华东理工大学高等数学(下册)第11章作业答案

合集下载

高数下册第11章解析

高数下册第11章解析

则 1时级数收敛; 1 时级数发散; 1时失效.
(5) 根值审敛法 (柯西判别法)
设 un 是正项级数,
n1
如果lim n n
un
(为数或 ),
则 1时级数收敛; 1时级数发散; 1时失效.
3、交错级数及其审敛法
定义 正 、负项相间的级数称为交错级数.
(1)n1un或 (1)nun (其中un 0)
如果级数 an x n 在x x0处发散,则它在满足
n0
不等式 x x0 的一切x 处发散.
推论
如果幂级数 an x n 不是仅在x 0 一点收敛,也
n0
不是在整个数轴上都收敛,则必有一个完全确定
的正数 R 存在,它具有下列性质:
当 x R时,幂级数绝对收敛;
当 x R时,幂级数发散;
函数
1、常数项级数
定义
un u1 u2 u3 un
n1
n
级数的部分和 sn u1 u2 un ui
i 1
级数的收敛与发散
常数项级数收敛(发散)
lim
n
sn
存在(不存在).
收敛级数的基本性质
性质1: 级数的每一项同乘一个不为零的常数, 敛散性不变.
性质2:收敛级数可以逐项相加与逐项相减.
(2)
讨论
lim
n
Rn
0

f
(n) ( x)
M,
则级数在收敛区间内收敛于 f ( x).
b.间接法 根据唯一性, 利用常见展开式, 通过 变量代换, 四则运算, 恒等变形, 逐项求导, 逐项积 分等方法,求展开式.
(4) 常见函数展开式
e x 1 x 1 x2 1 xn x (,)

高等数学课后习题及参考答案(第十一章)

高等数学课后习题及参考答案(第十一章)

高等数学课后习题与参考答案〔第十一章〕习题11-11.写出下列级数的前五项:<1>∑∞=++1211n nn;解 51514141313121211111112222212⋅⋅⋅+++++++++++++++=++∑∞=n n n . 解 3762651045311112⋅⋅⋅+++++=++∑∞=n n n .<2>∑∞=⋅⋅⋅⋅-⋅⋅⋅⋅12 42)12( 31n n n ; 解 10864297531864275316425314231212 42)12( 311⋅⋅⋅+⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+=⋅⋅⋅⋅-⋅⋅⋅⋅∑∞=n n n . 解 3840945384105481583212 42)12( 311⋅⋅⋅+++++=⋅⋅⋅⋅-⋅⋅⋅⋅∑∞=n n n .<3>∑∞=--115)1(n n n ; 解 51515151515)1(543211⋅⋅⋅-+-+-=-∑∞=-n n n . 解 3125162511251251515)1(11⋅⋅⋅-+-+-=-∑∞=-n n n . <4>∑∞=1!n n nn.解 5!54!43!32!21!1!543211⋅⋅⋅+++++=∑∞=n n n n. 解3125120256242764211!1⋅⋅⋅+++++=∑∞=n n n n . 2.写出下列级数的一般项:<1> 7151311⋅⋅⋅++++; 解 一般项为121-=n u n . <2> 5645342312⋅⋅⋅-+-+-; 解 一般项为nn u n n 1)1(1+-=-. <3> 86426424222⋅⋅⋅+⋅⋅⋅+⋅⋅+⋅+x x x x x ; 解 一般项为!22n x u n n =.<4> 97535432⋅⋅⋅+-+-a a a a . 解 一般项为12)1(11+-=+-n a u n n n . 3.根据级数收敛与发散的定义判定下列级数的收敛性:<1>∑∞=-+1)1(n n n ;解 因为)1( )34()23()12(n n s n -++⋅⋅⋅+-+-+-=)()11(∞→∞→-+=n n ,所以级数发散.<2> )12)(12(1 751531311⋅⋅⋅++-+⋅⋅⋅+⋅+⋅+⋅n n ; 解 因为)12)(12(1 751531311+-+⋅⋅⋅+⋅+⋅+⋅=n n s n)121121(21 )7151(21)5131(21)3111(21+--+⋅⋅⋅+-+-+-=n n )121121 715151313111(21+--+⋅⋅⋅+-+-+-=n n )(21)1211(21∞→→+-=n n , 所以级数收敛.<3> 6sin 63sin 62sin 6sin ⋅⋅⋅+⋅⋅⋅+++ππππn . 解 6sin 63sin 62sin 6sin ππππn s n ⋅⋅⋅+++= )6sin 12sin 2 62sin 12sin 26sin 12sin 2(12sin 21πππππππn +⋅⋅⋅++= )]1212cos 1212(cos )125cos 123(cos )123cos 12[(cos 12sin 21πππππππ+--+⋅⋅⋅+-+-=n n )1212cos 12(cos 12sin 21πππ+-=n . 因为π1212cos lim +∞→n n 不存在,所以n n s ∞→lim 不存在,因而该级数发散. 4.判定下列级数的收敛性: <1> 98)1( 9898983322⋅⋅⋅+-+⋅⋅⋅+-+-n n n ; 解 这是一个等比级数,公比为98-=q ,于是198||<=q ,所以此级数收敛. <2> 31 916131⋅⋅⋅++⋅⋅⋅+++n; 解 此级数是发散的,这是因为如此级数收敛,则级数) 31 916131(311⋅⋅⋅++⋅⋅⋅+++==∑∞=n n n 也收敛,矛盾.<3> 31 3131313⋅⋅⋅++⋅⋅⋅+++n ; 解 因为级数的一般项)(013311∞→≠→==-n u n n n ,所以由级数收敛的必要条件可知,此级数发散.<4> 232323233322⋅⋅⋅++⋅⋅⋅+++n n ; 解 这是一个等比级数,公比123>=q ,所以此级数发散. <5> )3121( )3121()3121()3121(3322⋅⋅⋅+++⋅⋅⋅++++++nn . 解 因为∑∞=121n n 和∑∞=131n n 都是收敛的等比级数,所以级数 )3121( )3121()3121()3121()3121(33221⋅⋅⋅+++⋅⋅⋅++++++=+∑∞=n n n n n 是收敛的.习题11-21.用比较审敛法或极限形式的比较审敛法判定下列级数的收 敛性:<1> )12(1 51311⋅⋅⋅+-+⋅⋅⋅+++n ; 解因为211121lim =-∞→nn n ,而级数∑∞=11n n发散,故所给级数发散. <2> 11 313121211222⋅⋅⋅++++⋅⋅⋅+++++++n n ; 解因为n n n n n n u n 111122=++>++=,而级数∑∞=11n n发散, 故所给级数发散.<3> )4)(1(1 631521⋅⋅⋅++++⋅⋅⋅+⋅+⋅n n ; 解因为145lim 1)4)(1(1lim 222=++=++∞→∞→n n n nn n n n ,而级数∑∞=121n n 收敛, 故所给级数收敛.<4> 2sin 2sin 2sin 2sin 32⋅⋅⋅++⋅⋅⋅+++n ππππ;解因为πππππ==∞→∞→nn n n n n 22sin lim 212sin lim ,而级数∑∞=121n n 收敛, 故所给级数收敛.<5>∑∞=>+1)0(11n n a a . 解因为 ⎪⎩⎪⎨⎧>=<<==+=+∞→∞→11 1 2110 0 1lim 111lim a a a l a a a a n n n n n n ,而当a >1时级数∑∞=11n n a 收敛,当0<a ≤1时级数∑∞=11n n a 发散, 所以级数∑∞=+111n n a 当a >1时收敛,当0<a ≤1时发散. 2.用比值审敛法判定下列级数的收敛性:<1>23 2332232133322⋅⋅⋅+⋅+⋅⋅⋅+⋅+⋅+⋅nn n ; 解级数的一般项为n n n n u 23⋅=.因为 123123lim 322)1(3lim lim 111>=+⋅=⋅⋅⋅+=∞→++∞→+∞→n n n n u u n n n n n n n n n , 所以级数发散.<2>∑∞=123n n n ; 解因为131)1(31lim 33)1(lim lim 22121<=+⋅=⋅+=∞→+∞→+∞→nn n n u u n n n n n n n , 所以级数收敛.<3>∑∞=⋅1!2n n n n n ;解因为12)1(lim 2!2)1()!1(2lim lim 111<=+=⋅⋅++⋅=∞→++∞→+∞→e n n n n n n u u n n n n n n n n n n , 所以级数收敛.<3>∑∞=+112tann n n π. 解因为121221lim 2tan 2tan )1(lim lim 12121<=⋅+=+=++∞→++∞→+∞→n n n n n n n n n n n n n u u ππππ, 所以级数收敛.3.用根值审敛法判定下列级数的收敛性:<1>∑∞=+1)12(n n n n ; 解因为12112lim lim<=+=∞→∞→n n u n n n n ,所以级数收敛. <2>∑∞=+1)]1[ln(1n n n ; 解因为10)1ln(1lim lim<=+=∞→∞→n u n n n n ,所以级数收敛. <3>∑∞=--112)13(n n n n ; 解因为n n n n n n n n n n n u 1212)13(1lim)13(lim lim -∞→-∞→∞→-=-= 131)311(31lim 321212<⋅=-⋅=--∞→en n n n , 所以级数收敛.<4>∑∞=1)(n n na b ,其中a n →a <n →∞>,a n ,b ,a 均为正数.解因为a b a b u nn nn n ==∞→∞→lim lim , 所以当b <a 时级数收敛,当b >a 时级数发散.4.判定下列级数的收敛性:<1> )43( )43(3)43(24332⋅⋅⋅++⋅⋅⋅+++n n ; 解这里n n n u )43(=,因为 143431lim )43()43)(1(lim lim 11<=⋅+=+=∞→+∞→+∞→n n n n u u n nn n n n n , 所以级数收敛.<2>!!33!22!114444⋅⋅⋅++⋅⋅⋅+++n n ; 解这里!4n n u n =,因为 10)1(1lim !)!1()1(lim lim 3441<=+⋅=⋅++=∞→∞→+∞→n n nn n n n u u n n n n n , 所以级数收敛.<3>∑∞=++1)2(1n n n n ; 解因为121lim 1)2(1lim =++=++∞→∞→n n nn n n n n ,而级数∑∞=11n n发散, 故所给级数发散.<4>∑∞=13sin2n nn π; 解因为1323232lim 3sin 23sin 2lim 1111<=⋅⋅=++∞→++∞→n n n n n n n n n n ππππ, 所以级数收敛.<5> 1 232⋅⋅⋅+++⋅⋅⋅++nn ; 解因为011lim lim ≠=+=∞→∞→n n u n n n , 所以级数发散.<6>)0 ,0( 1 211>>⋅⋅⋅+++⋅⋅⋅++++b a bna b a b a . 解因为n a b na u n 111⋅>+=,而级数∑∞=11n n发散, 故所给级数发散.5.判定下列级数是否收敛?如果是收敛的,是绝对收敛还是 条件收敛?<1> 4131211⋅⋅⋅+-+-; 解这是一个交错级数∑∑∞=-∞=--=-11111)1()1(n n n n n n u ,其中n u n 1=. 因为显然u n ≥u n +1,并且0lim =∞→n n u ,所以此级数是收敛的. 又因为∑∑∞=∞=-=-1111|)1(|n n n n nu 是p <1的p 级数,是发散的,所以原级数是条件收敛的.<2>∑∞=---1113)1(n n n n ; 解∑∑∞=-∞=--=-111113|3)1(|n n n n n n n . 因为131331lim 1<=+-∞→n n n n n ,所以级数∑∞=-113n n n 是收敛的, 从而原级数收敛,并且绝对收敛.<3> 2131213121312131432⋅⋅⋅+⋅-⋅+⋅-⋅;解这是交错级数∑∞=-⋅-112131)1(n n n ,并且∑∑∞=∞=-⋅=⋅-1112131|2131)1(|n n n n n . 因为级数∑∞=⋅12131n n 是收敛的,所以原级数也收敛,并且绝对收敛. <4> 5ln 14ln 13ln 12ln 1⋅⋅⋅+-+-; 解这是交错级数∑∑∞=-∞=-+-=-1111)1ln()1()1(n n n n n n u ,其中)1ln(1+=n u n . 因为u n ≥u n +1,并且0lim =∞→n n u ,所以此级数是收敛的. 又因为11)1ln(1+≥+n n ,而级数∑∞=+111n n 发散, 故级数∑∑∞=∞=-+=-111)1ln(1|)1(|n n n n n u 发散,从而原级数是条件收敛的. <5>∑∞=+-11!2)1(2n n n n . 解级数的一般项为!2)1(21n u n n n +-=. 因为∞=⋅⋅⋅⋅⋅-⋅-⋅===∞→∞→∞→∞→122232 22122lim !)2(lim !2lim ||lim 2n n n n n n n n n n n n n n n n n n u , 所以级数发散.习题11-31. 求下列幂级数的收敛域:<1>x +2x 2+3x 3+⋅⋅⋅+nx n +⋅⋅⋅;解 11lim ||lim 1=+=∞→+∞→nn a a n n n n , 故收敛半径为R =1. 因为当x =1时, 幂级数成为∑∞=1n n , 是发散的;当x =-1时, 幂级数成为∑∞=-1)1(n n n , 也是发散的,所以收敛域为<-1,1>.<2> )1( 21222⋅⋅⋅+-+⋅⋅⋅++-nx x x n n ; 解 1)1(lim 1)1(1lim ||lim 22221=+=+=∞→∞→+∞→n n n n a a n n n n n , 故收敛半径为R =1. 因为当x =1时, 幂级数成为∑∞=-221)1(n n n , 是收敛的; 当x =-1时, 幂级数成为∑∞=+1211n n , 也是收敛的, 所以收敛域为[-1,1].<3> )2( 42 64242232⋅⋅⋅+⋅⋅⋅⋅+⋅⋅⋅+⋅⋅+⋅+n x x x x n ; 解 0)1(21lim )!1(2!2lim ||lim 11=+=⋅+⋅⋅=∞→+∞→+∞→n n n a a n n n n n n n , 故收敛半径为R =+∞, 收敛域为<-∞,+∞>. <4> 33332313322⋅⋅⋅+⋅+⋅⋅⋅+⋅+⋅+⋅n n n x x x x ; 解 31131lim 3)1(3lim ||lim 11=+⋅=⋅+⋅=∞→+∞→+∞→n n n n a a n n n n n n n , 故收敛半径为R =3. 因为当x =3时, 幂级数成为∑∞=11n n , 是发散的; 当x =-3时, 幂级数成为∑∞=-11)1(n n n , 也是收敛的, 所以收敛域为[-3,3>. <5> 12 102522223322⋅⋅⋅+++⋅⋅⋅+++n n x n x x x ;解 21)1(1lim 2211)1(2lim ||lim 222211=+++=+⋅++=∞→+∞→+∞→n n n n a a n n n n n n n , 故收敛半径为21=R . 因为当21=x 时, 幂级数成为∑∞=+1211n n , 是收敛的; 当x =-1时, 幂级数成为∑∞=+-1211)1(n n n , 也是收敛的, 所以收敛域为]21 ,21[-. <6>∑∞=++-11212)1(n n n n x ; 解 这里级数的一般项为12)1(12+-=+n x u n nn . 因为212321|1232|lim ||lim x x n n x u u n n n n n n =+⋅+=++∞→+∞→, 由比值审敛法, 当x 2<1, 即|x |<1时, 幂级数绝对收敛; 当x 2>1, 即|x |>1时, 幂级数发散, 故收敛半径为R =1.因为当x =1时, 幂级数成为∑∞=+-1121)1(n n n , 是收敛的; 当x =-1时, 幂级数成为∑∞=++-11121)1(n n n , 也是收敛的, 所以收敛域为[-1, 1].<7>∑∞=--122212n n n x n ; 解 这里级数的一般项为22212--=n nn x n u . 因为22212121|)12(22)12(|lim ||lim x x n x n u u n n n n n n n n =-⋅+=-+∞→+∞→, 由比值审敛法, 当1212<x , 即2||<x 时, 幂级数绝对收敛; 当1212>x , 即2||>x 时, 幂级数发散, 故收敛半径为2=R . 因为当2±=x 时, 幂级数成为∑∞=-1212n n , 是发散的, 所以收敛域为)2 ,2(-.<8>∑∞=-1)5(n nn x . 解 11lim ||lim 1=+=∞→+∞→n n a a n n n n , 故收敛半径为R =1, 即当-1<x -5<1时级数收敛, 当|x -5|>1时级数发散.因为当x -5=-1, 即x =4时, 幂级数成为∑∞=-1)1(n nn , 是收敛的; 当x -5=1, 即x =6时, 幂级数成为∑∞=11n n, 是发散的, 所以收敛域为[4, 6>. 2. 利用逐项求导或逐项积分, 求下列级数的和函数:<1>∑∞=-11n n nx ;解 设和函数为S <x >, 即∑∞=-=11)(n n nx x S , 则][][])([)(1010110'='='=∑⎰⎰∑⎰∞=-∞=-n xn x n n x dx nx dx nxdx x S x S)11( )1(1]111[][21<<--='--='=∑∞=x x x x n n . <2>∑∞=++11414n n n x ; 解 设和函数为S <x >, 即∑∞=++=11414)(n n n x x S , 则dx x dx n x dx x S S x S x n n x n n x ⎰∑⎰∑⎰∞=∞=+='+='+=01401140]14[)()0()( ⎰⎰-⋅++⋅+-=--=x x dx x x dx x02204)112111211()111( )11( arctan 2111ln 41<<--+-+=x x x x x .提示: 由)0()()(0S x S dx x S x -='⎰得⎰'+=xdx x S S x S 0)()0()(. <3>⋅⋅⋅+-+⋅⋅⋅+++- 12 531253n x x x x n . 解 设和函数为S <x >, 即⋅⋅⋅+-+⋅⋅⋅+++=-=-∞=-∑ 12 5312)(1253112n x x x x n x x S n n n , 则 ⎰∑⎰∑⎰∞=-∞=-='-='+=x n n x n n x dx x dx n x dx x S S x S 012201120]12[)()0()( )11( 11ln 211102<<--+=-=⎰x x x dx xx . 提示: 由)0()()(0S x S dx x S x -='⎰得⎰'+=xdx x S S x S 0)()0()(.习题11-41. 求函数f <x >=cos x 的泰勒级数, 并验证它在整个数轴上收敛于这函数.解 )2cos()()(π⋅+=n x x f n <n =1,2,⋅⋅⋅>, )2cos()(00)(π⋅+=n x x f n <n =1,2,⋅⋅⋅>, 从而得f <x >在x 0处的泰勒公式)(!2)cos())(2cos(cos )(200000⋅⋅⋅+-++-++=x x x x x x x x f ππ )( )(!)2cos(00x R x x n n x n n +-++π. 因为)!1(|||)()!1(]21)(cos[||)(|101000+-≤-+++-+=++n x x x x n n x x x x R n n n πθ<0≤θ≤1>, 而级数∑∞∞→++-n n n x x )!1(||10总是收敛的, 故0)!1(||lim 10=+-+∞→n x x n n , 从而0|)(|lim =∞→x R n n . 因此 )(!2)cos())(2cos(cos )(200000⋅⋅⋅+-++-++=x x x x x x x x f ππ⋅⋅⋅+-++ )(!)2cos(00n x x n n x π,x ∈<-∞,+∞>.2. 将下列函数展开成x 的幂级数, 并求展开式成立的区间: <1>2sh x x e e x --=; 解 因为∑∞==0!n n xn x e ,x ∈<-∞,+∞>,所以 ∑∞=--=0!)1(n n nx n x e ,x ∈<-∞,+∞>, 故 ∑∑∑∑∞=-∞=∞=∞=-=--=--=012000)!12(!])1(1[21]!)1(![21sh n n n n n n n n n n n x n x n x n x x ,x ∈<-∞,+∞>. <2>ln<a +x ><a >0>;解 因为)1ln(ln )1(ln )ln(a x a a x a x a ++=+=+,∑∞=++-=+011)1()1ln(n n nn x x <-1<x ≤1>, 所以 ∑∑∞=++∞=++-+=+-+=+01101)1()1(ln )(11)1(ln )ln(n n n n n n n a n x a a x n a x a <-a <x ≤a >. <3>a x ;解 因为∑∞==0!n n x n x e ,x ∈<-∞,+∞>, 所以 ∑∑∞=∞=====00ln !)(ln !)ln (n n n n n x a x x x n a n a x e ea ,x ∈<-∞,+∞>, <4>sin 2x ; 解 因为x x 2cos 2121sin 2-=,∑∞=-=02)!2()1(cos n n nn x x ,x ∈<-∞,+∞>, 所以 ∑∑∞=-∞=⋅-=--=1212022)!2(2)1()!2()2()1(2121sin n n n n n n n n x n x x x ∈<-∞,+∞>. <5><1+x >ln<1+x >;解 因为∑∞=++-=+011)1()1ln(n n nn x x <-1<x ≤1>, 所以 ∑∞=++-+=++011)1()1()1ln()1(n n nn x x x x ∑∑∞=+∞=++-++-=02011)1(1)1(n n n n n nn x n x ∑∑∞=++∞=+-++-+=11111)1(1)1(n n n n n n n x n x x 111])1(1)1([+∞=+∑-++-+=n n n n x n n x 111)1()1(+∞=-∑+-+=n n n x n n x <-1<x ≤1>. <6>21x x +. 解 因为∑∞=--+=+122/12!)!2(!)!12()1(1)1(1n n n x n n x <-1≤x ≤1>, 所以 ∑∑∞=+∞=+⋅-+=--+=+11221122)2()!()!2(2)1(!)!2(!)!12()1(1n n n n n n x n n x x n n x xx <-1≤x ≤1>. 3. 将下列函数展开成<x -1>的幂级数, 并求展开式成立的区间: <1>3x ;解 因为)11( !)1( )1( !2)1(1)1(2<<-⋅⋅⋅++-⋅⋅⋅-+⋅⋅⋅+-++=+x x n n m m m x m m mx x n m . 所以 233)]1(1[-+=x x )1(!)123( )123(23 )1(!2)123(23)1(2312⋅⋅⋅+-+-⋅⋅⋅-+⋅⋅⋅+--+-+=n x n n x x)111(<-<-x ,即 )1(!2)25( )3()1(13 )1(!2213)1(231223⋅⋅⋅+-⋅-⋅⋅⋅-⋅-⋅⋅+⋅⋅⋅+-⋅⋅+-+=n n x n n x x x )20(<<x .上术级数当x =0和x =2时都是收敛的, 所以展开式成立的区间是[0,2].<2>lg x .解 ∑∞=-≤-<---=-+==11)111( )1()1(10ln 1)]1(1ln[10ln 110ln ln lg n n n x nx x x x , 即 ∑∞=-≤<--=11)20( )1()1(10ln 1lg n n n x nx x . 4. 将函数f <x >=cos x 展开成)3(π+x 的幂级数. 解 3sin )3sin(3cos )3cos(]3)3cos[(cos ππππππ+++=-+=x x x x )3sin(23)3cos(21ππ+++=x x ∑∑∞=+∞=++-++-=01202)3()!12()1(23)3()!2()1(21n n n n n n x n x n ππ )( ])3()!12(3)3()!2(1[)1(211202+∞<<-∞++++-=+∞=∑x x n x n n n n n ππ. 5.将函数xx f 1)(=展开成<x -3>的幂级数. 解 ∑=<-<---=-+=-+=n n n n x x x x x 0)1331( )33()1(313311313311, 即 ∑=<<--=n n n n x x x 0)60( )33()1(311. 6.将函数231)(2++=x x x f 展开成<x +4>的幂级数. 解 2111231)(2+-+=++=x x x x x f ,而 ∑∞=<++-=+--=++-=+0)1|34(| )34(31341131)4(3111n n x x x x x , 即 )17( 3)4(1101-<<-+-=+∑∞=+x x x n n n ; ∑∞=<++-=+--=++-=+0)1|24(| )24(21241121)4(2121n n x x x x x , 即 )26( 2)4(2101-<<-+-=+∑∞=+x x x n n n . 因此 ∑∑∞=∞=+++++-=++=001122)4(3)4(231)(n n n n n n x x x x x f )26( )4)(3121(011-<<-+-=∑∞=++x x n n n n . 习题11-51. 利用函数的幂级数展开式求下列各数的近似值:<1>ln3<误差不超过0.0001>; 解)11( ) 121 5131(211ln 1253<<-⋅⋅⋅+-+⋅⋅⋅+++=-+-x x n x x x x x n , ) 21121 2151213121(2211211ln 3ln 1253⋅⋅⋅+⋅-+⋅⋅⋅+⋅+⋅+=-+=-n n . 又 ] 2)32(12)12(1[2||3212⋅⋅⋅+⋅++⋅-=+-n n n n n r ] 2)52(2)12(2)32(2)12(1[2)12(25212321212⋅⋅⋅+⋅+⋅++⋅+⋅+++=+++++n n n n n n n n n n 2242122)12(31) 21211(2)12(2-+-=⋅⋅⋅++++<n n n n , 故 00012.021131||85≈⋅⋅<r ,00003.021331||105≈⋅⋅<r . 因而取n =6, 此时1.0986 )21111219121712151213121(23ln 119753≈⋅+⋅+⋅+⋅+⋅+=. <2>e <误差不超过0.001>;解 )( !1 !2112+∞<<-∞⋅⋅⋅+⋅⋅⋅+++=x x n x x e n x , 21!1 21!212112⋅⋅⋅+⋅⋅⋅⋅+⋅++=nn e . 由于 21)!2(121)!1(121⋅⋅⋅+⋅++⋅+=++n n n n n r 21)1()2(121111[2!12⋅⋅⋅+⋅+⋅++⋅++⋅=n n n n n 22!3141112!1-⋅⋅=-⋅⋅<n n n n , 故 0003.02!53134≈⋅⋅=r . 因此取n =4得648.121!4121!3121!21211432≈⋅+⋅+⋅++≈e . <3>9522<误差不超过0.00001>; 解)11( !)1( )1( !2)1(1)1(2<<-⋅⋅⋅++-⋅⋅⋅-+⋅⋅⋅+-++=+x x n n m m m x m m mx x n m , 9/199)2101(2522+= ] )210(!33178)210(!298210911[23922929⋅⋅⋅-⋅⋅⋅+⋅⋅-⋅+=. 由于002170.0210919≈⋅,000019.0)210(!298292≈⋅⋅, 故00430.2)000019.0002170.01(25229≈-+=.<4>cos 2︒<误差不超过0.0001>.解 )( )!2()1( !4!21cos 242+∞<<-∞⋅⋅⋅+-+⋅⋅⋅-+-=x n x x x x n n , )90(!61 )90(!41)90(!21190cos 2cos 642⋅⋅⋅+⋅-⋅+⋅-==︒ππππ.由于42106)90(!21-⨯≈⋅π,8410)90(!41-≈⋅π, 故 9994.00006.01 )90(!2112cos 2=-≈⋅⋅-≈︒π.2.利用被积函数的幂级数展开式求下列定积分的近似值:<1>⎰+5.00411dx x <误差不超过0.0001>; 解⎰⎰⋅⋅⋅+-+⋅⋅⋅+-+-=+5.00412845.004] )1( 1[11dx x x x x dx x n n 5.001395|) 1319151(⋅⋅⋅+-+-=x x x x 2113121912151211395⋅⋅⋅+⋅-⋅+⋅-. 因为00625.021515≈⋅,00028.021919≈⋅,000009.02113113≈⋅, 所以4940.0219121512111955.004≈⋅+⋅-≈+⎰dx x . <2>⎰5.00arctan dx xx <误差不超过0.0001>. 解)11( 121)1( 5131arctan 1253<<-⋅⋅⋅++-+⋅⋅⋅-+-=+x x n x x x x n n, dx x n x x dx x x n n ] 121)1( 51311[arctan 5.002425.00⎰⎰⋅⋅⋅++-+⋅⋅⋅-+-= 5.00753|) 49125191(⋅⋅⋅+-+-=x x x x 2149121251219121753⋅⋅⋅+⋅-⋅+⋅-=. 因为0139.021913≈⋅,0013.0212515≈⋅,0002.0214917≈⋅, 所以487.021*********arctan 535.00≈⋅+⋅-=⎰dx x x . 3.将函数e x cos x 展开成x 的幂级数. 解)(21cos ix ix e e x -+=, ][21)(21cos )1()1(i x i x ix ix x x e e e e e x e -+-+=+⋅=∑∑∑∞=∞=∞=-++=-++=000!)1()1(21!)1(!)1([21n n n n n n n n n n x n i i x n i x n i . 因为421πi e i =+,421πi e i -=-, 所以4cos 2)4cos 2(2][2)1()1(122442ππππn n e e i i n n n i n i n n n +-==+=-++. 因此)( !4cos 2cos 02+∞<<-∞=∑∞=x x n n x e n n n x π.习题11-7 1.下列周期函数f <x >的周期为2π,试将f <x >展开成傅里叶级数,如果f <x >在[-π,π>上的表达式为:<1>f <x >=3x 2+1<-π≤x <π>;解 因为)1(2)13(1)(1220+=+==⎰⎰--πππππππdx x dx x f a , ⎰-=ππππdx n x f a n cos )(1 2212)1(cos )13(1n dx n x n -=+=⎰-ππππ <n =1,2,⋅⋅⋅>, ⎰-=ππππdx n x f b n sin )(1 0sin )13(12=+=⎰-ππππdx n x <n =1,2,⋅⋅⋅>, 所以f <x >的傅里叶级数展开式为)( cos )1(121)(122+∞<<-∞-++=∑∞=x nx n x f n n π.<2>f <x >=e 2x <-π≤x <π>;解 因为πππππππππ21)(12220----===⎰⎰e e dx e dx x f a x ,⎰-=ππππdx n x f a ncos )(1πππππππ)4()()1(2cos 12222+--==--⎰n e e dx n e n x<n =1,2,⋅⋅⋅>, ⎰-=ππππdx n x f b n sin )(1πππππππ)4()()1(sin 12222+---==--⎰n e e n dx n e n x<n =1,2,⋅⋅⋅>, 所以f <x >的傅里叶级数展开式为∑∞=--+-+-=1222)sin cos 2(4)1(41[)(n n nx n nx n e e x f πππ<x ≠<2n +1>π,n =0,±1,±2,⋅⋅⋅>.<3>⎩⎨⎧<≤<≤-=ππx ax x bx x f 0 0)(<a ,b 为常数,且a >b >0>.解 因为)(211000b a axdx bxdx a -=+=⎰⎰-πππππ, ]cos 1cos 100⎰⎰+=-ππππnxdx ax nxdx bx a nn n a b )1(1[2---=π<n =1,2,⋅⋅⋅>,⎰⎰+=-ππππ00sin 1sin 1nxdx ax nxdx bx b nnb a n +-=+1)1(<n =1,2,⋅⋅⋅>, 所以f <x >的傅里叶级数展开式为∑∞=-+-+---+-=112}sin )()1(cos )]()1(1[{)(4)(n n n nx n b a nx n a b b a x f ππ <x ≠<2n +1>π,n =0,±1,±2,⋅⋅⋅>.2.将下列函数f <x >展开成傅里叶级数:<1>3sin2)(x x f =<-π≤x ≤π>; 解 将f <x >拓广为周期函数F <x >, 则F <x >在<-π,π>中连续, 在x =±π间断, 且)()]()([21πππ-≠-+-+-f F F ,)()]()([21πππf F F ≠++-, 故F <x >的傅里叶级数在<-π,π>中收敛于f <x >, 而在x =±π处F <x >的傅里叶级数不收敛于f <x >. 计算傅氏系数如下: 因为3sin2x <-π<x <π>是奇函数, 所以a n=0<n =0,1,2,⋅⋅⋅>,⎰⎰+--==ππππ00])31cos()31[cos(2sin 3sin 22dx x n x n nxdx x b n19318)1(21-⋅-=+n nn π<n =1,2,⋅⋅⋅>, 所以∑∞=+--=12119sin )1(318)(n n n nx n x f π<-π<x <π>.<2>⎩⎨⎧≤≤<≤-=ππx x e x f x 0 10)(.解 将f <x >拓广为周期函数F <x >, 则F <x >在<-π,π>中连续, 在x =±π间断, 且)()]()([21πππ-≠-+-+-f F F ,)()]()([21πππf F F ≠++-,故F <x >的傅里叶级数在<-π,π>中收敛于f <x >, 而在x =±π处F <x >的傅里叶级数不收敛于f <x >. 计算傅氏系数如下:ππππππ---+=+=⎰⎰e dx dx e a x 1][1000, )1()1(1]cos cos [1200n e nxdx nxdx e a n xn +--=+=--⎰⎰πππππ<n =1,2,⋅⋅⋅>,]sin sin [100⎰⎰+=-πππnxdx nxdx e b xn})1(11])1(1[{12n n e n n n --++---=-ππ<n =1,2,⋅⋅⋅>, 所以πππ21)(--+=e x f∑∞=----++-+-++--+122}]sin )1(11)1([cos 1)1(1{1n n n n nx n n ne n nx n e πππ <-π<x <π>.3.设周期函数f <x >的周期为2π,证明f <x >的傅里叶系数为⎰=ππ20cos )(1nxdx x f a n <n =0, 1, 2,⋅⋅⋅>,⎰=ππ20sin )(1nxdx x f b n <n =1, 2,⋅⋅⋅>.证明 我们知道, 若f <x >是以l 为周期的连续函数, 则⎰+la adx x f )(的值与a 无关, 且⎰⎰=+lla adx x f dx x f 0)()(,因为f <x >,cos nx ,sin nx 均为以2π为周期的函数, 所以f <x >cos nx ,f <x >sin nx 均为以2π为周期的函数, 从而⎰⎰+---==πππππππ2cos )(1cos )(1nxdx x f nxdx x f a n⎰=ππ20cos )(1nxdx x f <n =1, 2,⋅⋅⋅>.同理 ⎰=ππ20sin )(1nxdx x f b n <n =1, 2,⋅⋅⋅>.4.将函数2cos )(xx f =<-π≤x ≤π>展开成傅里叶级数: 解 因为2cos )(x x f =为偶函数, 故b n =0<n =1, 2,⋅⋅⋅>, 而⎰⎰==-πππππ0cos 2cos 2cos 2cos 1nxdx x nxdx x a n⎰+--=ππ0])21cos()21[cos(1dx x n x n 1414)1(21-⋅-=+n n π<n =1, 2,⋅⋅⋅>. 由于2cos )(x x f =在[-π,π]上连续, 所以 ∑∞=+--+=121cos 141)1(422cos n n nx n x ππ<-π≤x ≤π>. 5.设f <x >的周期为2π的周期函数, 它在[-π,π>上的表达式这⎪⎪⎩⎪⎪⎨⎧<≤<≤--<≤--=ππππππππx x x x x f 2 222 2 2)(,将f <x >展开成傅里叶级数.解 因为f <x >为奇函数, 故a n =0<n =0,1,2,⋅⋅⋅>, 而]sin 2sin [2sin )(22200⎰⎰⎰+==πππππππnxdx nxdx x nxdx x f b n2sin 2)1(2ππn n n n +--=<n =1,2,⋅⋅⋅>,又f <x >的间断点为x =<2n +1>π,n =0,±1,±2,⋅⋅⋅, 所以nx n n n x f n n sin ]2sin 2)1([)(121∑∞=++-=ππ< x ≠<2n +1>π,n =0,±1,±2,⋅⋅⋅>.6. 将函数2)(x x f -=π<0≤x ≤π>展开成正弦级数.解 作奇延拓得F <x >:⎪⎩⎪⎨⎧<<---=≤<=0)(0 00 )()(x x f x x x f x F ππ,再周期延拓F <x >到<-∞,+∞>, 则当x ∈<0,π]时F <x >=f <x >,)0(20)0(f F =≠=π.因为a n =0<n =0,1,2,⋅⋅⋅>, 而nnxdx x b n 1sin 220=-=⎰πππ <n =1,2,⋅⋅⋅>, 故 nx nx f n sin 1)(1∑∞==<0<x ≤π>,级数在x =0处收敛于0.7.将函数f <x >=2x 2<0≤x ≤π>分另别展开成正弦级数和余弦级数. 解对f <x >作奇延拓,则a n =0<n =0, 1, 2,⋅⋅⋅>,而]2)2()1[(4sin 2232302n n n nxdx x b n n ---==⎰ππππ<n =1, 2,⋅⋅⋅>,故正弦级数为nx n n n x f n n sin ]2)2()1[(4)(1323∑∞=---=ππ<0≤x <π>, 级数在x =0处收敛于0.对f <x >作偶延拓,则b n =0<n =1, 2,⋅⋅⋅>,而20203422πππ==⎰dx x a , 2028)1(cos 22nnxdx x a n n -==⎰ππ <n =1, 2,⋅⋅⋅>, 故余弦级数为nx nx f n n cos )1(832)(122∑∞=-+=π<0≤x ≤π>.8.设周期函数f <x >的周期为2π, 证明<1>如果f <x -π>=-f <x >, 则f <x >的傅里叶系数a 0=0,a 2k =0,b 2k =0<k =1,2,⋅⋅⋅>; 解 因为020200)(1)(1)(1a dt t f dx t f dx x f a xt -=-=-=⎰⎰⎰+=-πππππππππ令,所以a 0=0. 因为dx t k t f kxdx x f a xt k )(2cos )(12cos )(1202ππππππππ--=⎰⎰+=-令k a ktdt t f 2202cos )(1-=-=⎰ππ,所以a 2k =0.同理b 2k =0<k =1,2,⋅⋅⋅>.<2>如果f <x -π>=f <x >, 则f <x >的傅里叶系数a 2k +1=0,b 2k +1=0<k =1,2,⋅⋅⋅>. 解因为)12cos()(112⎰-++=πππxdx k x f a kdx t k t f xt ))(12cos()(1 20πππππ-+-⎰+=令1220)12cos()(1+-=+-=⎰k a tdt k t f ππ,所以a 2k +1=0<k =1,2,⋅⋅⋅>. 同理b 2k +1=0<k =1,2,⋅⋅⋅>.习题11-81. 将下列各周期函数展开成傅里叶级数<下面给出函数在一个周期内的表达式>: <1>)2121(1)(2<≤--=x x x f ;解 因为f <x >=1-x 2为偶函数, 所以b n =0<n =1,2,⋅⋅⋅>, 而611)1(4)1(2/12210221020=-=-=⎰⎰dx x dx x a ,⎰-=21022/1cos )1(2/12dx x n x a n π2212102)1(2cos )1(4ππn xdx n x n +-=-=⎰<n =1,2,⋅⋅⋅>,由于f <x >在<-∞,+∞>内连续, 所以∑∞=+-+=12122cos )1(11211)(n n x n n x f ππ,x ∈<-∞,+∞>.<2>⎪⎪⎩⎪⎪⎨⎧<≤-<≤<≤-=121 1210 101 )(x x x x x f ;解 21)(1212100111-=-+==⎰⎰⎰⎰--dx dx xdx dx x f a n ,⎰⎰⎰⎰-+==--1212100111cos cos cos cos )(xdx n xdx n xdx n x xdx n x f a n ππππ2sin 2])1(1[122πππn n n n +--= <n =1,2,⋅⋅⋅>,dx x n xdx n xdx n x xdx n x f b n ⎰⎰⎰⎰-+==--121210111sin sin sin sin )(πππππππn n n 12cos 2+-= <n =1,2,⋅⋅⋅>.而在<-∞,+∞>上f <x >的间断点为x =2k ,212+k ,k =0,±1,±2,⋅⋅⋅,故 }sin 2cos 21cos ]2sin 2)1(1{[41)(122x n n n x n n n n x f n nπππππππ-++--+-=∑∞= <x ≠2k ,212+≠k x ,k =0,±1,±2,⋅⋅⋅>.<3>⎩⎨⎧<≤<≤-+=30 1 03 12)(x x x x f .解 1])12([31)(313003330-=++==⎰⎰⎰--dx dx x dx x f a ,]3cos 3cos )12([313cos )(31300333⎰⎰⎰--++==dx x n dx x n x dx x n x f a n πππ])1(1[622n n --=π<n =1,2,⋅⋅⋅ >, ]3sin 3sin )12([313sin )(31300333⎰⎰⎰--++==dx x n dx x n x dx x n x f b n πππn n )1(6-=π<n =1,2,⋅⋅⋅ >, 而在<-∞,+∞>上,f <x >的间断点为 x =3<2k +1>,k =0,±1,±2,⋅⋅⋅,故 }3sin 6)1(3cos])1(1[6{21)(1122∑∞=+-+--+-=n n n x n n x n n x f ππππ,<x ≠3<2k +1>,k =0,±1,±2,⋅⋅⋅>.2. 将下列函数分别展开成正弦级数和余弦级数:<1>⎪⎩⎪⎨⎧≤≤-<≤=lx x l l x x x f 2l20 )(; 解 正弦级数:对f <x >进行奇延拓, 则函数的傅氏系数为 a 0=0<n =0,1,2,⋅⋅⋅>,2sin 4]sin )(sin [22221210ππππn n l dx l x n x l dx l x n x l b l n =-+=⎰⎰<n =1,2,⋅⋅⋅ >故 ∑∞==122sin 2sin14)(n l x n n nl x f πππ,x ∈[0,l ].余弦级数:对f <x >进行偶延拓, 则函数的傅氏系数为2])([2212100l dx x l xdx l a l=-+=⎰⎰,⎰⎰-+=l n dx l x n x l dx l x n x l a 21210]cos )(cos [2ππ ])1(12cos 2[222n n n l ---=ππ <n =1, 2,⋅⋅⋅ > b n =0<n =1, 2,⋅⋅⋅ >,故lx n n n l l x f n n πππcos ])1(12cos2[124)(122∑∞=---+=,x ∈[0,l ].<2>f <x >=x 2<0≤x ≤2>.解正弦级数:对f <x >进行奇延拓, 则函数的傅氏系数为 a 0=0<n =0, 1, 2,⋅⋅⋅>,]1)1[()(168)1(2sin 2231202--+-==+⎰n n n n n dx x n x b πππ,故 2sin }]1)1[()(168)1{()(131x n n n x f n n n πππ∑∞=+--+-=2sin }]1)1[(2)1({81231x n n n n n n πππ∑∞=+--+-=,x ∈[0,2>. 余弦级数:对f <x >进行偶延拓, 则函数的傅氏系数为38222020==⎰dx x a2202)(16)1(2cos 22ππn dx x n x a n n -==⎰<n =1, 2,⋅⋅⋅>, b n =0<n =1, 2,⋅⋅⋅>,故 2cos )(16)1(34)(12x n n x f n n ππ∑∞=-+=2cos )1(1634122x n n n n ππ∑∞=-+=,x ∈[0,2].总习题十一 1.填空: <1>对级数∑∞=1n n u ,0lim =∞→n n u 是它收敛的________条件,不是它收敛的________条件; 解 必要; 充分.<2>部分和数列{s n }有界是正项级数∑∞=1n n u 收敛的________条件; 解 充分必要. <3>若级数∑∞=1n n u 绝对收敛,则级数∑∞=1n n u 必定________;若级数∑∞=1n n u 条件收敛,则级数∑∞=1||n n u 必定________. 解 收敛; 发散.2.判定下列级数的收敛性: <1>∑∞=11n n nn ; 解因为11lim 11lim ==∞→∞→n n nn nnn n ,而调和级数∑∞=11n n发散,故由比较审敛法知,级数发散. <2>∑∞=1222)!(n nn ;解因为∞==⋅++=∞→∞→+∞→222221lim )!(2)1(2])!1[(lim lim n n n n n u u n n n n n , 故由比值审敛法知,级数发散.<3> ∑∞=1223cos n n n n π; 解因为n n n n n 223cos 2<π,12121lim 2lim <==∞→∞→n n n n n n n所以由根值审敛法,级数∑∞=12n n n 收敛;由比较审敛法,级数∑∞=1223cos n nn n π收敛. <4>∑∞=110ln 1n n;解 因为∞==∞→∞→nn n u n n n 10ln lim 1lim, 而调和级数∑∞=11n n发散, 故由比较审敛法知, 原级数发散. 提示:∞===⋅⋅⋅==⋅=∞→∞→∞→∞→∞→xx x x x x x x x x x x x x 11lim !101ln lim !101 ln lim 1011ln 101limln lim9910<5>∑∞=1n s nna <a >0,s >0>. 解 因为a n a n a s n n ns n n ==∞→∞→)(lim lim , 故由根值审敛法知, 当a <1时级数收敛, 当a >1时级数发散.当a =1时, 原级数成为∑∞=11n s n, 这是p =s 的p -级数, 当s >1时级数收敛, 当s ≤1时级数发散. 3.设正项级数∑∞=1n n u 和∑∞=1n n v 都收敛,证明级数∑∞=+12)(n n n v u 与收敛. 证明 因为∑∞=1n n u 和∑∞=1n n v 都收敛, 所以0lim =∞→n n u ,0lim =∞→n n v . 又因为0)2(lim 2lim 2=+=+∞→∞→n n n nn n n n v u u v u u ,0lim lim 2==∞→∞→n n n n n v v v , 所以级数∑∞=+12)2(n n n n v u u 和级数∑∞=12n n v 都收敛, 从而级数 ∑∑∞=∞=+=++12122)(])2[(n n n n n n n n v u v v u u也是收敛的.4.设级数∑∞=1n n u 收敛,且1lim =∞→n n n u v ,问级数∑∞=1n n v 是否也收敛?试说明理由. 解 级数∑∞=1n n v 不一定收敛. 当∑∞=1n n u 和∑∞=1n n v 均为正项级数时, 级数∑∞=1n n v 收敛, 否则未必. 例如级数∑∞=-11)1(n n 收敛, 但级数∑∞=+-1]11)1[(n n n 发散, 并且有 11)1(11)1(lim =-+-∞→nn n n .5.讨论下列级数的绝对收敛性与条件收敛性:<1>∑∞=-11)1(n p n n ; 解∑∑∞=∞==-111|1)1(|n p n p n n n 是p 级数.故当p >1时级数∑∞=11n p n 是收敛的,当p ≤1时级数∑∞=11n p n 发散.因此当p >1时级数∑∞=-11)1(n p n n 绝对收敛. 当0<p ≤1时,级数∑∞=-11)1(n p n n 是交错级数,且满足莱布尼茨定理的条件,因而收敛,这时是条件收敛的. 当p ≤0时,由于01)1(lim ≠-∞→p nn n ,所以级数∑∞=-11)1(n p n n 发散. 综上所述,级数∑∞=-11)1(n p n n 当p >1时绝对收敛,当0<p ≤1时条件收敛,当p ≤0时发散. <2>∑∞=+++-1111sin )1(n n n n ππ; 解因为1111|1sin )1(|+++≤+-n n n n πππ,而级数∑∞=+111n n π收敛,故由比较审敛法知级数|1sin )1(|111∑∞=+++-n n n n ππ收敛,从而原级数绝对收敛. <3> ∑∞=+-11ln )1(n n n n ; 解因为1ln )11ln(lim 1ln lim 1|1ln )1(|lim ==+=+=+-∞→∞→∞→e n n n n nn n n n n n n ,而级数∑∞=11n n发散,故由比较审敛法知级数|1ln )1(|1∑∞=+-n n n n 发散,即原级数不是绝对收敛的. 另一方面,级数∑∞=+-11ln )1(n n n n 是交错级数,且满足莱布尼茨定理的条件,所以该级数收敛,从而原级数条件收敛.<4>∑∞=++-11)!1()1(n n nn n . 解令1)!1()1(++-=n n n n n u .因为 11)11(112lim )1(12lim )!1()1()!2(lim ||||lim 121<=+⋅++=+⋅++=+⋅++∞→∞→++∞→+∞→enn n n n n n n n n n u u n n n n n n n n n n , 故由比值审敛法知级数|)!1()1(|11∑∞=++-n n n n n 收敛,从而原级数绝对收敛. 6.求下列级限: <1>∑=∞→+n k k k n k n 12)11(311lim ; 解 显然∑=+=nk k k n k s 12)11(31是级数∑∞=+12)11(31n n n n 的前n 项部分和. 因为13)11(31lim )11(31lim 2<=+=+∞→∞→e n n n n n n n n , 所以由根值审敛法, 级数∑∞=+12)11(31n nn n 收敛, 从而部分和数列{s n }收敛.因此01lim )11(311lim 12=⋅=+∞→=∞→∑n n n k k k n s n k n . <2>])2( 842[lim 312719131n n n ⋅⋅⋅⋅⋅∞→. 解n n nn 3 27392313127191312)2( 842+⋅⋅⋅+++=⋅⋅⋅⋅⋅.显然n n n s 3 2739231+⋅⋅⋅+++=是级数∑∞=13n n n 的前n 项部分和. 设∑∞=-=11)(n n nx x S ,则210)1(1]111[][])([)(x x x dx x S x S n n x -='--='='=∑⎰∞=. 因为43)311(131)31(31)31(3132111=-⋅===∑∑∞=-∞=S n n n n n n , 所以43lim =∞→n n s , 从而 4331271913122lim ])2( 842[lim ==⋅⋅⋅⋅⋅∞→∞→nn s n n n .7.求下列幂级数的收敛域:<1>∑∞=+153n n n n x n ; 解 51)53(5)53(31lim 53153lim ||lim 111=++⋅+=+⋅++=∞→++∞→+∞→n n n n n n n n n n n n n n n a a , 所以收敛半径为51=R . 因为当51=x 时, 幂级数成为]1)53[(11+∑∞=n n n , 是发散的; 当51-=x 时, 幂级数成为]1)53[()1(1+-∑∞=n n n n , 是收敛的, 所以幂级数的收敛域为)51,51[-. <2>∑∞=+12)11(n n n x n ; 解 n n n x n u 2)11(+=, 因为||||)11(lim ||lim x e x nu n n n n n =+=∞→∞→, 由根值审敛法, 当e |x |<1, 即ex e 11<<-时, 幂级数收敛; 当e |x |>1,时幂级数发散. 当e x 1-=时, 幂级数成为∑∞=+1)1()11(2n n n e n ;。

华东理工大学级(下)高等数学期中考试试卷(学分)解答

华东理工大学级(下)高等数学期中考试试卷(学分)解答

华东理工大学级(下)高等数学期中考试试卷(学分)解答————————————————————————————————作者:————————————————————————————————日期:华东理工大学2013–2014学年第二学期《高等数学(下)11学分》课程期中考试试卷 2014.4开课学院:理学院, 专业:大面积, 考试形式:闭卷,所需时间 120 分钟考生姓名: 学号: 班级 任课教师题序 一二三四五六总分得分 阅卷人注 意:试 卷 共 两 页 六 大 题一.填空题(本大题共11小题,每小题4分,共44分):1、微分方程222'y x e yx y -=的通解为 。

答:C e xe e xx y +-=22412122、微分方程0''9)4(=+y y 的通解为 。

答:x C x C x C C y 3sin 3cos 4321+++=3、函数 zxy u )(= 对变量x 的偏导数 =x u 。

答:12)(--=z x xy x yz u 4、设 ))arctan(,,(xyz e y xze f u zy+=,其中f 关于所有变量有一阶连续偏导数, 则=∂∂yu。

答:3222211f zy x xz f f xze y u y +++=∂∂ 5、设函数z z x y =(,)由方程 ),(yzxz f z = 所确定,其中f 关于所有变量有一阶连续偏导数,则∂∂zy= 。

答:21222yf f xy y zf ---6、设1)(-=⋅⨯c b a ρρρ,则=+⨯+⋅)]()[(c b b a b ρρρρϖ 。

答: 17、函数)ln(22z y x u ++=在点)1,0,1(处最大的方向导数等于 。

答:228、微分方程 0'2''=+y xy 的通解=y 。

答: 21C xC y +-= 9、设平面π过直线⎩⎨⎧=+-=++04,05:z x z y x L 则原点到平面π距离d 的范围是 。

高等数学方明亮版第十一章答案

高等数学方明亮版第十一章答案
高等数学方明亮版第十一章
习 题 11-1
1.判断下列方程是几阶微分方程?
(1) ;(2) ;
(3) ;(4) .
解微分方程中所出现的未知函数的导数(或微分)的最高阶数,叫做微分方程的阶.所以有,
(1)一阶微分方程;(2)一阶微分方程;
(3)三阶微分方程;(4)三阶微分方程.
2.指出下列各题中的函数是否为所给微分方程的解:

故有 .
设子弹穿过木板的时间为 秒,则

又已知 时, 米/秒,于是

从而,

为此有

所以
(秒),
故子弹穿过木板运动持续了 (秒).
4.求下列齐次方程的通解或特解:
(1) ;(2) ;
(3) ;(4) ;
(5) , ;(6) , .
解(1)原方程变形,得

令 ,即 ,有 ,则原方程可进一步化为

分离变量,得

(4)显然,原方程是一个齐次方程,又注意到方程的左端可以看成是以 为变量的函数,故令 ,即 ,有 ,则原方程可化为

整理并分离变量,得

两端积分,得



将 代入上式并整理,得原方程的通解为

(5)原方程可化为

令 ,有 ,则原方程可进一步化为



两端积分,得

将 代入上式,得

代入初始条件 ,得
(1) , ;
(2) , ;
(3) , ;
(4) , .
解(1)将 代入所给微分方程的左边,得左边 ,而右边=2 左边,所以 是 的解.
(2)将 , 代入所给微分方程的左边,得左边 右边,所以 是所给微分方程 的解.

高等数学下册 第十一章 综合练习题答案

高等数学下册 第十一章 综合练习题答案

第十一章自测题参考答案一、填空题: 1.()⎰Γ++ds R Q P γβαcos cos cos 切向量2.()⎰⎰∑++dS R Q P γβαcos cos cos 法向量3.⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂D dxdy y P x Q 4. 0 5. π4 6. π2 7. 0 8.()⎰⎰101,dy y x f dx , ()⎰⎰-110,dy y x f dx , 09.()⎰-Lds x x y x P 22,二、选择题:1.C2.C3.A4.A5.D 三、计算题:1.解 由于曲线L 表达式中x ,y, z 是对称的,所以⎰Lds x 2=⎰Lds y 2=⎰Lds z 2,故⎰L ds x 2=()⎰++ds z y x 22231=3223223131a a a ds a L ππ=⋅=⎰. 2.解 原式=()[](){}⎰+---π20sin cos 1cos 12dt t t t()⎰+=π202sin sindt t t =π202sin 2121⎪⎭⎫ ⎝⎛-t t =π 3.解 记222:y x a z S --=,D :xoy 平面上圆域222a y x ≤+原式=()dxdy y z x z y x a y x D222221⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+--++⎰⎰ =()⎰⎰--⋅--++Ddxdy yx a y x a y x a2222221注意到积分区域D 关于坐标轴的对称性及被积函数的奇偶性知⎰⎰--Ddxdy yx a x 222=⎰⎰--Ddxdy yx a y 222=0,所以原式=⎰⎰Ddxdy a=2aa π⋅=3a π.4.解 利用高斯公式原式=()⎰⎰⎰Ω++dxdydz z y x 2其中Ω为S 所围成的空间区域。

由Ω关于坐标平面的对称性知⎰⎰⎰Ωxdxdydz =⎰⎰⎰Ωydxdydz =0,所以,原式=⎰⎰⎰Ωzdxdydz 2=⎰⎰⎰+1222y x D zdz dxdy xy=()⎰⎰--xyD dxdy y x 221=()⎰⎰-12201ρρρθπd d=2412ππ=⋅5.解 原式=()()[]()⎰+--π202222sin cos 1cos 1dt t a t a t a=()⎰-π20253cos 12dt t a =⎰π20253sin 8dt at=du u a⎰π53sin 16=315256a 6.解 ()()()()()x f y x Q y x f e y x P x -=+=,,,要使曲线积分与路径无关,当且仅当xQ y P ∂∂=∂∂,即()()x f x f e x '-=+ 解此微分方程可得()x xe Cex f 21-=-,又()210=f ,所以C =1,故()x x e e x f 21-=- 现在计算从()0,0A 到()1,1B 的曲线积分的值.由于积分与路径无关,故选取有向折线________CB AC +进行积分,其中()0,1C 。

东华理工大学高等数学A练习册答案(下)(学生用)

东华理工大学高等数学A练习册答案(下)(学生用)

第7章 微分方程§7.5 可降阶的高阶微分方程一、填空题答:1. 2121ln arctan C x C x x x y +++-= 2.22121C x x e C y x +--= 3.121C xy C e =+二、 y =C 1ln x +C 2 . 三、 22x x y -=.§7.6 高阶线性微分方程一、判断题1.( √ )2.( ╳ )3.( √ ) 二、选择题答:1.C 2.C 3.C 4.B§7.7 常系数齐次线性微分方程一、判断题1.( √ )2.( ╳ )3.( ╳ ) 二、填空题1、y =C 1e x +C 2e-2x2、 t t e C e C x 252251t +=, 3、 y =e -3x (C 1cos2x +C 2sin2x ).4、 y =C 1+C 2x +C 3e x +C 4xe x5、y =e 2x sin3x三、选择题答:1.B 2.B 3.A 4.C 5.B四、求下列微分方程(1) y =C 1+C 2e 4x . (2) y =e 2x (C 1cos x +C 2sin x ). (3) y =C 1+C 2x +C 3e x +C 4xe x . (4))2(21x e y x+=-.§7.8 常系数非齐次线性微分方程一、填空题 答:1、x x xe e C e C y ++=-2211,2、x xe x C x C e y x x 2cos 41)2sin 2cos (21-+=.3、x x x y 2sin 31sin 31cos +-+-= 4、x xx y cos 2sin 21+= 二、选择题答:1.D 2.B 3.A 4.C 5.D 6.D三、)323(2221x x e e C e C y x x x -++=--- 四、 2527521++-=x x e e y . 第12章 无穷级数§12.1 常数项级数的概念与性质一、判断题答:1. √2. √ 3. ×4. ×5. √ 6. √ 二、填空题答:1. 1/2、3/8 、5/16 2. [(-1)^(n-1)]*[(n+1)/n] 3. [x^(n/2)]*(1/2*n!) 4. 0 三、选择题答:1.C 2.A 3.C 4.C四、判定下列级数的收敛性(1)级数收敛. (2) 该级数发散. (3) 级数发散.§12.2 常数项级数的审敛法一、判断题答:1. √ 2. × 3. √4.√ 5√6. ×7. √8. √9.√ 二、填空题答:1.P>1 2. {}n s 有界 3. 绝对收敛 4. 收敛5.1lim 0n nn u u u +=⎧⎨>⎩三、选择题答:1. D 2.C 3.D 4.A 5.C四、用比较审敛法或极限形式的比较审敛法判定下列级数的收敛性: (1) 级数发散. (4) 级数收敛.五、用比值审敛法判定下列级数的收敛性: (1) 级数发散. (2) 级数收敛.六、用根值审敛法判定下列级数的收敛性:(1) 级数收敛; (2) 当b <a 时级数收敛, 当b >a 时级数发散. 七、 (1) 此级数是收敛的. 条件收敛的. (2) 级数收敛, 并且绝对收敛.§12.3 幂级数一、判断题答:1. √ 2. √ 3. √ 4. √ 5. × 二、填空题答:1.[-1/2、1/2] 2. [-1,5) 3. (-1,1) ,11ln21xx+- 4. 绝对收敛三、选择题 答:1.D 2.B 3 D四、求下列幂级数的收敛域:(1) 收敛域为(-1, 1). (2) 收敛域为[-1, 1]. 五、利用逐项求导或逐项积分, 求下列级数的和函数: (1) ()S x 21(11)(1)x x =-<<-. (2) ()S x 11ln (11)21x x x+=-<<- . 提示: 由)0()()(0S x S dx x S x-='⎰得⎰'+=xdx x S S x S 0)()0()(.§12.4 函数展开成幂级数一、判断题答:1. √2. × 3. × 二、填空题 1. 答:1.11ln 2(1)2nn nn x n ∞-=+-∑ ,(-2,2 ] 2. 1111()(4)23nn n n x ∞++=-+∑ ,(-6,-2) 3.)( ])3()!12(3)3()!2(1[)1(211202+∞<<-∞++++-+∞=∑x x n x n n n n nππ 三、选择题答:1.B 2.C 3.C四、(1) 210sh (21)!n n x x n -∞==-∑, x ∈(-∞, +∞). (2) 212212sin (1)(2)!n n n n x x n -∞=⋅=-∑ x ∈(-∞, +∞). 五、∑=<<--=n n n n x x x 0)60( )33()1(311.§12.5 函数的幂级数展开式的应用一、填空题答:1.3. ; 2、)( !4cos2cos 02+∞<<-∞=∑∞=x x n n x e n n nx π.§12.7 傅立叶级数一、判断题 答:1. × 2. √3.√4.√二、填空题 1.5 2. ,n n a b - 3. nx nx f n sin 1)(1∑∞==(0<x ≤π), 级数在x =0处收敛于0. 三、选择题答:1.A 2.C 3.B 4A 5.B四、∑∞=+--+=121cos 141)1(422cos n n nx n x ππ(-π≤x ≤π). 五、正弦级数为nx n n nx f n n sin ]2)2()1[(4)(1323∑∞=---=ππ(0≤x <π), 级数在x =0处收敛于0.余弦级数为 nx nx f n n cos )1(832)(122∑∞=-+=π(0≤x ≤π).§12.8 一般周期函数的傅里叶级数一、 ∑∞=+-+=12122cos )1(11211)(n n x n n x f ππ, x ∈(-∞, +∞).二、正弦级数13218(1)2[(1)1]{}sin2n n n n xn n πππ+∞=---+∑, x ∈[0, 2). 余弦级数:221416(1)cos 32n n n xn ππ∞=-+∑, x ∈[0, 2].第8章 空间解析几何与向量代数§8.1 向量及其线性运算一、判断题。

高数答案第11章

高数答案第11章

第十一章 曲线积分与曲面积分 (09级下学期用) § 1 对弧长的曲线积分 1设 L 关于x 轴对称,1L 表示L 在x 轴上侧的部分,当()y x f ,关于y 是偶函数时,()=⎰Lds y x f ,( B )()⎰1,L ds y x f C 。

()⎰-1,2L ds y x f D.ABC 都不对2、设L 是以点()()()()1,0,0,1,1,0,0,1--D C B A 为顶点的正方形边界,则⎰+Lyx ds =( C )A 。

24 D 。

223、有物质沿曲线L :()103,2,32≤≤===t t z t y t x 分布,其线密度为,2y =μ,则它的质量=m ( A )++1421dt t t t B 。

⎰++104221dt t t tC 。

⎰++1421dt t t D.⎰++1421dt t t t4.求,⎰Lxds 其中L 为由2,x y x y ==所围区域的整个边界解:,⎰Lxds =()22155121241111+-=++⎰⎰xdx dy yy 5.,ds y L⎰其中L 为双纽线)0)(()(222222>-=+a y x a y x解:原积分=()()222sin 4sin 442022'2441-==+=⎰⎰⎰a d ad r r r ds y L χππθθθθθ6.⎰+Lds y x ,22 其中L 为()022>=+a axy x原积分222cos 2a adt t a ==⎰π7.,2⎰Lds x 其中L 为球面2222a z y x =++与平面0=-y x 的交线解:将y x =代入方程2222a z y x =++得2222a z x =+于是L 的参数方程:ta z t a y t a x sin ,sin 2,cos 2===,又adt ds =原积分=⎰=ππ203222cos 2a adt t a 8、求均匀弧()0,sin ,cos ≤<∞-===t e z t e y t e x t t t 的重心坐标33,30===⎰∞-dt e M dt e ds tt,523cos 100==⎰∞-dt e t e Mx t t ,21,5100=-=z y§2 对坐标的曲线积分 一、选择题1。

高等数学下册第十一章习题答案详解

高等数学下册第十一章习题答案详解

高等数学下册第十一章习题答案详解1.设L 为xOy 面内直线x a =上的一段,证明:(,)d 0LP x y x =⎰,其中(),P x y 在L 上连续.证:设L 是直线x =a 上由(a ,b 1)到(a ,b 2)这一段,则 L :12x ab t b y t =⎧≤≤⎨=⎩,始点参数为t =b 1,终点参数为t =b 2故 ()()()221d ,d d 0d 0d b b L b b a P x y x P a,t t P a,t t t ⎛⎫=⋅=⋅= ⎪⎝⎭⎰⎰⎰2.设L 为xOy 面内x 轴上从点(,0)a 到点(,0)b 的一段直线,证明:(,)d (,0)d bLaP x y x P x x =⎰⎰,其中(),P x y 在L 上连续.证:L :0x xa xb y =⎧≤≤⎨=⎩,起点参数为x =a ,终点参数为x =b . 故()(),d ,0d bLaP x y x P x x =⎰⎰3.计算下列对坐标的曲线积分: (1)22()d Lxy x -⎰,其中L 是抛物线2y x =上从点(0,0)到点(2,4)的一段弧;(2)d Lxy x ⎰,其中L 为圆周()222x a y a -+=(0)a >及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);(3)d d Ly x x y +⎰,其中L 为圆周cos ,sin x R t y R t ==上对应t 从0到π2的一段弧; (4)22()d ()d Lx y x x y y x y+--+⎰,其中L 为圆周222x y a +=(按逆时针方向绕行); (5)2d d d x x z y y z +-⎰Γ,其中Γ为曲线,,x k y acos z asin θθθ===上对应θ从0到π的一段弧;(6) 322d 3d ()d x x zy y xy z ++-⎰Γ,其中Γ是从点3,2,1()到点0,0,0()的一段直线;(7)d d d x y y z -+⎰Γ,其中Γ为有向闭折线ABCA ,这里AB C 、、依次为点1,0,0()、010(,,)、(001),,;(8)22(2)d (2)d Lx xy x y xy y -+-⎰,其中L 是抛物线2y x =上从点(1,1)-到点(1,1)的一段弧.解:(1)L :y =x 2,x 从0变到2,()()22222435001156d d 3515L x y x x x x x x ⎡⎤-=-=-=-⎢⎥⎣⎦⎰⎰ (2)如图11-1所示,L =L 1+L 2.其中L 1的参数方程为图11-1cos 0πsin x a a tt y a t =+⎧≤≤⎨=⎩L 2的方程为y =0(0≤x ≤2a ) 故()()()()()12π20π320ππ32203d d d 1+cost sin cos d 0d sin 1cos d sin d sin dsin π2LL L axy x xy x xy xa a t a a t t x a t t ta t t t ta =+'=⋅++=-+=-+=-⎰⎰⎰⎰⎰⎰⎰⎰(3)()π20π220π220d d sin sin cos cos d cos 2d 1sin 220Ly x x y R t R t R tR t t Rt tR t +=-+⎡⎤⎣⎦=⎡⎤=⎢⎥⎣⎦=⎰⎰⎰(4)圆周的参数方程为:x =a cos t ,y =a sin t ,t :0→2π. 故()()()()()()222π202π220d d 1cos sin sin cos sin cos d 1d 2πLx y x x y yx y a t a t a t a t a t a t t a a t a +--+=+---⎡⎤⎣⎦=-=-⎰⎰⎰(5)()()()2π220π3220π3320332d d d sin sin cos cos d d 131ππ3x xz y y zk k a a a a k a k a k a Γθθθθθθθθθθ+-=⋅+⋅--=-⎡⎤=-⎢⎥⎣⎦=-⎰⎰⎰(6)直线Γ的参数方程是32=⎧⎪=⎨⎪=⎩x t y t z t t 从1→0.故()()322322103141d 3d d 27334292d 87d 1874874x x zy y x y z t t t t t tt tt Γ++-⎡⎤=⋅+⋅⋅+-⋅⎣⎦==⋅=-⎰⎰⎰(7)AB BC CA Γ=++(如图11-2所示)图11-21:0y x AB z =-⎧⎨=⎩,x 从0→1()01d d d 112AB x y y z dx -+=--=-⎡⎤⎣⎦⎰⎰. 0:1x BC y z =⎧⎨=-⎩,z 从0→1()()()1010120d d d 112d 12232BC x y y z z dz z zz z -+=--+-⎡⎤⎣⎦=-⎡⎤=-⎢⎥⎣⎦=⎰⎰⎰0:1y CA z x =⎧⎨=-⎩,x 从0→1[]1d d d 1001CAx y y z dx -+=-+=⎰⎰.故()()d d d d d d 312122LABBCCAx y y zx y y z-+=++-+=-++=⎰⎰⎰⎰(8)()()()()()221224211235412d 2d 222d 224d 1415L x xy x y xy yx x x x x x x xxx x x x---+-⎡⎤=-⋅+-⋅⋅⎣⎦=-+-=-⎰⎰⎰4. 计算()d ()d Lx y x y x y ++-⎰,其中L 分别是:(1)抛物线2y x =上从点(1,1)到点(4,2)的一段弧; (2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从点(1,1)到点(1,2),然后再沿直线到点(4,2)的折线; (4)曲线2221,1x t t y t =++=+上从点(1,1)到点(4,2)的一段弧. 解:(1)L :2x y y y ⎧=⎨=⎩,y :1→2,故()()()()()2221232124321d d 21d 2d 111232343L x y x y x yy y y y y yy y y yy y y ++-⎡⎤=+⋅+-⋅⎣⎦=++⎡⎤=++⎢⎥⎣⎦=⎰⎰⎰ (2)从(1,1)到(4,2)的直线段方程为x =3y -2,y :1→2 故()()()()()2121221d d 32332d 104d 5411L x y x y x yy y y y y y yy y ++-=-+⋅+-+⎡⎤⎣⎦=-⎡⎤=-⎣⎦=⎰⎰⎰ (3)设从点(1,1) 到点(1,2)的线段为L 1,从点(1,2)到(4,2)的线段为L 2,则L =L 1+L 2.且 L 1:1x y y=⎧⎨=⎩,y :1→2;L 2:2x x y =⎧⎨=⎩,x :1→4;故()()()()()12122211d d 101d 1d 212L x y x y x yy y y y y y y ++-=+⋅+-⎡⎤⎣⎦⎡⎤=-=-⎢⎥⎣⎦=⎰⎰⎰()()()()()()24144211d d 220d 12d 22272L x y x y x yx x x x x x ++-=++-⋅⎡⎤⎣⎦⎡⎤=+=+⎢⎥⎣⎦=⎰⎰⎰从而()()()()()12d d d d 1271422LL L x y x y x yx y x y x y++-=+++-=+=⎰⎰⎰(4)易得起点(1,1)对应的参数t 1=0,终点(4,2)对应的参数t 2=1,故()()()()()()122132014320d d 32412d 10592d 10592432323L x y x y x y t t t tt t tt t t tt t t t ++-⎡⎤=++++--⋅⎣⎦=+++⎡⎤=+++⎢⎥⎣⎦=⎰⎰⎰5. 设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比.若质点由(,0)a 沿椭圆移动到0,Bb (),求力所做的功. 解:依题意知 F =kxi +kyj ,且L :cos sin x a t y a t=⎧⎨=⎩,t :0→π2()()()()π2022π20π222022d d cos sin sin cos d sin 2d 2cos 2222LW kx x ky yka t t kb t b t t k b a t tk b a t k b a =+=-+⋅⎡⎤⎣⎦-=--⎡⎤=⎢⎥⎣⎦-=⎰⎰⎰(其中k 为比例系数)6. 计算对坐标的曲线积分:(1)d xyz z ⎰Γ,Γ为2221x y z ++=与z y =相交的圆,方向按曲线依次经过第Ⅰ、Ⅱ、Ⅶ、Ⅷ卦限;(2)222222(-)d ()d ()d y z x z x y x y z +-+-⎰Γ,Γ为2221x y z ++=在第Ⅰ卦限部分的边界曲线,方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分. 方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分. 解:(1)Γ:2221x y z y z ⎧++=⎨=⎩ 即2221x z y z ⎧+=⎨=⎩其参数方程为:cos x ty tz t =⎧⎪⎪⎪=⎨⎪⎪=⎪⎩ t :0→2π 故:2π2π2202π202π0222d cos sin sin cos d 2sin cos d 2sin 2d 21cos 4d 22πxyz z t t t t t t t t t t ttΓ=⋅⋅⋅==-==⎰⎰⎰⎰⎰(2)如图11-3所示.图11-3Γ=Γ1+Γ2+Γ3.Γ1:cos sin 0x ty t z =⎧⎪=⎨⎪=⎩t :0→π2,故()()()()()1222222π2220π3320π320d d d sin sin cos cos d sincos d 2sin d 24233yz x z x y x y zt t t t tt t tt t Γ-+-+-⎡⎤=--⋅⎣⎦=-+=-=-⋅=-⎰⎰⎰⎰又根据轮换对称性知()()()()()()1222222222222d d d 3d d d 4334y z x z x y x y z y z x z x y x y zΓΓ-+-+-=-+-+-⎛⎫=⨯- ⎪⎝⎭=-⎰⎰ 习题11-31. 应用格林公式计算下列积分:(1)(24)d (356)d Lx y x x y y -+++-⎰,其中L 为三顶点分别为()()0,0,3,0和(32),的三角形正向边界;(2)222(cos 2sin e )d (sin 2e )d x x Lx y x xy x y x x x y y +-+-⎰,其中L 为正向星形线222333x y a +=0a >();(3)3222(2cos )d (12sin 3)d Lxy y x x y x x y y -+-+⎰,其中L 为抛物线22πx y =上由点0,0()到点π,12⎛⎫⎪⎝⎭的一段弧; (4)22()d (sin )d Lxy x x y y --+⎰,其中L 是圆周22y x x =-上由点0,0()到()1,1的一段弧;(5)(e sin )d (e cos )d x x Ly my x y m y -+-⎰,其中m 为常数,L 为由点(),0a 到0,0()经过圆22x y ax +=上半部分的路线(a 为正数).图11-4解:(1)L 所围区域D 如图11-4所示,P =2x -y +4,Q =3x +5y -6,3Qx∂=∂,1P y ∂=-∂,由格林公式得 ()()d d 24356d d 4d d 4d d 1432212LD DDx yx y x y Q P x y x y x yx y+-++-∂∂⎛⎫-= ⎪∂∂⎝⎭===⨯⨯⨯=⎰⎰⎰⎰⎰⎰⎰(2)P =x 2y cos x +2xy sin x -y 2e x ,Q =x 2sin x -2y e x , 则2cos 2sin 2e x P x x x x y y∂=+-∂,2cos 2sin 2e x Qx x x x y x∂=+-∂.从而P Qy x∂∂=∂∂,由格林公式得.()()222d dcos2sin e sin2ed d++--∂∂⎛⎫-= ⎪∂∂⎝⎭=⎰⎰⎰x xLDx yx y x xy x y x x yQ Px yx y(3)如图11-5所示,记OA,AB,BO围成的区域为D.(其中BO=-L)图11-5P=2xy3-y2cos x,Q=1-2y sin x+3x2y2262cosPxy y xy∂=-∂,262cosQxy y xx∂=-∂由格林公式有:d d d d0L OA AB DQ PP x Q y x yx y-++∂∂⎛⎫-+==⎪∂∂⎝⎭⎰⎰⎰故π2122001222d d d dd d d dππd d12sin3243d12π4π4++=+=+++⎛⎫=+-+⋅⋅⎪⎝⎭⎛⎫=-+⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰L OA ABOA ABP x Q y P x Q yP x Q y P x Q yO x yy yyy y(4)L、AB、BO及D如图11-6所示.图11-6由格林公式有d d d d++∂∂⎛⎫-+=- ⎪∂∂⎝⎭⎰⎰⎰L AB BO DQ PP x Q y x yx y而P=x2-y,Q=-(x+sin2y).1∂=-∂Py ,1∂=-∂Q x,即,0∂∂-=∂∂Q P x y 于是()d d d d 0+++++=+=⎰⎰⎰⎰LABBOL AB BOP x Q y P x Q y从而()()()()()()()22222211220011300d d d d sin d d d d sin sin d d 1sin 131sin 232471sin 264LLBA OB P x Q y x yx y x y x y x yx y x y x y x y y x x y x y y +=--+=-+--+-+=-++⎡⎤⎡⎤=+-+⎢⎥⎢⎥⎣⎦⎣⎦=-+⎰⎰⎰⎰⎰⎰(5)L ,OA 如图11-7所示.图11-7P =e x sin y -my , Q =e x cos y -m , e cos x P y m y ∂=-∂,e cos x Q y x ∂=∂ 由格林公式得:22d d d d d d d d 1π22π8L OA D DDQ P P x Q y x y x y m x ym x ya m m a +∂∂⎛⎫-+= ⎪∂∂⎝⎭==⎛⎫=⋅⋅ ⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰ 于是:()()[]220202πd d d d 8πd 0e sin 00e cos08π0d 8π8+=-+=-+⋅⋅-⋅⋅-=-=⎰⎰⎰⎰L OA a x x a m a P x Q y P x Q y m a xm m m a xm a2. 设a 为正常数,利用曲线积分,求下列曲线所围成的图形的面积:(1) 星形线 33cos ,sin ;x a t y a t == (2) 双纽线 22cos2;r a θ= (3) 圆 22x y ax ++=解:(1) ()()()()()2π3202π2π242222002π202π202π202d sin 3cos d sin 33sin cos d sin 2sin d 43d 1cos 41cos 2163d 1cos 2cos 4cos 2cos 416312π+d cos 2cos 61623π8LA y x a t a t tt a t t t a t t t a t t t a tt t t t a t t t a =-=-⋅-==⋅=--=--+⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰(2)利用极坐标与直角坐标的关系x =r cos θ,y =r sin θ得 cos cos 2x a θ=sin cos 2y a θ=从而x d y -y d x =a 2cos2θd θ. 于是面积为:[]π24π4π24π4212d d 2cos 2d sin 22LA x y y x a a a θθθ--=⋅-===⎰⎰(3)圆x 2+y 2=2ax 的参数方程为 cos 02πsin x a a y a θθθ=+⎧≤≤⎨=⎩故()()[]()2π022π021d d 21d a+acos sin 2d 1cos 2πcos sin L A x y y xa a a a a θθθθθθθ=-=-=+=⋅-⎰⎰⎰ 3. 证明下列曲线积分与路径无关,并计算积分值: (1)(1,1)(0,0)()(d d )x y x y --⎰;(2)(3,4)2322(1,2)(6)d (63)d xy y x x y xy y -+-⎰;(3)(1,2)2(1,1)d d y x x yx +⎰沿在右半平面的路径; (4)(6,8)(1,0)⎰.证:(1)P =x -y ,Q =y -x .显然P ,Q 在xOy 面内有连续偏导数,且1P Q y x∂∂==-∂∂,故积分与路径无关.取L 为从(0,0)到(1,1)的直线段,则L 的方程为:y =x ,x :0→1.于是()()()()11,100,00d 0d d x x y x y ==--⎰⎰(2) P =6xy 2-y 3,Q =6x 2y -3xy 2.显然P ,Q 在xOy 面内有连续偏导数,且2123Pxy y y∂=-∂,2123Qxy y x∂=-∂,有P Q y x ∂∂=∂∂,所以积分与路径无关. 取L 为从(1,2)→(1,4)→(3,4)的折线,则()()()()()()[]3,423221,2432214323212d d 663d d 63966434864236x y xyy x y xy y x y y x y y x x +--=+--=+⎡⎤--⎣⎦=⎰⎰⎰(3)2y P x =,1Q x =-,P ,Q 在右半平面内有连续偏导数,且21P y x ∂=∂,21Q x x ∂=∂,在右半平面内恒有P Qy x∂∂=∂∂,故在右半平面内积分与路径无关. 取L 为从(1,1)到(1,2)的直线段,则()()()21,2211,1d d d 11x y x x y y -==--⎰⎰(4) P =,Q ,且P Qy x∂∂==∂∂分在不含原点的区域内与路径无关, 取L 为从(1,0)→(6,0)→(6,8)的折线,则()()686,811,0801529x y =+⎡=+⎣=⎰⎰⎰4.验证下列()(),d ,d P x y x Q x y y +在整个xOy 平面内是某一函数(),u x y 的全微分,并求这样的一个函数(),u x y :(1)()()2d 2d x y x x y y +++;(2)22d d xy x x y +;(3)223238d 812e d yx y xy x x x y y y ++++()(); (4)222cos cos d 2sin sin d x y y x x y x x y y ++-()(). 解:证:(1)P =x +2y ,Q =2x +y .2P Q y x ∂∂==∂∂,所以(x +2y )d x +(2x +y )d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分. ()()()()()(),0,0022022d d ,22d d 2222222x y xy yu x y x y x y x y x x yx y x y xy x y xy =+++=++⎡⎤=++⎢⎥⎣⎦=++⎰⎰⎰(2)P =2xy ,Q =x 2, 2P Qx y x∂∂==∂∂,故2xy d x +x 2d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分. ()()(),20,02022d d ,0d d x y xy u xy x x y x y x x yx y=+=+=⎰⎰⎰(3)P =3x 2y +8xy 2,Q =x 3+8x 2y +12y e y ,2316∂∂=+=∂∂P Qx xy y x,故(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y 是某个定义在整个xOy 面内函数u (x ,y )的全微分, ()()()()()(),22320,03200322d ,38812e 0d d 812e 412e 12e 12x y y xyyy y u x x y x y x y x x y y x y x x y y x y x y y =++++=+++=++-+⎰⎰⎰(4)P =2x cos y +y 2cos x ,Q =2y sin x -x 2sin y ,2sin 2cos P x y y x y ∂=-+∂,2cos 2sin Qy x x y x∂=-∂, 有P Qy x∂∂=∂∂,故(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y 是某一个定义在整个xOy 面内的函数u (x ,y )的全微分,()()()()()(),220,020022d d ,2cos cos 2sin sin 2d d 2sin sin sin cos x y xyu x y x y x y y x y x x y x x yy x x y y x x y=++-=+-=+⎰⎰⎰5.证明:22xdx ydyx y ++在整个xOy 平面内除y 轴的负半轴及原点外的开区域G 内是某个二元函数的全微分,并求出这样的一个二元函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 11 章(之1)(总第59次)教材内容:§11.1多元函数 1.解下列各题:**(1). 函数f x y x y (,)ln()=+-221连续区域是 .答:x y 221+>**(2). 函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000, 则( )(A) 处处连续 (B) 处处有极限,但不连续(C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续 答:(A )**2. 画出下列二元函数的定义域: (1)=u y x -;解:定义域为:{}x y y x ≤),(,见图示阴影部分:(2))1ln(),(xy y x f +=;解:{}1),(->xy y x ,第二象限双曲线1-=xy 的上方,第四象限双曲线1-=xy 的下方(不包括边界,双曲线1-=xy 用虚线表示).(3)yx yx z +-=. 解:()()⎩⎨⎧-≠≥⇔⎩⎨⎧≠+≥+-⇔≥+-y x y x y x y x y x y x y x 000.***3. 求出满足22,y x x y y x f -=⎪⎭⎫ ⎝⎛+的函数()y x f ,. 解:令⎪⎩⎪⎨⎧=+=x yt y x s , ∴⎪⎩⎪⎨⎧+=+=t st y t s x 11∴()()()t t s t t s s t s f +-=+-=111,22222, 即 ()()y y x y x f +-=11,2. ***4. 求极限:()()220,0,11limyx xy y x +-+→.解:()()()()()22222222112111110yx xy y x yx xy xyyx xy ++++≤+++=+-+≤()011222→+++=xy y x (()()0,0,→y x ) ∴()()011lim220,0,=+-+→yx xy y x .**5. 说明极限()()22220,0, lim y x y x y x +-→不存在.解:我们证明()y x ,沿不同的路径趋于()0,0时,极限不同.首先,0=x 时,极限为()()1lim 2222220,0,0-=-=+-→=y y y x y x y x x ,其次,0=y 时,极限为()()1lim 2222220,0,0==+-→=x x y x y x y x y ,故极限()()22220,0,y y lim +-→x x y x 不存在.**6. 设112sin ),(-+=xy x y y x f ,试问极限),(lim )0,0(),(y x f y x →是否存在?为什么?解:不存在,因为不符合极限存在的前提,在)0,0(点的任一去心邻域内函数112sin ),(-+=xy x y y x f 并不总有定义的,x 轴与y 轴上的点处函数),(y x f 就没有定义.***7. 试讨论函数z x yxy=+-arctan1的连续性. 解:由于arctan x yxy+-1是初等函数,所以除xy =1以外的点都连续,但在xy =1上的点处不连续.**8. 试求函数f x y xyx y(,)sin sin =+22ππ的间断点.解:显然当(,)(,),x y m n m n Z =∈时,f x y (,)没定义,故不连续. 又f x y xyx y(,)sin sin =+22ππ是初等函数. 所以除点(,)m n (其中m n Z ,∈)以外处处连续.第 11 章(之2) (总第60次)教材内容:§11.2 偏导数 [§11.2.1]**1.解下列各题: (1)函数32),(y x y x f +=在)0,0(点处 ( )(A ))0,0(x f '和)0,0(y f '都存在; (B ))0,0(x f '和)0,0(y f '都不存在; (C ))0,0(x f '存在,但)0,0(y f '不存在; (D ))0,0(x f '不存在,但)0,0(y f '存在. 答:(D ).(2) 设z x y xy=+-()arcsin2,那么∂∂z y (!,)2= ( )(A) 0 ; (B) 1; (C) π2; (D) π4. 答:(D).(3)设()xy y x f =,,则=)0,0('x f ______,=)0,0('y f __________.解:由于0)0,(=x f ,0)0,0('=∴x f ,同理 0)0,0('=y f .**2. 设z x y x y e xy =-+++2322ln , 求 z z x y ,. 解:z x x yye x xy=+++1322, z y x y xe y xy =-+++2322.**3. 求函数xyz arctan =对各自变量的偏导数. 解:2222,y x xz y x y z yx +=+-=.**4. 设f x y x x y x y x y (,)ln()=++≠+=⎧⎨⎩222222200,求f f x y (,),(,)0000.解:f x x x x x (,)limln 000022==→, f yy y (,)lim 000000=-=→.***5. 求曲线⎩⎨⎧=+-=122x y xy x z 在()1,1,1点处切线与y 轴的夹角.解:由于曲线在平面1=x 内,故由 ()()()121,11,1=+-=y x z y ,得切线与y 轴的夹角为 41arctan π=.[也可求出切向量为{}1,1,0]∴夹角={}{}422arccos12110,1,01,1,0arccos 22π==+.***6. 设函数ϕ(,)x y 在点)0,0(连续,已知函数f x y x y x y (,)(,)=-ϕ在点)0,0(偏导数)0,0(x f '存在,(1)证明ϕ(,)000=; (2)证明)0,0(y f '也一定存在.解:(1)lim(,)(,)lim (,)∆∆∆∆∆∆∆x x f x f x x x x→→-=000000ϕ, 因为)0,0(x f '存在,所以 lim(,)lim (,)∆∆∆∆∆∆∆∆x x x x x x x x→+→-⋅=-⋅0000ϕϕ即 ϕϕ(,)(,)0000=-, 故 ϕ(,)000=.(2)由于ϕ(,)x y 在点)0,0(连续,且ϕ(,)000=,所以0→∆y 时,),0(y ∆ϕ是无穷小量,而yy ∆∆是有界量,所以0),0(lim )0,0(),0(lim00=∆∆∆=∆-∆→∆→∆yy y y f y f x y ϕ,即0)0,0(='y f .第 11 章(之3) (总第61次)教材内容:§11.2 偏导数 [§11.2.2 ~ 11.2.4]**1. 求函数()x y z x z y x f sh ch ,,-=的全微分,并求出其在点()2ln ,1,0=P 处的梯度向量.解:()()()x y d z x d z y x df sh ch ,,-=()zdzx xdy dx x y z xdx y xdy zdz x zdx sh sh ch ch ch sh sh ch +--=--+=∴()()dx z y x df 41,,2ln ,1,0=, ()()⎭⎬⎫⎩⎨⎧=∇0,0,41,,2ln ,1,0z y x f . **2.求函数xyyx z -+=1arctan的全微分: 解:xyyx d dz -+=1arctan)arctan (arctan y x d +=2211)(arctan )(arctan y dy x dx y d x d +++=+=**3. 设z xy xy =-sec ()ln()21,求d z .解:222)]1[ln()]1d[ln()(sec )](d[sec )]1[ln(d ----=xy xy xy xy xy z)]d d (1)(sec )d d )(tan()(sec 2)1[ln()]1[ln(1222y x x y xy xy y x x y xy xy xy xy +--+--= )1(ln )(cos )1()d d ](1)1)(tan()1ln(2[22--+---=xy xy xy y x x y xy xy xy .**4. 利用df f ≈∆,可推出近似公式:()()()y x df y x f y y x x f ,,,+≈∆+∆+, 并利用上式计算()()2203.498.2+的近似值.解:由于()()()y x df y x f y y x x f ,,,+≈∆+∆+, 设()22,y x y x f +=,03.0,02.0,4,3=∆-=∆==y x y x ,于是 ()2222,yx y y x x yx ydy xdx y x df +∆+∆=++=,()()22,,yx y y x x y x f y y x x f +∆+∆+≈∆+∆+,∴()()()()012.54303.0402.034303.498.2222222=++-++≈+.***5.已知圆扇形的中心角为60=α,半径为cm r 20=,如果α增加了1,r 减少了1cm ,试用全微分计算面积改变量的近似值. 解:180212παrS =, ))(2(3602ααπd r dr dS +=,∴ )(4533.17)3601)20(360)1(60202(22cm dS S -=⨯+-⨯⨯⨯=≈∆π.***6. 计算函数()()z y x z y x f 32ln ,,++=在点()0,2,1=P 处沿给定方向 k j i l-+=2 的方向导数Plf∂∂.解:zy x f zy x f zy x f z y x 323,322,321++=++=++=,⎭⎬⎫⎩⎨⎧-=61,61,62l e ,∴ 65161,61,6253,52,51=⎭⎬⎫⎩⎨⎧-⋅⎭⎬⎫⎩⎨⎧=⋅∇=∂∂l Pe f lf.***7. 函数z xy=++arctan 11在(0,0)点处沿哪个方向的方向导数最大,并求此方向导数的值. 解:∂∂z xx y y(,)(,)0020011111112=+++⎛⎝ ⎫⎭⎪⋅+=, ∂∂z yx y x y (,)(,)()00220011111112=+++⎛⎝ ⎫⎭⎪⋅-++⎡⎣⎢⎤⎦⎥=-, {}{}∂∂ααααϕz l =+-=-⋅=1212121122cos ()sin ,cos ,sin cos , 其中ϕ为{} l =cos ,sin αα与 g =-⎧⎨⎩⎫⎬⎭1212,的夹角,所以ϕ=0时,即l 与g 同向时,方向导数取最大值∂∂z l =22.**8. 对函数 xyze z y xf =),,( 求出 ),,(z y x f ∇ 以及 )3,2,1(f ∇.解: {}xyz xyz xyzxye xze yze f ,,=∇,{}2,3,6)3,2,1(6e f =∇.**9. 求函数z y x z y x f 1)(),,(+=在点)21,21,21(-+=e e P 处的梯度. 解:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-++=∇--)ln()(,)(1,)(1211111y x z y x y x z y x z f z z z , {}24,2,2)21,21,21(e e e e ef -=-+∇.***10. 讨论函数⎪⎩⎪⎨⎧=+≠+++=0,00,1sin ),(22222222y x y x yx y x y x f 在点(0,0)处的连续性,可导性和可微性.解:因为 lim (,)lim sin(,)x y x y f x y x y x yf →→→→=++==022221000, 所以f x y (,)在点(0,0)连续.因为 lim(,)(,)lim sin ()∆∆∆∆∆∆∆x x f x f x x x x →→+-=00200001, 极限不存在,f x y (,)在(0,0)处不可导,从而在(0,0)处不可微.第 11 章(之4)(总第62次)教材内容:§11.3 复合函数微分法;§11.4 隐函数微分法**1.解下列各题:(1) 若函数),(v u f 可微,且有x x x x x f ++=3422),(及122),(22 +-='x x x x f u ,则),(2 x x f v '= ( )(A) 1222++x x(B) xx x 21322++ (C) 1222+-x x (D) 1322++x x答:(A)(2)设函数z z x y =(,)由方程xy z x y z 2=++所确定,则∂∂zy=_________. 答: 2112xyz xy-- .(3)方程yzx z ∂∂=∂∂3,在变量代换y x u 3+=,y x v +=3下,可得新方程为_______.答:0=∂∂uz.**2. 设u x y z x r y r z r =++===222,cos sin ,sin sin ,cos θϕθϕϕ求∂∂∂∂θ∂∂ϕu r u u ,,. 解:()∂∂θϕθϕϕurx y z r =++=2222cos sin sin sin cos ,0)sin cos (2]sin )sin ([2=+-=ϕθθϕ∂θ∂r y r x u,0sin 2)cos sin (2)cos cos (2=-+=ϕϕθϕθ∂ϕ∂r z r y r x u.**3. 一直圆锥的底半径以3s cm /的速率增加,高h 以5s cm /的速率增加,试求r=15cm ,h=25cm 时其体积的增加速率. 解:h r V 231π=, s cm h r dtdVdt dhr dt dr rh dt dh h V dt dr r V dt dV /11252515313232πππ===+=⋅∂∂+⋅∂∂=*4. 设,3y e z x -=而4,sin t y t x ==,求dtdz. 解:32334cos y t t e dtdy z dt dx z dt dz xy x -=+=.**5. 若)(22y x f xy z -=,证明:z y z x y z y x x z xy 2222+=∂∂+∂∂. 解:22222,2ff xy xf z f f y x yf z y x '+='-=, 则 z y z x fy x xy yz x z xy y x 222222)(+=+=+. **6. 设 )cos ,,(2x xy ye xe f u x y =,求du yux u ,,∂∂∂∂.解:3221)2sin cos (f x xy x y f ye f e xux y -++=∂∂ , 3221cos xf x f e f xe yux y ++=∂∂, [][]dy xf x f e f xe dx f x xy x y f ye f e du x y x y 32213221cos )2sin cos (+++-++=.**7. 求由方程y z z x ln =所确定的函数),(y x z z =的偏导数yz x z ∂∂∂∂,. 解:zx zyz y zx zFz Fx z x +=---=-=21,yz xy z z z x y Fz Fy z y +=---=-=2211.**8. 设,0),,(=+xz z y xy F 试求dz yzx z ,,∂∂∂∂. 解:,0),,(=+xz z y xy F 两边对x 求导,得 0)(321=+++x x xz z F F z yF , 解得 3231xF F zF yF z x ++-=,两边对y 求导,得 0)1(321=+++y y xz F z F xF . 解得3221xF F F xF z y ++-= ,所以dy xF F F xF dx xF F zF yF dz 32213231++-++-=.***9. 函数z z x y =(,)由方程F x x y z z xy (,,)+++=1所确定,其中F 具有连续一阶偏导数,F F 230+≠,求∂∂z x 和∂∂z y. 解:F x x y z F z y x x y F 1230d (d d d )(d d d )++++++=,d ()d ()d z F F yF x F xF yF F =-+++++1232323,∂∂z x F F yF F F =-+++12323, ∂∂z y F xF F F =-++2323. ***10. 求由方程z xyz a a 3330-=≠()所确定的隐函数z z x y =(,)在坐标原点处沿由向量{}a =--12,所确定的方向的方向导数.解:当x y ==00,时,z a 00=≠.0,0)0,0(2)0.0()0,0(2)0.0(=-==-=xyz xz yz xyz yz xz ∂∂∂∂,0=∂∂∴az. ***11. 设)0(,1,022≠+=+=-y x xv yu yv xu 求yv y u x v x u ∂∂∂∂∂∂∂∂,,,. 解: ⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂+=∂∂-∂∂+00x v x x u y v xv y x u x u ⎪⎪⎩⎪⎪⎨⎧+--=∂∂++-=∂∂⇒2222y x yu xv x v y x yv xu x u类似地 ⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂+=∂∂--∂∂00y v x y u y u y v y v y ux ⎪⎪⎩⎪⎪⎨⎧++-=∂∂+--=∂∂⇒2222y x yv xu yv y x xv yu y u第 11 章 (之5)(总第63次)教材内容:§11.5 多元函数微分法在几何上的应用**1. 曲面x y z xyz x z 2222426-+--+=在点)2,1,0(=A 处的切平面方程为 ( ) (A )31223110()()x y z -+--+= (B )3234x y z +-= (C )032213=--+-+z y x (D )x y z 31223=-=-- 答:(A).**2.设函数F x y z (,,)可微,曲面F x y z (,,)=0过点)0,1,2(-=M ,且F F F x y z (,,),(,,),(,,)210521022103-=-=--=-.过点M 作曲面的一个法向量,已知与x 轴正向的夹角为钝角,则与z 轴正向的夹角γ=______ . 答:π3.***3. 设曲线x t y t z t =+=-=+2131223,,在t =-1对应点处的法平面为S ,则点)1,4,2(-=P 到S 的距离d =______ .答:2.**4. 求曲线ct z t b y t a x L ===,sin ,cos :在点)2,0,(0c a M π=处的切线和法平面方程. 解:,0sin 00=-===t t t a dt dx,cos 00b t b dt dy t t =-=== cdtdzt ==0.∴切线方程为:⎪⎩⎪⎨⎧-==⇔-=-=-c c z by ax c c z b y a x ππ2200,法平面方程为:0)2(=-+c z c by π.***5. 求曲线6,11:==++xyz zx yz xy L 在点)3,2,1(0=M 处的切线和法平面方程.解:设 11),,(-++=zx yz xy z y x F ,6),,(-=xyz z y x G ,)()()(),(),(2x y z z x yz z y xz xz yz z x zy y x G F +-=+-+=++=∂∂,)()()(),(),(2z y x y x xz z x xy xy zx x y z x z y G F -=+-+=++=∂∂,)()()(),(),(2x z y z y xy y x zy zyxy z y y x x z G F -=+-+=++=∂∂.∴8),(),(,1),(),(,9),(),(0=∂∂-=∂∂-=∂∂M M M x z G F z y G F y x G F ,∴切线方程为938211--=-=--z y x , 法平面方程为 ()()()()()0948211=--+-+--z y x ,即 01298=-+-z y x .***6. 求曲面4416222x y z ++=在点1,22,1(-=P )处的法线在yOz 平面上投影方程.解:曲面在点1,22,1(-=P )处的法线方向向量{}{}2,2,248,24,8-=-=→n ,法线方程为:x y z -=-=+-1222212.法线在yOz 平面上投影方程为212220-+=-=z y x .***7.求曲线x t y t z t ===3223,,上的点,使曲线在该点处的切线平行于平面x y z +-=21.解:设所求的点对应于t t =0,则对应的切线方向向量为: {}3,4,3020t t s =→.因为→s 垂直于平面法向量{}1,2,1-=→n ,所以0383020=-+=⋅→→t t n s , 解得:t 013=和t 03=-.所求点为:127291,,⎛⎝ ⎫⎭⎪和(,,)--27189.**8.求曲面xyz 6=上平行于平面.06236=+--z y x 的切平面方程. 解:26,6xyy z xyx z -=∂∂-=∂∂, ∴由条件,得:⎪⎩⎪⎨⎧-=-==⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫-=--=-=-32121366622z y x k k x y k yx∴切平面方程为:,0)3(2)2(3)1(6=+-+--z y x 即 018236=---z y x .***9.求函数22y x ez +=在点),(000y x M =沿过该点的等值线的外法线方向的方向导数.解:等值线方程为x y x y 220202+=+, 在),(000y x M =处的法线斜率为 00x y k =,即法线方向向量为 },1{00x y n =或},{00y x , 方向余弦为:cos cos αβ=+=+x x yy x y002200202,∂∂zn e x x x y e y y x y x y x y =⋅⋅++⋅⋅+++0202020222000202000202=⋅++202020202e x y x y .***10. 求函数z y x =+sin 在⎪⎭⎫⎝⎛=1,2πP 点沿 a 方向的方向导数,其中 a 为曲线x t y t ==22sin ,cos π在t =π6处的切向量(指向t 增大的方向). 解:tan d d sin cos αππππ==-=-==y xt tt t 66222,1sin 11cos 22+-=+=ππαπα,,221sin 210sin 2cos 1,21,21,21,2=+==+=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛ππππ∂∂∂∂xy yz xy x xz ,,所以 ∂∂πππz a =⨯++⨯-+011122122()()1222+-=ππ.***11. 设f y z g z (,),()都是可微函数,求曲线x f y z y g z ==⎧⎨⎩(,)()在对应于z z =0点处的切线方程和法平面方程.解:z z =0对应点()f g z z g z z [(),],(),0000, 对应的切线方向向量:{}f g z z g z f g z z g z y z ='+'[(),]()[(),],(),0000001.切线方程:x f g z z f g z z g z f g z z y g z g z z z y z -'+=-'=-[(),][(),]()[(),]()()0000000000,法平面方程: {}{}f g z z g z f g z z x f g z z y z [(),]()[(),][(),]0000000'+-+'-+-=g z y g z z z ()[()]()0000.****12. 在函数yx u 11+=的等值线中哪些曲线与椭圆16822=+y x 相切? 解:对等值线 y x u 110+= 两边微分得 022=--ydy x dx , 即 22x y dx dy -=, 同样对16822=+y x 两边微分,有yx dx dy 8-=, 令y xxy 822-=-,得 y x 2=,代入16822=+y x ,得 32,34±=±=y x ,∴ 433110±=+=y x u .***13. 试证明曲面3a xyz =上任一点处的切平面在三个坐标轴上截距之积为定值.解:由3a xyz =, 得 xya z 3=,∴在点),,(000z y x 处法向量为:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-1,,02030203x y a y x a, ∴切平面为:0)()(0020300203=-+-+-z z y y y x a x x y x a ,又 ∵3000a z y x =, ∴ 切平面方程化为:1333000=++z zy y x x , ∴ 截距之积为: 30002727a z y x =(定值).***14. 证明曲面0,=⎪⎭⎫⎝⎛----c z b y c z a x F 的所有切平面都通过一个定点,这里F u v (,)具有一阶连续偏导数.解:曲面上点(,,)x y z 000处的切平面法向量:[]F z c F z c z c x a F y b F =-----+-⎧⎨⎩⎫⎬⎭10200201021,,()()() []{}=-----+-10201020102()(),(),()()z c z c F z c F x a F y b F .切平面方程为: ()()()()z c F x x z c F y y 010020--+--[]0)()()(02010=--+--z z F b y F a x .易知x a y b z c ===,,满足上述方程,即曲面的所有切平面都通过定点(,,)a b c .第 11 章 (之6)(总第64次)教学内容:§11.6泰勒展开1.填空:*(1)设u xy yx=+,则∂∂22u x =________ .答:32xy. *(2)设u x xy =ln ,则∂∂∂2ux y= _________.答:y1. *(3)设u x y y x =+22sin cos ,则∂∂∂2ux y= _________ .答: x y y x sin 2cos 2-.*(4)设u x yxy=+-arctan 1,则∂∂∂2u x y =_______ .答:0 .**(5)设z e y e y xx=+-sin cos ,则∂∂∂∂2222z x zy+= _________.答:0.**2.设z f x u =(,)具有连续的二阶偏导数,而u xy =,求∂∂22zx.解:z f yf x x u =+, z f yf y f xx xx xu uu =++22.**3.设z x xy =ln(),求∂∂∂32zx y.解一: z x yy =, z yyx =1, z yx 20=.解二: z xy x =+ln()1, z xx 21=, z yx 20=.**4.设)2,21(),()(4322xy z y x xf xy f y z 求+=. 解:)(3)()('43434324y x f y x y x f xy f y z x ++=,,4)("3)('124)('2)(")('4334343433333432423yx y x f y x y x f y x x y y x f yx xy f y xy f y z xy ⋅++⋅+⋅+=∴)2("24)2('12)2('4)2("32)2('32)2,21(f f f f f z xy ++++= )2("56)2('48f f +=.**5.函数y y x =()由方程x xy y 2221+-=所确定,求22d d x y.解:xy yx y x y x x y -+=-+-=2222d d ,222)())(1())(1(d d x y y x y x y y x y -+-'--'+=322)()2(2x y y xy x --+-=3)(2y x -=. ***6.求方程 zy ez x +=+ 所确定的函数),(y x z z =z=z(x,y)的所有的二阶偏导数.解:xz e x z z y ∂∂⋅=∂∂++1, ∴ 11-=∂∂+zy e x z . 3222)1()1(--=-∂∂⋅-=∂∂++++z y zy zy z y e e ex ze x z, 因为 )1(y z e y z zy ∂∂+=∂∂+, ∴zy z y z y e e e y z +++-+-=-=∂∂1111. 则 3222)1()1()1(z y z y z y z y e e e yze y z ++++-=-+∂∂=∂∂, 322)1()1()1(z y z y z y z y e e e yze yx z ++++--=-+∂∂-=∂∂∂, 322)1()1(-=-∂∂=∂∂∂++++z y z y z y zy e e e x ze x y z .***7.对于由方程0),,(=z y x F 确定的隐函数),(y x z =,试求 22x z ∂∂.解:由公式zx F F x z -=∂∂两边对x 求偏导数,得。

相关文档
最新文档