +++=通解.(4)因为x y λe =,则有3e xy λλ'''=,所以33ee (1)e xx x y y λλλλλ'''+=+=+.当1λ=-时,3(1)e 0x y y λλ'''+=+=,则x y λe =是微分方程0=+'''y y 的解,并且是特解;当1λ≠-时,3(1)e0xy y λλ'''+=+≠,则x y λe =不是微分方程0=+'''y y 的解.3. 若函数e xy α=是微分方程0y y ''''-=的解,求的α值.解:由e x y α=得,e x y αα'=,3e xy αα'''=,将它们代入微分方程0y y ''''-=,得32e e (1)=0x x x y y e ααααααα''''-=-=-,所以1α=-,0或1.4.验证下列所给的各函数是微分方程的通解,并求满足初始条件的特解.(1)函数21y Cx =+,微分方程22xy y '=-,初始条件(1)2y =; (2)函数22x y C +=,微分方程0yy x '+=,初始条件1)1(=y ;(3)函数12()xy C C x e =+,微分方程20y y y '''-+=,初始条件(0)0y =,(0)1y '=.解:(1)因为2y Cx '=,所以222(1)222xy x Cx Cx y '=⋅=+-=-.又2Cx y =中含有一个任意常数,22xy y '=-是一阶微分方程,所以函数21y Cx =+是微分方程22xy y '=-的通解.由(1)2y =,可得1C =,所以微分方程22xy y '=-满足初始条件(1)2y =的特解是2+1y x =.(2)对隐函数22x y C +=的两边求关于x 的导数,得220x yy '+=,即0yy x '+=.又22x y C +=中含有一个任意常数,0yy x '+=是一阶微分方程,所以隐函数22x y C +=是微分方程0yy x '+=的通解.由1)1(=y ,可得2C =,所以微分方程0yy x '+=满足初始条件1)1(=y 的特解是222x y +=.(3)因为212()e x y C C C x '=++,212(2)e xy C C C x ''=++,所以2y y y '''-+21221212(2222)e 0x C C C x C C C x C C x =++---++=.又因为函数12()x y C C x e =+中含有两个独立的任意常数,而20y y y '''-+=是二阶微分方程,所以12()xy C C x e =+是微分方程20y y y '''-+=的通解.由初始条件(0)0y =,(0)1y '=,有12101C C C =⎧⎨+=⎩,,得01=C ,12=C ,所以微分方程20y y y '''-+=满足初始条件(0)0y =,(0)1y '=的特解是e xy x =.习题12—1(B )1.给定微分方程21y x '=+, (1)求过点(1,3)的积分曲线方程;(2)求出与直线13+=x y 相切的积分曲线方程.解:易验证2y x x C =++是微分方程21y x '=+的通解.(1)由曲线2y x x C =++过点(1,3),有311C =++,得1C =,所求积分曲线为21y x x =++.(2)若曲线2y x x C =++与直线13+=x y 相切,则有213x +=(斜率相等),得1x =. 当1=x 时,4=y ,所以切点为(1,4),将其代入2y x x C =++,有411C =++,得2C =,所求曲线为22y x x =++.2.将积分方程2()()sin cos xf t dt xf x x x x π=--⎰(其中)(x f 是连续函数)转化为微分方程,给出初始条件,并求函数)(x f . 解:将2()()sin cos xf t dt xf x x x x π=--⎰两边同时对x 求导,有()()()sin cos sin f x f x xf x x x x x '=+--+, 即()cos f x x '=,这就是所求的微分方程,容易得到其通解为()cos sin f x xdx x C ==+⎰.将2x π=代入到原方程2()()sin cos x f t dt xf x x x x π=--⎰中,有0()12f π=-,得初始条件为()12f π=,所以有11C =+,得0C =,所求函数为()sin f x x =.习题12—2(A )1. 求下列可分离变量的微分方程的通解:(1)32yy x '=; (2)e yy x -'=;(3)y '=; (4)2(3)0ydx x x dy +-=.解:(1)分离变量32d 4d y y x x =,两边积分32d 4d y y x x =⎰⎰,整理得通解为24y x C =+.(2)分离变量e d d yy x x =,两边积分e d d y y x x =⎰⎰,整理得通解为21e 2y x C =+,或写作2ln()2x y C =+.(3)分离变量d y y =,两边积分d y y =⎰,整理得通解为1ln y C =,进而原方程通解为:y Ce =(4)分离变量有2d d 3y x y x x =--,整理得d 111()d 33y x y x x=---,两边积分d 111()d 33y x y x x ==---⎰⎰,整理得通解为11ln (ln 3ln )d 3y x x x C =---+,进而原方程通解为:3(3)x y Cx -=.2. 求下列齐次方程的通解:(1)2xy x y '=+; (2)(2)x y y y '-=;(3)22()d d 0x y x xy y -+=; (4)d (1ln)d 0yx y y x x-+=. 解:(1)将方程改写为2y y x '=+,令u xy=,则x u x u x y y d d d d +==',于是原方程化为d 2d u u xu x +=+,即2d d x u x =,积分得2ln ln u x C =+,即2ln yCx x=,所以原方程通解为2ln y x Cx =.(2)将方程改写为2d d -=y x y x ,令v yx =则y vy v y x d d d d +=,于是原方程化为2d d -=+v y v yv ,即y y v d 2d -=,积分得C y v ln ln 2+-=,即2ln yCy x =,所以原方程通解为2lny Cy x =.(3)将方程改写为d d y y x x x y =-,令u xy=,则x u x u x y d d d d +=,于是原方程化为d 1d u u x u x u +=-,即d d xu u x=-,积分得2ln 22u C x =-+,即222ln y C x x =-,所以原方程通解为2y 2x =2(ln )C x -.(4)将方程改写为(1ln )dy y y dx x x =+,令y u x =,则xu x u x y y d d d d +==',于是原方程化为(1ln )du u xu u dx +=+,即ln du dxu u x=,积分得1ln ln ln u x C =+,即ln u Cx =(其中1)C C e =±,所以原方程通解为lnyCx x=,或写作e Cx y x =. 3. 求下列一阶线性微分方程的通解:(1)2y xy x '-=; (2)d 2e d x yy x+=; (3)sin cos e x y y x -'+=; (4)2(2cos )d (+1)d 0xy x x x y -+=.解:(1)法一:相应齐次方程为0y xy '-=,即d d y x x y =,积分得211ln 2y x C =+,即22e x y C =(其中1)C C e =±.令22()ex y u x =,代入原方程,有222222ee e2x x x u xu xu x '+-=,即222ex u x -'=,得2222()2ed 2e x x u x x x C --==-+⎰,所以原方程通解为222222(2e )e e 2x x x y C C -=-+=-.法二:()P x x =-、()2Q x x =,方程通解为 ()d ()d [()e d ]e P x xP x x y Q x x C -⎰⎰=+⎰d d (2e d )e x x x xx x C -⎰⎰=+⎰2222(2ed )e x x x x C -=+⎰2222(2e)e x x C -=-+22e 2x C =-.(2)()1P x =、()2e xQ x =,方程通解为 ()d ()d d d [()e d ]e (2e e d )e P x xP x x x xx y Q x x C x C --⎰⎰⎰⎰=+=+⎰⎰22(2e d )e (e )e e e x x x x x x x C C C ---=+=+=+⎰.(3)()cos P x x =、sin ()exQ x -=,方程通解为()d ()d cos d cos d sin [()e d ]e (e e d )e P x xP x x x x x x x y Q x x C x C ---⎰⎰⎰⎰=+=+⎰⎰sin sin (d )e ()e x x x C x C --=+=+⎰.(4)方程化为222cos 11x x y y x x '+=++,则有22()1x P x x =+、2cos ()1xQ x x =+,方程通解为 2222d d ()d ()d 112cos [()e d ]e (e d )e 1xxxx P x xP x xx x x y Q x x C x C x --++⎰⎰⎰⎰=+=++⎰⎰221sin (cos d )+1+1x Cx x C x x +=+=⎰. 4.求下微分方程满足所给初始条件的特解: (1)d 1d 2y x x y -=,(3)1y =; (2)sec y xy x y x '+=,2)1(π=y ; (3)2e xy y x '-=,(0)2y =; (4)ln ln xy x y x '+=,(e)1y =.解:(1)这是可分离变量方程,分离变量为2d (1)d y y x x =-,积分得22(1)2x y C -=-+,即方程通解为22(1)2x y C -+=.由(3)1y =,有3C =,方程特解为22(1)32x y -+=. (2)这是齐次方程secy y y x x '+=,令u xy=,则x u xu x y d d d d +=,于是原方程化为d sec d u u xu u x ++=,即d cos d xu u x=-,积分得1sin ln u x C =-+,即方程的通解为sin eyxx C =(其中1)C C e =±.由2)1(π=y ,可得1C e=,所以方程特解为sin 1e yx x -=.(3)这是一阶线性方程,2()1()e xP x Q x x =-=、,因此,方程通解为d d 2(e e d )e (e d )e [(1)e )]e x xx x x x x y x x C x x C x C -⎰⎰=+=+=-+⎰⎰. 由(0)2y =,有21C =-+,得3=C ,方程特解为xx x y 2e )1(2e 3-+=.(4)原方程可化为11ln y y x x x '+=,这是一阶线性方程,1()ln P x x x =、1()Q x x=,方程通解为11d d 2ln ln 1111[e d ]e (ln )ln 2ln 2ln x x x x x xC y x C x C x x x x-⎰⎰=+=+=+⎰.由(e)1y =,有1121C =+,得12C =,所以方程特解为11(ln )2ln y x x =+.习题12—2(B )1.求下列伯努利微分方程的通解: (1)yx xy y =-'; (2)2xy y y =-'. 解:(1)1-=n ,令21y y z n==-(21=-n ),则原方程化为x n xz n x z )1()1(d d -=--,即x xz xz22d d =-,该方程通解为 222222d 2d (2e d )e (2e d )e (e )e e 1x x x xx x x x x z x x C x x C C C ---⎰⎰=+=+=-=-⎰⎰.所以,原方程通解为1e 22-=x C y . (2)2=n ,令yyz n11==-(11-=-n ), 则原方程化为x n z n x z )1()1(d d -=--,即x z xz-=+d d ,该方程通解为 1e e )e e (e )d e (e )d e (d d +-=+-=-=⎰+⎰-=----⎰⎰x C x C x x C C x x z x x x x x x xx .所以,原方程通解为1e 1+-=-x C yx . 2.用适当的变量代换求下列微分方程的通解: (1)22x y x y +=+'; (2)1+-='y x y ;(3))ln (ln y x y y y x +=+'; (4)xy x y y xy 22tan 2+='.解:(1)令u x y =+2,则x u x x y d d 2d d =+,于是u x u=d d ,分离变量有x uu d d =,积分得C x u +=2,原方程通解为C x x y +=+22. (2)令1x y u -+=,则x u x y d d d d 1=-,于是u x u =-d d 1,即u xu-=1d d ,分离变量得x u u u u d )1(d -=-,或x u u d d )111(2-=-+,积分得x C u u -=-+)1ln (2,所以原方程通解为x C y x y x -=+--++-)11ln 1(2.(3)令u xy =,则x u x y xy d d d d =+,于是u x u x u ln d d =,分离变量得xxu u u d ln d =,积分得Cx u ln ln ln =,即Cx u e =,所以原方程通解为Cxxy e 1=.(4)u x y =2,即xu y =2,则x u x u y y d d 2+=',原方程化为u x xu xu x xu tan d d 2+=+,分离变量有xxu u d d cot =,该方程通解为Cx u ln sin ln =,即Cx u =sin ,所以原方程通解为Cx xy =2sin .3.求微分方程(0(0)ydx x dy y -=>的通解.解:将方程改写为222)(1d d yxy x y y x x y x ++=++=这是以)(y x x =为未知函数的齐次方程,为此令yv x =,则y v y v y x d d d d +=,于是方程化为21d d v yvy +=,分离变量有yyv v d 1d 2=+,积分得C y v v ln ln )1ln(2+=++,即Cy v v =++21,进而原方程通解为Cx Cy 211+=. 4.求微分方程2d d yx yx y +=的通解. 解:方程改写为y y x y x +=d d ,即y yxy x =-d d ,这是一阶线性微分方程,通解为 2d d )d ()d e(ey Cy y C y y y C x yy yy+=+=⎰+⎰=⎰⎰-.5.设函数)(x f 连续,且不恒为零,若⎰⎰+=120d )(2d )()(t t tf t t f x f x ,求函数)(x f .解:方程两边同时对x 求导,有)()(x f x f =',分离变量有x ffd d =,得通解为x C x fe )(=.记a t t tf =⎰12d )(,则a t t f x f x2d )()(0+=⎰,令0=x ,得初始条件a f 2)0(=.用0=x 代入到x C x f e )(=之中,有a C 2=,所以x a x f e 2)(=.由)e 21e (2)d e e(2d e 4d )(102221021221022102t t t t a t t a t t at t tf a -=-===⎰⎰⎰)1e ()e 21e (22210222+=-=a a t , 得1e 12+=a ,所以1e e 2)(2+=x x f .6.设连续函数)(x f 满足1)(d )()(12-=+⎰x f t tt f t f x ,求函数)(x f . 解:方程1)(d )()(12-=+⎰x f t t t f t f x 两边同时对x 求导,有)()()(2x f xx f x f '=+,令)(x f y =,则方程可以改写为y x y y x +=2d d ,即y yxy x =-d d ,这是一阶线性微分方程,通解为 )()d ()d e(ed d y C y y C y y y C x yy yy+=+=⎰+⎰=⎰⎰-.用1=x 代入到方程1)(d )()(12-=+⎰x f t tt f t f x 之中,得初始条件1)1(=f ,于是11+=C ,故0=C ,于是2y x =,即所以函数为x x f =)((注:根据初始条件1)1(=f ,所以不能取x x f -=)().习题12—3(A )1. 求下列各微分方程的通解:(1)2+1y x ''=; (2)2cos e x y x '''=+; (3)20y xy '''-=; (4)2e xy y '''-=;(5)201y y y'''+=-. 解:(1)2311(1)3y x dx x x C '=+=++⎰, 342112111()d 3122y x x C x x x C x C =++=+++⎰.(2)2211(cos e )d sin e 22x xy x x x C ''=+=++⎰, 2211211(sin e 2)d cos e 224x x y x C x x C x C '=++=-+++⎰, 2121(cos e 2)d 4x y x C x C x =-+++⎰221231sin e 8x x C x C x C =-++++. (3)方程不显含y ,令)(x p y =',则p y '='',于是d 20d pxp x-=,分离变量为d 2d p x x p =,积分得2ln p x C =+,即213p C x =(其中13)C C e =±,于是原方程降阶为213y C x '=,原方程通解为23121d 3C x C x x C y +==⎰.(4)方程不显含y ,令)(x p y =',则p y '='',于是2e xp p '-=,这是一阶线性微分方程,其通解为d d 2111(e e d )e (e d )e (e )e x x x x x x xp x C x C C -⎰⎰=+=+=+⎰⎰,于是原方程降阶为21e e x x y C '=+,所以原方程的通解为221121(e e )d e e 2x x xx y C x C C =+=++⎰. (5)方程不显含x ,令()y q y '=,则y qq '''=,于是2d 0d 1q q q y y +=-,即d 0d 1q q y y+=-,这是可分离变量的方程,先分离变量d d 1q y q y=--,再两边积分,并整理可得1(1)q C y =-.所以1d (1)d yC y x=-,解得12e 1C x y C =+,这就是原方程的通解. 2. 求下列各微分方程满足初始条件的特解: (1)311y x '''=+,(1)1y =,(1)1y '=,1(1)2y ''=;(2)2y y x '''-=,(0)1y =,(0)0y '=; (3)2eyy ''=,(0)0y =,(0)1y '=.解:(1)13211(1)d 2y x x C x x ''=+=-++⎰,由1(1)2y ''=,得10C =,所以212y x x''=-+; 222111()d 222y x x x C x x '=-+=++⎰,由(1)1y '=,得02=C ,所以21122y x x '=+; 2331111()d ln 2226y x x x x C x =+=++⎰,由1)1(=y ,得356C =,所以方程满足初始条件的特解为3115ln 266y x x =++. (2)方程不显含y ,令)(x p y =',则p y '='',原方程化为2p p x '-=,此方程通解为d d 1111(2e d )e (2e d )e (2e 2e )e e 22x xx x x x x x p x x C x x C C x C x ----⎰⎰=+=+=--=--⎰⎰,即1e 22xy C x '=--,由(0)0y '=,得12C =,从而2(e 1)x y x '=--,此方程通解为222(e 1)d 2e 2x x y x x x x C =--=--+⎰,由(0)1y =,得21C =-,所以方程满足初始条件的特解为22e 21x y x x =---.(3)方程不显含x ,令()y q y '=,则y qq '''=,于是2e y qq '=,分离变量有2d e d yq q y =,积分得221e yp C =+,即y '=由1)0(='y ,可知道0>'y ,所以y '=再由(0)0y =,(0)1y '=,得01=C ,所以e y y '=.分离变量有e d d yy x -=,积分得2e y x C --=+,由0)0(=y ,得21C =-,于是e 1y x --=-,化简为ln (1)y x =--,这就是方程满足初始条件的特解.习题12—3(B )1. 求下列各微分方程的通解: (1)()e n ax b yx =+(a ,b 为常数); (2)0ln=''-''xy y y x ;(3)2)(y y '=''. 解:(1)由于1e d e axax x a =⎰,11d 1t t x x x t +=+⎰,故原方程的通解为 1121211e [()(1)(1)]axb n n n n n n y b n b n b x C x C x C x C a-+---=+++-++++++.(2)方程不显含y ,令)(x p y =',则p y '='',于是x p p p x ln=',即xpx p p ln =',这是齐次方程,令u x p =,则x u x u x p p d d d d +==',原方程化为u u xux u ln d d =+,分离变量有x x u u u d )1(ln d =-,积分得x C u 1ln )1ln(ln =-,即11e +==x C u xp ,原方程降阶为11e +='x C x y ,原方程通解为⎰⎰+++-==x x C x x y x C x C x C )d e e (1d e 11111112111)1(e 11C C x C x C +-=+. (3)方程既不显含y ,也不显含x .(方法1)令)(x p y =',则p y '='',则2p p =',分离变量有x ppd d 2=,积分得11C x p -=-,即xC p -=11,原方程降阶为x C y -='11,所以原方程的通解为)ln(d 121x C C x C xy --=-=⎰.(方法2)令()y q y '=,则y qq '''=,于是2d d q qq y =,分离变量有2d d q q q y=,积分得2ln q y C =-,即原方程降阶为2e d d C y xy-=,分离变量为x y y C d d e 2=-,积分得12e C x y C -=--,化简为)ln(12x C C y --=,这就是原方程的通解.2. 求下列各微分方程满足初始条件的特解: (1)2)(1y y '+='',(0)1y =,(0)0y '=;(2)3()y y y ''''=+,(0)0y =,(0)1y '=;(3))(22y y y y '-'='',(0)1y =,(0)2y '=.解:(1)按不显含y 的方程求解,(注:本题按不显含x 方程求解困难).令)(x p y =',则p y '='',于是21p p +=',分离变量有x ppd 1d 2=+,积分得1arctan C x p +=,即1arctan C x y +=',由(0)0y '=,得01=C ,于是x y tan =',积分得2tan d ln cos y x x C x ==-⎰,由(0)1y =,得12=C ,所以方程满足初始条件的特解为1ln cos y x =-.(2)令()y q y '=,则y qq '''=,得3d d qqq q y=+,因为0q =不满足初始条件(0)1y '=,所以0q ≠,分离变量有2d d 1qy q =+,积分得1arctan q y C =-,即1tan ()y q y C '==-. 由初始条件(0)0y =,(0)1y '=,有11tan (0C =+),得14C π=,故tan ()4y y π'=-. 分离变量d d tan ()4y x y π=-,积分并整理得2sin ()e 4xy C π-=.再由初始条件(0)0y =,得22C =-arcsin 24x y =+π. (3)这是不含x 的二阶可降阶微分方程,令()y q y '=,则y qq '''=,则方程化为22()yqq q q '=-.因为0q =不满足初始条件2)0(='y ,所以0q ≠,分离变量有d d 21q yq y=-,积分得21ln(1)ln q C y -=,解得211y q C y '==+.由初始条件(0)1y =,(0)2y '=,有121+=C ,得11=C ,故12+='y y ,分离变量有x y y d 1d 2=+,积分得1arctan C x y +=,再由初始条件1)0(=y ,得42π=C ,所以原方程满足初始条件的特解为4arctan π+=x y ,即xxx y tan 1tan 1)4tan(-+=+=π.习题12—4(A )1.指出下列各对函数在其定义区间内的线性相关性:(1)3x 与2x ; (2)e x 与e xx ; (3)e x-与2ex-; (4)x e 与5e x;(5)sin x 与x 2sin ; (6)x x cos sin 与x 2sin ; (7)e sec x x 与e tan xx ; (8)x ln 与ln x μ(0μ>).解:(1)因为233x xx =不恒为常数,所以3x 与2x 在区间)(∞+-∞,内线性无关. (2)因为e ex x x x =不恒为常数,所以e x与e x x 在区间)(∞+-∞,内线性无关. (3)因为2e e e x xx ---=不恒为常数,所以e x -与2e x -在区间)(∞+-∞,内线性无关. (4)因为5e 5ex x =恒为常数,所以xe 与5e x 在区间)(∞+-∞,内线性相关. (5)因为sin 22cos sin xx x=不恒为常数,所以sin x 与x 2sin 在区间)(∞+-∞,内线性无关. (6)因为sin 22sin cos xx x=恒为常数,所以x x cos sin 与x 2sin 在区间)(∞+-∞,内线性相关.(7)因为e tan sin e sec x x xx x=不恒为常数,所以e sec x x 与e tan x x 在区间)(∞+-∞,内线性无关.(8)因为ln 0ln x xμμ=>恒为常数,所以x ln 与ln x μ在区间)0(∞+,内线性相关. 2.验证函数21e x y =,22e xy x =是微分方程440y y y '''-+=的两个线性无关的解,并写出该方程的通解.解:因为21e xy =,所以22112e =4e x xy y '''=,,因此 222111444e 8e 4e 0xx x y y y '''-+=-+=,所以21e xy =是440y y y '''-+=的解;同理,22e xy x =是440y y y '''-+=的解.又因为2221e exx y x x y ==不恒为常数,所以函数21e x y =,22e x y x =是微分方程440y y y '''-+=的两个线性无关的解.因此二阶线性齐次微分方程440y y y '''-+=通解为2112212()e x y C y C y C C x =+=+.3.通过观察给出微分方程0y y ''+=的两个线性无关的特解,并写出该方程的通解. 解:0y y ''+=是二阶线性齐次微分方程,改写为y y ''=-,二阶导数与自身呈相反数的函数有1sin y x =,2cos y x =,它们是0y y ''+=的两个解,又21cos cot sin y x x y x==不恒为常数,于是1sin y x =,2cos y x =线性无关,所以方程0y y ''+=的通解为12sin cos y C x C x =+.4.写出下列各二阶常系数线性齐次微分方程的通解:(1)320y y y '''-+=; (2)10250y y y '''-+=;(3)2100y y y '''-+=; (4)02d d 22=-x tx.解:(1)特征方程为2320r r -+=,即(1)(2)0r r --=,特征根为11=r 、22r =(不相等实根),所以方程320y y y '''-+=的通解是212e e x x y C C =+.(2)特征方程为210250r r -+=,即2(5)0r -=,特征根为125r r ==(两个相等实根),所以方程10250y y y '''-+=的通解是512()e xy C C x =+.(3)特征方程为22100r r -+=,由二次代数方程求根公式,得特征根为21322b y i a -===±(一对共轭复根),所以方程2100y y y '''-+=的通解是12(cos3sin 3)e xy C x C x =+. (4)特征方程为022=-r ,特征根为21=r 、22-=r (不同实根),所以方程02d d 22=-x tx的通解是ttC C x 2221e e -+=(注意t 是自变量,x 是因变量).5.求下列各微分方程满足初始条件的特解:(1)22d d 340d d y yy t t+-=,(0)2y =,(0)3y '=-; (2)20y y y '''-+=,(0)1y =,(0)2y '=; (3)450y y y '''-+=,(0)1y =,(0)0y '=.解:(1)特征方程为2340r r +-=,即(1)(4)0r r -+=,特征根为11=r 、24r =-,所以方程22d d 340d d y yy t t +-=的通解是412e e t t y C C -=+,且412e 4e t t dy C C dt-=-. 由初始条件(0)2y =,(0)3y '=-,有1212243C C C C +=⎧⎨-=-⎩,,得1211C C =⎧⎨=⎩,,所以方程满足初始条件(0)2y =,(0)3y '=-的特解是4e e t ty -=+.(2)特征方程为2210r r -+=,即2(1)0r -=,特征根为121r r ==,所以方程20y y y '''-+=的通解是12()e x y C C x =+,且212()e x y C C C x '=++.由初始条件(0)1y =,(0)2y '=,有12112C C C =⎧⎨+=⎩,,得1211C C =⎧⎨=⎩,,所以方程满足初始条件(0)1y =,(0)1y '=-的特解是(1)e x y x =+.(3)特征方程为2450r r -+=,由二次代数方程求根公式,得特征根为2r i ==±,所以方程450y y y '''-+=的通解是212(cos sin )e x y C x C x =+,且21221[(2)cos (2)sin ]e xy C C x C C x '=++-.由初始条件(0)1y =,(0)0y '=,有112120C C C =⎧⎨+=⎩,,得1212C C =⎧⎨=-⎩,,所以方程满足初始条件(0)1y =,(0)0y '=的特解是2(cos 2sin )e xy x x =-. 6.求下列各二阶常系数线性非齐次微分方程的通解:(1)x y y +=+''1; (2)xy y y -=+'+''e 22; (3)223y y y x x '''+-=+-; (4)xx y y e 4=-''.解:(1)相应齐次方程为0=+''y y ,特征方程012=+r ,特征根为i r i r -==21、,相应齐次方程通解为x C x C Y sin cos 21+=.这里x x f +=1)(,01==λ、n 不是特征根,因此设b ax y +=*,将其代入到原方程之中,有x b ax +=+1,比较系数得11==b a 、,于是原方程的一个特解为x y +=1*.原方程的通解为x x C x C y Y y +++=+=1sin cos 21*.(2)相应齐次方程为02=+'+''y y y ,特征方程0122=++r r ,即0)1(2=+r ,特征根为121-==r r ,相应齐次方程通解为xx C C Y -+=e )(21.这里xx f -=e 2)(,10-==λ、n 是二重特征根,因此设x x ax a x y --=⋅=e e 22*,将其代入到原方程之中,化简有22=a ,得1=a ,于是原方程的一个特解为xx y -=e 2*,原方程的通解为212()exx y C C x x e --=++.(3)相应齐次方程为02=-'+''y y y ,特征方程0122=-+r r ,即0)1)(12(=+-r r ,特征根为2/1121=-=r r 、,相应齐次方程通解为2/21e e x x C C Y +=-.这里2()3f x x x =+-,02==λ、n 不是特征根,因此设c bx ax y ++=2*,代入到原方程之中,有224(2)()3a ax b ax bx c x x ++-++=+-,比较系数有12143a a b a b c -=-⎧⎪-=⎨⎪+-=⎩,,,得112a b c ===、、,于是原方程的一个特解为*22y x x =++.所以,原方程的通解为*/2212e e 2x x y Y y C C x x -=+=++++.(4)相应齐次方程为0=-''y y ,特征方程012=-r ,特征根为1121-==r r 、,相应齐次方程通解为xx C C Y -+=e e 21.这里xx x f e 4)(=,x x P n 4)(=,11==λ、n 是单重特征根,因此设x x bx ax b ax x y e )(e )(2*+=+=,将其代入到原方程之中,化简有x b ax a 4)2(22=++,比较系数得11-==b a 、,于是原方程的一个特解为x x x y e )(2*-=,所以原方程的通解为*y Y y +=x x x x x C C e )(e e 221-++=-.7.求下列各二阶常系数线性非齐次微分方程满足初始条件的特解: (1)261y y x '''-=-,(0)1y =,(0)3y '=;(2)xy y e 54=+'',(0)0y =,(0)1y '=;解:(1)相应齐次方程为20y y '''-=,特征方程220r r -=,特征根为10r =、22r =,相应齐次方程通解为212e xY C C =+.这里()61f x x =-,1n =、0λ=是单重特征根,因此设*2()y x ax b ax bx =+=+,代入到原方程之中,有42261ax a b x -+-=-,得32a =-,1b =-,于是原方程的一个特解为*232y x x =--. 所以,原方程的通解为*22123e 2x y Y y C C x x =+=+--. 222e 31x y C x '=--,由初始条件(0)1y =,(0)3y '=,有1221213C C C +=⎧⎨-=⎩,,得11C =-、22C =,所以方程261y y x '''-=-满足初始条件(0)1y =,(0)3y '=的特解为2232e 12x y x x =---.(2)相应齐次方程为04=+''y y ,特征方程042=+r ,特征根为i r i r 2221-==、,相应齐次方程通解为x C x C Y 2sin 2cos 21+=.这里x x f e 5)(=,10==λ、n 不是特征根,因此设xa y e *=,代入到原方程之中,有x x x a a e 5e 4e =+,得1=a 于是原方程的一个特解为xy e *=.所以,原方程的通解为xx C x C y Y y e 2sin 2cos 21*++=+=.122sin 22cos 2e x y C x C x '=-++,由初始条件(0)0y =,(0)1y '=,有1210211C C +=⎧⎨+=⎩,,得11C =-、20C =,所以方程xy y e 54=+''满足初始条件(0)0y =,(0)1y '=的特解为e cos x y x =-.8. 求常系数线性非齐次微分方程2e xy +y =x+'''的通解.解:相应齐次方程为0='+''y y ,特征方程02=+r r ,特征根为1021-==r r 、,相应齐次方程通解为x12Y C C e -=+.这里x x x f e 2)(+=,将其分为)()()(21x f x f x f +=,x x f 2)(1=、xx f e )(2=.对x y y 2='+'',这里01==λ、n 是单重特征根,因此设bx ax b ax x y +=+=2*1)(, 代入到x y y 2='+''之中,有x b ax a 2)2(2=++,比较系数得21-==b a 、,于是方程x y y 2='+''的一个特解为x x y 22*1-=;对xy y e ='+'',不难观察得一个特解2/e *2xy =.于是,原方程的一个特解为2/e 22*2*1*xx x y y y +-=+=.所以,原方程的通解为*y Y y +=2/e 2e221x xx x C C +-++=-..习题12—4(B )1.若)(1x y ϕ=,)(2x y ϕ=是二阶线性非齐次微分方程)()()(x f y x Q y x P y =+'+''的两个解,证明)()(12x x y ϕϕ-=是相应线性齐次微分方程0)()(=+'+''y x Q y x P y 的解. 证:因为)()(12x x y ϕϕ-=,所以212121()()[()()]()[()()]()[()()]y P x y Q x y x x P x x x Q x x x φφφφφφ'''++''''''=-+-+-)]()()()()([)]()()()()([111222x x Q x x P x x x Q x x P x ϕϕϕϕϕϕ+'+''-+'+''= ()()0f x f x =-=.所以)()(12x x y ϕϕ-=是相应线性齐次微分方程0)()(=+'+''y x Q y x P y 的解.2.已知函数x x x x y 21e e )(+=,x x x x y -+=e e )(2,xx x x x y -++=e e e )(23都是微分方程)()()(x f y x Q y x P y =+'+''的解,写出该方程的通解.解:)()()(x f y x Q y x P y =+'+''是二阶非齐次线性微分方程,由函数xx x x y 21e e )(+=,x x x x y -+=e e )(2,x x x x x y -++=e e e )(23都是它的解,根据上题,则x x y y y y 22313e e =-=--、是相应齐次线性微分方程0)()(=+'+''y x Q y x P y 的两个解,而它们之比不恒等于常数,于是它们是线性无关的解,所以0)()(=+'+''y x Q y x P y 的通解为212x xY C e C e -=+,根据二阶非齐次线性微分方程解的结构,得方程)()()(x f y x Q y x P y =+'+''的通解是 22112C e e x x x x y Y y C e e x -=+=+++.3.若二阶常系数线性齐次微分方程的两个特解是2/21e ,e x x y y ==,写出该微分微分方程及其通解.解:由二阶常系数线性齐次微分方程的两个特解是2/21e ,e x x y y ==,则该二阶常系数线性齐次微分方程的特征根是21121==r r 、,于是特征方程是0)21)(1(=--r r ,即01322=+-r r ,所以微分方程为032=+'-''y y y ,通解为2/21e C e x x C y +=.4.若二阶常系数线性齐次微分方程有一个特解xx y 21e -=,写出该微分微分方程及其通解.解:由二阶常系数线性齐次微分方程有一个特解xx y 21e -=,则该二阶常系数线性齐次微分方程有一个特征根2-=r ,并且是二重根,于是特征方程是0)2(2=+r ,即0442=++r r , 所以微分方程为044=+'+''y y y ,通解为xx C y 221)e C (-+=.5.求下列各常系数线性非齐次微分方程的通解:(1)x x y y cos 4=+''; (2)xy y -=''+''e .解: (1)相应齐次方程为0=+''y y ,特征方程为012=+r ,特征根为i r i r -==21、,应齐次方程通解为x C x C Y sin cos 21+=.这里x x x f cos 4)(=,最高多项式次数1=n ,i i =+βα是单重特征根,为此设*22[()cos +()sin ]=()cos +()sin y x ax b x cx d x ax bx x cx dx x =++++,代入到原方程之中,有x x x c b ax x d a cx cos 4sin )224(cos )224(=+--+++,比较系数有⎪⎪⎩⎪⎪⎨⎧=-=-=+=,,,,022*******b c a d a c 得,⎪⎪⎩⎪⎪⎨⎧====,,,,0110d c b a 于是原方程的一个特解为x x x x y sin cos 2*+=. 所以,原方程的通解是x x x x x C x C y sin cos sin cos 221+++=.(2) 相应齐次方程为0=''+'''y y ,特征方程为023=+r r ,特征根为、021==r r ,13-=r 应齐次方程通解为x C x C C Y -++=e 321.对原方程xy y -=''+''e ,这里10-==λ,n 是单重特征根,为此设xax y -=e *,代入到原方程之中,有x x x x a x a ---=-+-e e )2(e)3(,即x x a --=e e ,得1=a ,于是原方程x y y -=''+''e 的一个特解为x x y -=e *.所以,原方程的通解是*y Y y +=xx x C x C C --+++=e e 321.6.求下列各二阶常系数线性非齐次微分方程满足初始条件的特解: (1)x y y sin =+'',(0)1y =,(0)0y '=;(2)x y y xcos e 5='-'',(0)0y =,(0)2y '=.解:(1)相应齐次方程为0=+''y y ,特征方程为012=+r ,特征根为i r i r -==21、,应齐次方程通解为x C x C Y sin cos 21+=.对原方程x y y sin =+'',这里多项式最高次数i i n =+=βα,0是单重特征根,为此设x bx x ax y sin cos *+=,代入到原方程之中,有x x b x a sin cos 2sin 2=+-,比较系数有0212==-b a 、,得021=-=b a 、,于是原方程的一个特解为x x y cos 2*-=.所以,原方程的通解是x xx C x C y Y y cos 2sin cos 21*-+=+=. x xx C x C y sin 2cos )21(sin 21+-+-=',由初始条件(0)1y =,(0)0y '=,得21121==C C 、,所以方程满足初始条件的特解为x x x y sin 21cos )21(+-=. (2)相应齐次方程为0='-''y y ,特征方程为02=-r r ,特征根为1021==r r 、,应齐次方程通解为xC C Y e 21+=.对原方程x y y xcos e 5='-'',这里多项式最高次数i i n +=+=10βα,不是特征根,为此设*(cos sin )x y e a x b x =+,代入到原方程之中,有]sin )2(cos )2[(e x b a x a b x--+-x x cos e 5=,比较系数有⎩⎨⎧=--=-,,0252b a a b 得⎩⎨⎧=-=,,21b a 于是原方程的一个特解为)cos sin 2(e *x x y x -=,原方程的通解是)cos sin 2(e e 21*x x C C y Y y x x -++=+=.)cos sin 3(e e 2x x C y xx++=',由初始条件(0)0y =,(0)2y '=,有⎩⎨⎧=+=-+,,2101221C C C 得1021==C C 、,所以原方程满足初始条件的特解是x x x y e )cos sin 21(-+=.7.若连续函数()y f x =满足0()e ()()d xxf x t x f t t =+-⎰,求()y f x =的表达式.解:0()e ()d ()d xx xf x tf t t x f t t =+-⎰⎰,0()e ()d xxf x f t t '=-⎰,()e ()x f x f x ''=-,于是函数()y f x =满足微分方程e x f f ''+=,初始条件是(0)(0)1f f '==.e xf f ''+=是二阶常系数线性非齐次微分方程,相应齐次方程是0f f ''+=,特征方程为012=+r ,特征根为i r i r -==21、,应齐次方程通解为12cos sin Y C x C x =+.对原方程e xf f ''+=,这里10==λ,n 不是特征根,为此设*e xf a =,代入到原方程之中,得21=a ,于是原方程的一个特解为*1e 2x f =. 所以,原方程的通解是*121()cos sin e 2xf x Y f C x C x =+=++. 因为121()sin cos e 2xf x C x C x '=-++,由初始条件(0)(0)1f f '==,有12112112C C ⎧+=⎪⎪⎨⎪+=⎪⎩,,得2121==C C ,所以所求函数是1()(cos sin e )2xf x x x =++.8. 证明:若()f x 满足方程()(1)f x f x '=-,则必满足方程()()0f x f x ''+=,并求方程()(1)f x f x '=-的解.解:先证()f x 必满足方程()()0f x f x ''+=.由于()(1)f x f x '=-,则求导可得()(1)(1)[1(1)]()f x f x f x f x '''=--=---=-, 故证明了()f x 必满足方程()()0f x f x ''+=. 下面求解方程()(1)f x f x '=-.由于方程()()0f x f x ''+=的通解为12()cos sin f x C x C x =+,且()(1)f x f x '=-, 所以1212sin cos cos(1)sin (1)C x C x C x C x -+=-+-,令0x =可得212cos1sin1C C C =+,则112cos1(1sin1)1sin1cos1C C C +==-,从而方程()(1)f x f x '=-的解为11sin1()(cos sin )cos1f x C x x +=+.习题12—5(A )1. 设在冷库中存储的某种新鲜水果500吨,放置一段时间之后开始腐烂,腐烂率是未腐烂数量的0.001倍,设腐烂的数量为y 吨,则显然它是时间t 的函数,求此函数的表达式. 解:由题意知0.001(500)dyy dt=⨯-, 分离变量得,0.001500dydt y=-,两边积分,并整理得0.001500e t y C -=-(C 为任意常数),再结合(0)0y =,容易求出500C =,所以水果腐烂数量与时间的函数关系式为0.001500(1e )t y -=-.2. 已知某商品的需求量Q (单位:kg )对价格P (单位:元)的弹性为ln 2EQP EP=-,且当0P =时,需求量600Q =Kg. (1)求该商品对价格的需求函数()Q P ;(2)求当价格1P =元时,市场对该商品的需求量; (3)当+P →∞时,需求量是否趋于稳定? 解:(1)由已知条件知,ln 2EQ P dQP EP Q dP=⋅=-, 分离变量得ln 2dQdP Q=-, 所以有()2P Q P C -=(C 为任意常数).再由(0)600Q =得,600C =,所以()6002P Q P -=⨯.(2)由(1)可知,当1P =元时,1(1)6002300Q -=⨯=(kg ).(3)由()6002PQ P -=⨯可知,当+P →∞时,0Q →,即随着商品价格的无限增大,。

东华理工大学高等数学A练习册答案(下)(学生用)

东华理工大学高等数学A练习册答案(下)(学生用)

第7章 微分方程§7.5 可降阶的高阶微分方程一、填空题答:1. 2121ln arctan C x C x x x y +++-= 2.22121C x x e C y x +--= 3.121C xy C e =+二、 y =C 1ln x +C 2 . 三、 22x x y -=.§7.6 高阶线性微分方程一、判断题1.( √ )2.( ╳ )3.( √ ) 二、选择题答:1.C 2.C 3.C 4.B§7.7 常系数齐次线性微分方程一、判断题1.( √ )2.( ╳ )3.( ╳ ) 二、填空题1、y =C 1e x +C 2e-2x2、 t t e C e C x 252251t +=, 3、 y =e -3x (C 1cos2x +C 2sin2x ).4、 y =C 1+C 2x +C 3e x +C 4xe x5、y =e 2x sin3x三、选择题答:1.B 2.B 3.A 4.C 5.B四、求下列微分方程(1) y =C 1+C 2e 4x . (2) y =e 2x (C 1cos x +C 2sin x ). (3) y =C 1+C 2x +C 3e x +C 4xe x . (4))2(21x e y x+=-.§7.8 常系数非齐次线性微分方程一、填空题 答:1、x x xe e C e C y ++=-2211,2、x xe x C x C e y x x 2cos 41)2sin 2cos (21-+=.3、x x x y 2sin 31sin 31cos +-+-= 4、x xx y cos 2sin 21+= 二、选择题答:1.D 2.B 3.A 4.C 5.D 6.D三、)323(2221x x e e C e C y x x x -++=--- 四、 2527521++-=x x e e y . 第12章 无穷级数§12.1 常数项级数的概念与性质一、判断题答:1. √2. √ 3. ×4. ×5. √ 6. √ 二、填空题答:1. 1/2、3/8 、5/16 2. [(-1)^(n-1)]*[(n+1)/n] 3. [x^(n/2)]*(1/2*n!) 4. 0 三、选择题答:1.C 2.A 3.C 4.C四、判定下列级数的收敛性(1)级数收敛. (2) 该级数发散. (3) 级数发散.§12.2 常数项级数的审敛法一、判断题答:1. √ 2. × 3. √4.√ 5√6. ×7. √8. √9.√ 二、填空题答:1.P>1 2. {}n s 有界 3. 绝对收敛 4. 收敛5.1lim 0n nn u u u +=⎧⎨>⎩三、选择题答:1. D 2.C 3.D 4.A 5.C四、用比较审敛法或极限形式的比较审敛法判定下列级数的收敛性: (1) 级数发散. (4) 级数收敛.五、用比值审敛法判定下列级数的收敛性: (1) 级数发散. (2) 级数收敛.六、用根值审敛法判定下列级数的收敛性:(1) 级数收敛; (2) 当b <a 时级数收敛, 当b >a 时级数发散. 七、 (1) 此级数是收敛的. 条件收敛的. (2) 级数收敛, 并且绝对收敛.§12.3 幂级数一、判断题答:1. √ 2. √ 3. √ 4. √ 5. × 二、填空题答:1.[-1/2、1/2] 2. [-1,5) 3. (-1,1) ,11ln21xx+- 4. 绝对收敛三、选择题 答:1.D 2.B 3 D四、求下列幂级数的收敛域:(1) 收敛域为(-1, 1). (2) 收敛域为[-1, 1]. 五、利用逐项求导或逐项积分, 求下列级数的和函数: (1) ()S x 21(11)(1)x x =-<<-. (2) ()S x 11ln (11)21x x x+=-<<- . 提示: 由)0()()(0S x S dx x S x-='⎰得⎰'+=xdx x S S x S 0)()0()(.§12.4 函数展开成幂级数一、判断题答:1. √2. × 3. × 二、填空题 1. 答:1.11ln 2(1)2nn nn x n ∞-=+-∑ ,(-2,2 ] 2. 1111()(4)23nn n n x ∞++=-+∑ ,(-6,-2) 3.)( ])3()!12(3)3()!2(1[)1(211202+∞<<-∞++++-+∞=∑x x n x n n n n nππ 三、选择题答:1.B 2.C 3.C四、(1) 210sh (21)!n n x x n -∞==-∑, x ∈(-∞, +∞). (2) 212212sin (1)(2)!n n n n x x n -∞=⋅=-∑ x ∈(-∞, +∞). 五、∑=<<--=n n n n x x x 0)60( )33()1(311.§12.5 函数的幂级数展开式的应用一、填空题答:1.3. ; 2、)( !4cos2cos 02+∞<<-∞=∑∞=x x n n x e n n nx π.§12.7 傅立叶级数一、判断题 答:1. × 2. √3.√4.√二、填空题 1.5 2. ,n n a b - 3. nx nx f n sin 1)(1∑∞==(0<x ≤π), 级数在x =0处收敛于0. 三、选择题答:1.A 2.C 3.B 4A 5.B四、∑∞=+--+=121cos 141)1(422cos n n nx n x ππ(-π≤x ≤π). 五、正弦级数为nx n n nx f n n sin ]2)2()1[(4)(1323∑∞=---=ππ(0≤x <π), 级数在x =0处收敛于0.余弦级数为 nx nx f n n cos )1(832)(122∑∞=-+=π(0≤x ≤π).§12.8 一般周期函数的傅里叶级数一、 ∑∞=+-+=12122cos )1(11211)(n n x n n x f ππ, x ∈(-∞, +∞).二、正弦级数13218(1)2[(1)1]{}sin2n n n n xn n πππ+∞=---+∑, x ∈[0, 2). 余弦级数:221416(1)cos 32n n n xn ππ∞=-+∑, x ∈[0, 2].第8章 空间解析几何与向量代数§8.1 向量及其线性运算一、判断题。

高等数学科学出版社下册课后答案第十二章 微分方程 习题简答

高等数学科学出版社下册课后答案第十二章 微分方程 习题简答

习题 12.11. (1) 是一阶线性微分方程; (2) 是一阶非线性微分方程; (3) 是二阶非线性微分方程; (4)是二阶非线性微分方程.2. (1) 是; (2)是; (3)不是; (4)不是二阶非线性微分方程.3. 验证略,所求特解为 .s i n422x x y ⎪⎪⎭⎫⎝⎛-=π 4.(1) 2y x y '=+,00x y==(2)xy y '-=以及初值条件23x y ==。

习 题 12-21.( 1) C x y =+-1010; (2); C x y +=a r c s i n a r c s i n (3) C e e y x =-+)1)(1(; (4) C x y +-=sin 1C x a a y+--=)1ln(1;2.(1) 2)(arctan 21x y =; (2)0)cos 2(cos =-y x ; (3) )4(412--=x y ; (4) y e xcos 221=+;(5) 0322=+-y y x ; (6) )2(ln 222+=x x y ; 3. (物体冷却的数学模型))20(--=T k dtdT. 4. ).310107(265.45335h h gt +-⨯=π5. 6分钟后,车间内2CO 的百分比降低到%.056.0习题12-31. (1) x C x y sin e )(-+=;(2) x x C y 2cos 2cos -=;(3) 1sin esin -+=-t C s t; (4) 2e 2x C y -+=; (5) )2()2(3-+-=x C x y ;(6))||(ln 12C y yx +=2. (1) 412e e 22++-=x y xx; (2) 11332e 2--=x x x y ; (3) x x y sec =; (4) )cos 1(1x xy --π=; (5) 1e5sin cos =+xx y ; (6).ln 1ln 21⎪⎭⎫ ⎝⎛+=x x y 3.⎰-=dx dx d e y ϕ⎥⎥⎦⎤⎢⎢⎣⎡+⎰⎰C dx e dxd x dx dx d ϕϕϕ)(⎰+=-])([)()(C d e x e x x ϕϕϕϕ.1)()(x Ce x ϕϕ-+-= 4. ,62320⎪⎪⎭⎫⎝⎛-=T t t m F x .0T t ≤≤5 ..224⎪⎭⎫⎝⎛+=C x x y 6. yx ⎥⎦⎤⎢⎣⎡-2)(l n 2x a C .1= 习题12-41. (1) Cxy x =-331; (2) x sin y +y cos x =C ; (3) xe y -y 2=C ;(4) .132C yx y =+- (5)不是全微分方程;(6) 不是全微分方程.2. (1) y x +1, x -y =ln(x +y )+C ; (2) 21y , C x y x =+22.(3) 21y , Cxy y x =--3122; (4) 221y x +为, x 2+y 2=Ce 2x ; (5) 21x , x ln x +y 2=Cx ; (6) 2y x , 032=-x y x .3. (1)2212yx e Cy x =; (2) C y y x y x =++||ln 3113322.4. (1)21ln 2x C x y +-=; (2) x C x x y cos 1tan ++=. 习 题12-51、(1)21c x c e y x ++=(2)21212x y x x c e c =--++(3)12ln y C x C =+ (4)12arcsin()xy c e c =+(5).3231C x x C y +⎪⎪⎭⎫ ⎝⎛+=(6)221121()c y c x c -=+ 2、(1).4521cos 412-++=x x e y x (2) .133++=x x y (3)x y 11+= (4)11y x=-(5) ).4tan(π+=x y3、 .212+=x y 4、2)1()(-=x x f5 、.2⎪⎪⎭⎫ ⎝⎛+==-a xa x e e a a x ach y 这曲线叫做悬链线.习题12-61. (1) 线性相关(2) 线性无关(3) 线性无关(4) 线性无关2. 略.3. (1) y x x x x e C e C e xe -+++=2202x x x e C e C xe -++=221,其中.101C C += (2) ;22x x xe e y y y -=-'-''(3) .342x x x xe e e y ++=- 4. .33221x C x C y ++=习题12-71.(1) y =C 1e -x+C 2e-2x;(2)=C 1e 0x +C 2e-2/3x=C 1+C 2e-2/3x ;(3) y =C 1cos2x +C 2sin2x .(4)x =(C 1+C 2t) e 5t/2;(5) .321x x e C e C y +=-(6).)(221x e x C C y -+=(7)).2sin 2cos (21x C x C e y x +=-(8))3sin 3cos (212x C x C e y x +=.(9) y =C 1cosx +C 2sinx +C 3e x +C 4e -x;(10)).2sin 2cos (4321x C x C e x C C y x +++=(11)w ⎪⎪⎭⎫⎝⎛+=x C x C ex 2sin 2cos 212βββ.2sin 2cos 432⎪⎪⎭⎫⎝⎛++-x C x C ex βββ(12) .sin )(cos )(54321x x C C x x C C C y ++++= (13) x x xxe C e C e C eC y --+++=432221.sin cos 65x C x C ++(14) y =C 1+C 2x +(C 3+C 4x)e x. 2. ϕ(x)=1/2(cosx +sinx +e x).3. ,04852)4(=+'-''+'''-y y y y y .2sin 2cos )(4321x C x C e x C C y x +++=4.略.习题12-81. (1) ;30*x e b y =(2) ;)(210*x e b x b x y -+=(3) .)(21202*x e b x b x b x y -++=(4) *(c o s 2s i n 2).xy x e a xb x =+2.(1).31*+-=x y (2)*y **21y y +=.3)221(22++-=x e x x x 3. (1) .)121(2221x x x e x x e C e C y -++=(2) y .21s i n c o s 21x e x x C x C +++=(3) y *y Y +=.81)(2321x x e e x C x C C +++=-(4) .cos 2sin cos 21x x x C x C y -+=(5).2sin 942cos 31sin cos 21x x x x C x C y +-+=4. y =-1/16 sin2x +1/8 x(1+sin2x) 5..32cos cos 3sin )(++-=x x x x y 6. .221x x x xe e C e C y ++=7.y .1)(ln ln 321xx x C C -++=8. y .2123321x x C x C C -++= 9. .)1(41)1()1ln(2141x x x y +++⎥⎦⎤⎢⎣⎡++-=本章复习题A1.(1)二;(2);(3)ln(ln )xy x x e=+;(4)''2'50y y y -+=;(5)2()x Ax B x e -+. 2. (1) A (2) (A)(3)(C )(4) (B )(5)(C ) 3. (1));(12x x e Ce xy +=(2)3221Cy y x += (3)C x xy +=2;(4)x Ce x y tan 1tan -+-=(5)13423++=x Cx y (6)22)1(1-=-x C y (7)31)1(tan x e C y -=- (8)221ln xCx y +-=(9)C x e x x +=+2)1(;(10)C xy x =-4. (1)322142224181C x C x C x e y x +++-=; (2)2212C x C e xe y x x ++-= (3)21|)cos(|ln C C x y ++-= (4))sin cos (e 212x C x C y x+=x x x2cos e 412-5. (1))1(ln 222+=x x y (2))2sin 22(cos x x e y x +=- (3)x x x y 2sin 31sin 31cos +--= (4)2135672--+=-x e e y x x . 6. 2231()()4f x x x=- 7. 可知当敌舰行245个单位距离时,将被鱼雷击中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档