高数下册第十一章第七次作业答案

合集下载

高等数学课后习题及参考答案(第十一章)

高等数学课后习题及参考答案(第十一章)

高等数学课后习题与参考答案〔第十一章〕习题11-11.写出下列级数的前五项:<1>∑∞=++1211n nn;解 51514141313121211111112222212⋅⋅⋅+++++++++++++++=++∑∞=n n n . 解 3762651045311112⋅⋅⋅+++++=++∑∞=n n n .<2>∑∞=⋅⋅⋅⋅-⋅⋅⋅⋅12 42)12( 31n n n ; 解 10864297531864275316425314231212 42)12( 311⋅⋅⋅+⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+=⋅⋅⋅⋅-⋅⋅⋅⋅∑∞=n n n . 解 3840945384105481583212 42)12( 311⋅⋅⋅+++++=⋅⋅⋅⋅-⋅⋅⋅⋅∑∞=n n n .<3>∑∞=--115)1(n n n ; 解 51515151515)1(543211⋅⋅⋅-+-+-=-∑∞=-n n n . 解 3125162511251251515)1(11⋅⋅⋅-+-+-=-∑∞=-n n n . <4>∑∞=1!n n nn.解 5!54!43!32!21!1!543211⋅⋅⋅+++++=∑∞=n n n n. 解3125120256242764211!1⋅⋅⋅+++++=∑∞=n n n n . 2.写出下列级数的一般项:<1> 7151311⋅⋅⋅++++; 解 一般项为121-=n u n . <2> 5645342312⋅⋅⋅-+-+-; 解 一般项为nn u n n 1)1(1+-=-. <3> 86426424222⋅⋅⋅+⋅⋅⋅+⋅⋅+⋅+x x x x x ; 解 一般项为!22n x u n n =.<4> 97535432⋅⋅⋅+-+-a a a a . 解 一般项为12)1(11+-=+-n a u n n n . 3.根据级数收敛与发散的定义判定下列级数的收敛性:<1>∑∞=-+1)1(n n n ;解 因为)1( )34()23()12(n n s n -++⋅⋅⋅+-+-+-=)()11(∞→∞→-+=n n ,所以级数发散.<2> )12)(12(1 751531311⋅⋅⋅++-+⋅⋅⋅+⋅+⋅+⋅n n ; 解 因为)12)(12(1 751531311+-+⋅⋅⋅+⋅+⋅+⋅=n n s n)121121(21 )7151(21)5131(21)3111(21+--+⋅⋅⋅+-+-+-=n n )121121 715151313111(21+--+⋅⋅⋅+-+-+-=n n )(21)1211(21∞→→+-=n n , 所以级数收敛.<3> 6sin 63sin 62sin 6sin ⋅⋅⋅+⋅⋅⋅+++ππππn . 解 6sin 63sin 62sin 6sin ππππn s n ⋅⋅⋅+++= )6sin 12sin 2 62sin 12sin 26sin 12sin 2(12sin 21πππππππn +⋅⋅⋅++= )]1212cos 1212(cos )125cos 123(cos )123cos 12[(cos 12sin 21πππππππ+--+⋅⋅⋅+-+-=n n )1212cos 12(cos 12sin 21πππ+-=n . 因为π1212cos lim +∞→n n 不存在,所以n n s ∞→lim 不存在,因而该级数发散. 4.判定下列级数的收敛性: <1> 98)1( 9898983322⋅⋅⋅+-+⋅⋅⋅+-+-n n n ; 解 这是一个等比级数,公比为98-=q ,于是198||<=q ,所以此级数收敛. <2> 31 916131⋅⋅⋅++⋅⋅⋅+++n; 解 此级数是发散的,这是因为如此级数收敛,则级数) 31 916131(311⋅⋅⋅++⋅⋅⋅+++==∑∞=n n n 也收敛,矛盾.<3> 31 3131313⋅⋅⋅++⋅⋅⋅+++n ; 解 因为级数的一般项)(013311∞→≠→==-n u n n n ,所以由级数收敛的必要条件可知,此级数发散.<4> 232323233322⋅⋅⋅++⋅⋅⋅+++n n ; 解 这是一个等比级数,公比123>=q ,所以此级数发散. <5> )3121( )3121()3121()3121(3322⋅⋅⋅+++⋅⋅⋅++++++nn . 解 因为∑∞=121n n 和∑∞=131n n 都是收敛的等比级数,所以级数 )3121( )3121()3121()3121()3121(33221⋅⋅⋅+++⋅⋅⋅++++++=+∑∞=n n n n n 是收敛的.习题11-21.用比较审敛法或极限形式的比较审敛法判定下列级数的收 敛性:<1> )12(1 51311⋅⋅⋅+-+⋅⋅⋅+++n ; 解因为211121lim =-∞→nn n ,而级数∑∞=11n n发散,故所给级数发散. <2> 11 313121211222⋅⋅⋅++++⋅⋅⋅+++++++n n ; 解因为n n n n n n u n 111122=++>++=,而级数∑∞=11n n发散, 故所给级数发散.<3> )4)(1(1 631521⋅⋅⋅++++⋅⋅⋅+⋅+⋅n n ; 解因为145lim 1)4)(1(1lim 222=++=++∞→∞→n n n nn n n n ,而级数∑∞=121n n 收敛, 故所给级数收敛.<4> 2sin 2sin 2sin 2sin 32⋅⋅⋅++⋅⋅⋅+++n ππππ;解因为πππππ==∞→∞→nn n n n n 22sin lim 212sin lim ,而级数∑∞=121n n 收敛, 故所给级数收敛.<5>∑∞=>+1)0(11n n a a . 解因为 ⎪⎩⎪⎨⎧>=<<==+=+∞→∞→11 1 2110 0 1lim 111lim a a a l a a a a n n n n n n ,而当a >1时级数∑∞=11n n a 收敛,当0<a ≤1时级数∑∞=11n n a 发散, 所以级数∑∞=+111n n a 当a >1时收敛,当0<a ≤1时发散. 2.用比值审敛法判定下列级数的收敛性:<1>23 2332232133322⋅⋅⋅+⋅+⋅⋅⋅+⋅+⋅+⋅nn n ; 解级数的一般项为n n n n u 23⋅=.因为 123123lim 322)1(3lim lim 111>=+⋅=⋅⋅⋅+=∞→++∞→+∞→n n n n u u n n n n n n n n n , 所以级数发散.<2>∑∞=123n n n ; 解因为131)1(31lim 33)1(lim lim 22121<=+⋅=⋅+=∞→+∞→+∞→nn n n u u n n n n n n n , 所以级数收敛.<3>∑∞=⋅1!2n n n n n ;解因为12)1(lim 2!2)1()!1(2lim lim 111<=+=⋅⋅++⋅=∞→++∞→+∞→e n n n n n n u u n n n n n n n n n n , 所以级数收敛.<3>∑∞=+112tann n n π. 解因为121221lim 2tan 2tan )1(lim lim 12121<=⋅+=+=++∞→++∞→+∞→n n n n n n n n n n n n n u u ππππ, 所以级数收敛.3.用根值审敛法判定下列级数的收敛性:<1>∑∞=+1)12(n n n n ; 解因为12112lim lim<=+=∞→∞→n n u n n n n ,所以级数收敛. <2>∑∞=+1)]1[ln(1n n n ; 解因为10)1ln(1lim lim<=+=∞→∞→n u n n n n ,所以级数收敛. <3>∑∞=--112)13(n n n n ; 解因为n n n n n n n n n n n u 1212)13(1lim)13(lim lim -∞→-∞→∞→-=-= 131)311(31lim 321212<⋅=-⋅=--∞→en n n n , 所以级数收敛.<4>∑∞=1)(n n na b ,其中a n →a <n →∞>,a n ,b ,a 均为正数.解因为a b a b u nn nn n ==∞→∞→lim lim , 所以当b <a 时级数收敛,当b >a 时级数发散.4.判定下列级数的收敛性:<1> )43( )43(3)43(24332⋅⋅⋅++⋅⋅⋅+++n n ; 解这里n n n u )43(=,因为 143431lim )43()43)(1(lim lim 11<=⋅+=+=∞→+∞→+∞→n n n n u u n nn n n n n , 所以级数收敛.<2>!!33!22!114444⋅⋅⋅++⋅⋅⋅+++n n ; 解这里!4n n u n =,因为 10)1(1lim !)!1()1(lim lim 3441<=+⋅=⋅++=∞→∞→+∞→n n nn n n n u u n n n n n , 所以级数收敛.<3>∑∞=++1)2(1n n n n ; 解因为121lim 1)2(1lim =++=++∞→∞→n n nn n n n n ,而级数∑∞=11n n发散, 故所给级数发散.<4>∑∞=13sin2n nn π; 解因为1323232lim 3sin 23sin 2lim 1111<=⋅⋅=++∞→++∞→n n n n n n n n n n ππππ, 所以级数收敛.<5> 1 232⋅⋅⋅+++⋅⋅⋅++nn ; 解因为011lim lim ≠=+=∞→∞→n n u n n n , 所以级数发散.<6>)0 ,0( 1 211>>⋅⋅⋅+++⋅⋅⋅++++b a bna b a b a . 解因为n a b na u n 111⋅>+=,而级数∑∞=11n n发散, 故所给级数发散.5.判定下列级数是否收敛?如果是收敛的,是绝对收敛还是 条件收敛?<1> 4131211⋅⋅⋅+-+-; 解这是一个交错级数∑∑∞=-∞=--=-11111)1()1(n n n n n n u ,其中n u n 1=. 因为显然u n ≥u n +1,并且0lim =∞→n n u ,所以此级数是收敛的. 又因为∑∑∞=∞=-=-1111|)1(|n n n n nu 是p <1的p 级数,是发散的,所以原级数是条件收敛的.<2>∑∞=---1113)1(n n n n ; 解∑∑∞=-∞=--=-111113|3)1(|n n n n n n n . 因为131331lim 1<=+-∞→n n n n n ,所以级数∑∞=-113n n n 是收敛的, 从而原级数收敛,并且绝对收敛.<3> 2131213121312131432⋅⋅⋅+⋅-⋅+⋅-⋅;解这是交错级数∑∞=-⋅-112131)1(n n n ,并且∑∑∞=∞=-⋅=⋅-1112131|2131)1(|n n n n n . 因为级数∑∞=⋅12131n n 是收敛的,所以原级数也收敛,并且绝对收敛. <4> 5ln 14ln 13ln 12ln 1⋅⋅⋅+-+-; 解这是交错级数∑∑∞=-∞=-+-=-1111)1ln()1()1(n n n n n n u ,其中)1ln(1+=n u n . 因为u n ≥u n +1,并且0lim =∞→n n u ,所以此级数是收敛的. 又因为11)1ln(1+≥+n n ,而级数∑∞=+111n n 发散, 故级数∑∑∞=∞=-+=-111)1ln(1|)1(|n n n n n u 发散,从而原级数是条件收敛的. <5>∑∞=+-11!2)1(2n n n n . 解级数的一般项为!2)1(21n u n n n +-=. 因为∞=⋅⋅⋅⋅⋅-⋅-⋅===∞→∞→∞→∞→122232 22122lim !)2(lim !2lim ||lim 2n n n n n n n n n n n n n n n n n n u , 所以级数发散.习题11-31. 求下列幂级数的收敛域:<1>x +2x 2+3x 3+⋅⋅⋅+nx n +⋅⋅⋅;解 11lim ||lim 1=+=∞→+∞→nn a a n n n n , 故收敛半径为R =1. 因为当x =1时, 幂级数成为∑∞=1n n , 是发散的;当x =-1时, 幂级数成为∑∞=-1)1(n n n , 也是发散的,所以收敛域为<-1,1>.<2> )1( 21222⋅⋅⋅+-+⋅⋅⋅++-nx x x n n ; 解 1)1(lim 1)1(1lim ||lim 22221=+=+=∞→∞→+∞→n n n n a a n n n n n , 故收敛半径为R =1. 因为当x =1时, 幂级数成为∑∞=-221)1(n n n , 是收敛的; 当x =-1时, 幂级数成为∑∞=+1211n n , 也是收敛的, 所以收敛域为[-1,1].<3> )2( 42 64242232⋅⋅⋅+⋅⋅⋅⋅+⋅⋅⋅+⋅⋅+⋅+n x x x x n ; 解 0)1(21lim )!1(2!2lim ||lim 11=+=⋅+⋅⋅=∞→+∞→+∞→n n n a a n n n n n n n , 故收敛半径为R =+∞, 收敛域为<-∞,+∞>. <4> 33332313322⋅⋅⋅+⋅+⋅⋅⋅+⋅+⋅+⋅n n n x x x x ; 解 31131lim 3)1(3lim ||lim 11=+⋅=⋅+⋅=∞→+∞→+∞→n n n n a a n n n n n n n , 故收敛半径为R =3. 因为当x =3时, 幂级数成为∑∞=11n n , 是发散的; 当x =-3时, 幂级数成为∑∞=-11)1(n n n , 也是收敛的, 所以收敛域为[-3,3>. <5> 12 102522223322⋅⋅⋅+++⋅⋅⋅+++n n x n x x x ;解 21)1(1lim 2211)1(2lim ||lim 222211=+++=+⋅++=∞→+∞→+∞→n n n n a a n n n n n n n , 故收敛半径为21=R . 因为当21=x 时, 幂级数成为∑∞=+1211n n , 是收敛的; 当x =-1时, 幂级数成为∑∞=+-1211)1(n n n , 也是收敛的, 所以收敛域为]21 ,21[-. <6>∑∞=++-11212)1(n n n n x ; 解 这里级数的一般项为12)1(12+-=+n x u n nn . 因为212321|1232|lim ||lim x x n n x u u n n n n n n =+⋅+=++∞→+∞→, 由比值审敛法, 当x 2<1, 即|x |<1时, 幂级数绝对收敛; 当x 2>1, 即|x |>1时, 幂级数发散, 故收敛半径为R =1.因为当x =1时, 幂级数成为∑∞=+-1121)1(n n n , 是收敛的; 当x =-1时, 幂级数成为∑∞=++-11121)1(n n n , 也是收敛的, 所以收敛域为[-1, 1].<7>∑∞=--122212n n n x n ; 解 这里级数的一般项为22212--=n nn x n u . 因为22212121|)12(22)12(|lim ||lim x x n x n u u n n n n n n n n =-⋅+=-+∞→+∞→, 由比值审敛法, 当1212<x , 即2||<x 时, 幂级数绝对收敛; 当1212>x , 即2||>x 时, 幂级数发散, 故收敛半径为2=R . 因为当2±=x 时, 幂级数成为∑∞=-1212n n , 是发散的, 所以收敛域为)2 ,2(-.<8>∑∞=-1)5(n nn x . 解 11lim ||lim 1=+=∞→+∞→n n a a n n n n , 故收敛半径为R =1, 即当-1<x -5<1时级数收敛, 当|x -5|>1时级数发散.因为当x -5=-1, 即x =4时, 幂级数成为∑∞=-1)1(n nn , 是收敛的; 当x -5=1, 即x =6时, 幂级数成为∑∞=11n n, 是发散的, 所以收敛域为[4, 6>. 2. 利用逐项求导或逐项积分, 求下列级数的和函数:<1>∑∞=-11n n nx ;解 设和函数为S <x >, 即∑∞=-=11)(n n nx x S , 则][][])([)(1010110'='='=∑⎰⎰∑⎰∞=-∞=-n xn x n n x dx nx dx nxdx x S x S)11( )1(1]111[][21<<--='--='=∑∞=x x x x n n . <2>∑∞=++11414n n n x ; 解 设和函数为S <x >, 即∑∞=++=11414)(n n n x x S , 则dx x dx n x dx x S S x S x n n x n n x ⎰∑⎰∑⎰∞=∞=+='+='+=01401140]14[)()0()( ⎰⎰-⋅++⋅+-=--=x x dx x x dx x02204)112111211()111( )11( arctan 2111ln 41<<--+-+=x x x x x .提示: 由)0()()(0S x S dx x S x -='⎰得⎰'+=xdx x S S x S 0)()0()(. <3>⋅⋅⋅+-+⋅⋅⋅+++- 12 531253n x x x x n . 解 设和函数为S <x >, 即⋅⋅⋅+-+⋅⋅⋅+++=-=-∞=-∑ 12 5312)(1253112n x x x x n x x S n n n , 则 ⎰∑⎰∑⎰∞=-∞=-='-='+=x n n x n n x dx x dx n x dx x S S x S 012201120]12[)()0()( )11( 11ln 211102<<--+=-=⎰x x x dx xx . 提示: 由)0()()(0S x S dx x S x -='⎰得⎰'+=xdx x S S x S 0)()0()(.习题11-41. 求函数f <x >=cos x 的泰勒级数, 并验证它在整个数轴上收敛于这函数.解 )2cos()()(π⋅+=n x x f n <n =1,2,⋅⋅⋅>, )2cos()(00)(π⋅+=n x x f n <n =1,2,⋅⋅⋅>, 从而得f <x >在x 0处的泰勒公式)(!2)cos())(2cos(cos )(200000⋅⋅⋅+-++-++=x x x x x x x x f ππ )( )(!)2cos(00x R x x n n x n n +-++π. 因为)!1(|||)()!1(]21)(cos[||)(|101000+-≤-+++-+=++n x x x x n n x x x x R n n n πθ<0≤θ≤1>, 而级数∑∞∞→++-n n n x x )!1(||10总是收敛的, 故0)!1(||lim 10=+-+∞→n x x n n , 从而0|)(|lim =∞→x R n n . 因此 )(!2)cos())(2cos(cos )(200000⋅⋅⋅+-++-++=x x x x x x x x f ππ⋅⋅⋅+-++ )(!)2cos(00n x x n n x π,x ∈<-∞,+∞>.2. 将下列函数展开成x 的幂级数, 并求展开式成立的区间: <1>2sh x x e e x --=; 解 因为∑∞==0!n n xn x e ,x ∈<-∞,+∞>,所以 ∑∞=--=0!)1(n n nx n x e ,x ∈<-∞,+∞>, 故 ∑∑∑∑∞=-∞=∞=∞=-=--=--=012000)!12(!])1(1[21]!)1(![21sh n n n n n n n n n n n x n x n x n x x ,x ∈<-∞,+∞>. <2>ln<a +x ><a >0>;解 因为)1ln(ln )1(ln )ln(a x a a x a x a ++=+=+,∑∞=++-=+011)1()1ln(n n nn x x <-1<x ≤1>, 所以 ∑∑∞=++∞=++-+=+-+=+01101)1()1(ln )(11)1(ln )ln(n n n n n n n a n x a a x n a x a <-a <x ≤a >. <3>a x ;解 因为∑∞==0!n n x n x e ,x ∈<-∞,+∞>, 所以 ∑∑∞=∞=====00ln !)(ln !)ln (n n n n n x a x x x n a n a x e ea ,x ∈<-∞,+∞>, <4>sin 2x ; 解 因为x x 2cos 2121sin 2-=,∑∞=-=02)!2()1(cos n n nn x x ,x ∈<-∞,+∞>, 所以 ∑∑∞=-∞=⋅-=--=1212022)!2(2)1()!2()2()1(2121sin n n n n n n n n x n x x x ∈<-∞,+∞>. <5><1+x >ln<1+x >;解 因为∑∞=++-=+011)1()1ln(n n nn x x <-1<x ≤1>, 所以 ∑∞=++-+=++011)1()1()1ln()1(n n nn x x x x ∑∑∞=+∞=++-++-=02011)1(1)1(n n n n n nn x n x ∑∑∞=++∞=+-++-+=11111)1(1)1(n n n n n n n x n x x 111])1(1)1([+∞=+∑-++-+=n n n n x n n x 111)1()1(+∞=-∑+-+=n n n x n n x <-1<x ≤1>. <6>21x x +. 解 因为∑∞=--+=+122/12!)!2(!)!12()1(1)1(1n n n x n n x <-1≤x ≤1>, 所以 ∑∑∞=+∞=+⋅-+=--+=+11221122)2()!()!2(2)1(!)!2(!)!12()1(1n n n n n n x n n x x n n x xx <-1≤x ≤1>. 3. 将下列函数展开成<x -1>的幂级数, 并求展开式成立的区间: <1>3x ;解 因为)11( !)1( )1( !2)1(1)1(2<<-⋅⋅⋅++-⋅⋅⋅-+⋅⋅⋅+-++=+x x n n m m m x m m mx x n m . 所以 233)]1(1[-+=x x )1(!)123( )123(23 )1(!2)123(23)1(2312⋅⋅⋅+-+-⋅⋅⋅-+⋅⋅⋅+--+-+=n x n n x x)111(<-<-x ,即 )1(!2)25( )3()1(13 )1(!2213)1(231223⋅⋅⋅+-⋅-⋅⋅⋅-⋅-⋅⋅+⋅⋅⋅+-⋅⋅+-+=n n x n n x x x )20(<<x .上术级数当x =0和x =2时都是收敛的, 所以展开式成立的区间是[0,2].<2>lg x .解 ∑∞=-≤-<---=-+==11)111( )1()1(10ln 1)]1(1ln[10ln 110ln ln lg n n n x nx x x x , 即 ∑∞=-≤<--=11)20( )1()1(10ln 1lg n n n x nx x . 4. 将函数f <x >=cos x 展开成)3(π+x 的幂级数. 解 3sin )3sin(3cos )3cos(]3)3cos[(cos ππππππ+++=-+=x x x x )3sin(23)3cos(21ππ+++=x x ∑∑∞=+∞=++-++-=01202)3()!12()1(23)3()!2()1(21n n n n n n x n x n ππ )( ])3()!12(3)3()!2(1[)1(211202+∞<<-∞++++-=+∞=∑x x n x n n n n n ππ. 5.将函数xx f 1)(=展开成<x -3>的幂级数. 解 ∑=<-<---=-+=-+=n n n n x x x x x 0)1331( )33()1(313311313311, 即 ∑=<<--=n n n n x x x 0)60( )33()1(311. 6.将函数231)(2++=x x x f 展开成<x +4>的幂级数. 解 2111231)(2+-+=++=x x x x x f ,而 ∑∞=<++-=+--=++-=+0)1|34(| )34(31341131)4(3111n n x x x x x , 即 )17( 3)4(1101-<<-+-=+∑∞=+x x x n n n ; ∑∞=<++-=+--=++-=+0)1|24(| )24(21241121)4(2121n n x x x x x , 即 )26( 2)4(2101-<<-+-=+∑∞=+x x x n n n . 因此 ∑∑∞=∞=+++++-=++=001122)4(3)4(231)(n n n n n n x x x x x f )26( )4)(3121(011-<<-+-=∑∞=++x x n n n n . 习题11-51. 利用函数的幂级数展开式求下列各数的近似值:<1>ln3<误差不超过0.0001>; 解)11( ) 121 5131(211ln 1253<<-⋅⋅⋅+-+⋅⋅⋅+++=-+-x x n x x x x x n , ) 21121 2151213121(2211211ln 3ln 1253⋅⋅⋅+⋅-+⋅⋅⋅+⋅+⋅+=-+=-n n . 又 ] 2)32(12)12(1[2||3212⋅⋅⋅+⋅++⋅-=+-n n n n n r ] 2)52(2)12(2)32(2)12(1[2)12(25212321212⋅⋅⋅+⋅+⋅++⋅+⋅+++=+++++n n n n n n n n n n 2242122)12(31) 21211(2)12(2-+-=⋅⋅⋅++++<n n n n , 故 00012.021131||85≈⋅⋅<r ,00003.021331||105≈⋅⋅<r . 因而取n =6, 此时1.0986 )21111219121712151213121(23ln 119753≈⋅+⋅+⋅+⋅+⋅+=. <2>e <误差不超过0.001>;解 )( !1 !2112+∞<<-∞⋅⋅⋅+⋅⋅⋅+++=x x n x x e n x , 21!1 21!212112⋅⋅⋅+⋅⋅⋅⋅+⋅++=nn e . 由于 21)!2(121)!1(121⋅⋅⋅+⋅++⋅+=++n n n n n r 21)1()2(121111[2!12⋅⋅⋅+⋅+⋅++⋅++⋅=n n n n n 22!3141112!1-⋅⋅=-⋅⋅<n n n n , 故 0003.02!53134≈⋅⋅=r . 因此取n =4得648.121!4121!3121!21211432≈⋅+⋅+⋅++≈e . <3>9522<误差不超过0.00001>; 解)11( !)1( )1( !2)1(1)1(2<<-⋅⋅⋅++-⋅⋅⋅-+⋅⋅⋅+-++=+x x n n m m m x m m mx x n m , 9/199)2101(2522+= ] )210(!33178)210(!298210911[23922929⋅⋅⋅-⋅⋅⋅+⋅⋅-⋅+=. 由于002170.0210919≈⋅,000019.0)210(!298292≈⋅⋅, 故00430.2)000019.0002170.01(25229≈-+=.<4>cos 2︒<误差不超过0.0001>.解 )( )!2()1( !4!21cos 242+∞<<-∞⋅⋅⋅+-+⋅⋅⋅-+-=x n x x x x n n , )90(!61 )90(!41)90(!21190cos 2cos 642⋅⋅⋅+⋅-⋅+⋅-==︒ππππ.由于42106)90(!21-⨯≈⋅π,8410)90(!41-≈⋅π, 故 9994.00006.01 )90(!2112cos 2=-≈⋅⋅-≈︒π.2.利用被积函数的幂级数展开式求下列定积分的近似值:<1>⎰+5.00411dx x <误差不超过0.0001>; 解⎰⎰⋅⋅⋅+-+⋅⋅⋅+-+-=+5.00412845.004] )1( 1[11dx x x x x dx x n n 5.001395|) 1319151(⋅⋅⋅+-+-=x x x x 2113121912151211395⋅⋅⋅+⋅-⋅+⋅-. 因为00625.021515≈⋅,00028.021919≈⋅,000009.02113113≈⋅, 所以4940.0219121512111955.004≈⋅+⋅-≈+⎰dx x . <2>⎰5.00arctan dx xx <误差不超过0.0001>. 解)11( 121)1( 5131arctan 1253<<-⋅⋅⋅++-+⋅⋅⋅-+-=+x x n x x x x n n, dx x n x x dx x x n n ] 121)1( 51311[arctan 5.002425.00⎰⎰⋅⋅⋅++-+⋅⋅⋅-+-= 5.00753|) 49125191(⋅⋅⋅+-+-=x x x x 2149121251219121753⋅⋅⋅+⋅-⋅+⋅-=. 因为0139.021913≈⋅,0013.0212515≈⋅,0002.0214917≈⋅, 所以487.021*********arctan 535.00≈⋅+⋅-=⎰dx x x . 3.将函数e x cos x 展开成x 的幂级数. 解)(21cos ix ix e e x -+=, ][21)(21cos )1()1(i x i x ix ix x x e e e e e x e -+-+=+⋅=∑∑∑∞=∞=∞=-++=-++=000!)1()1(21!)1(!)1([21n n n n n n n n n n x n i i x n i x n i . 因为421πi e i =+,421πi e i -=-, 所以4cos 2)4cos 2(2][2)1()1(122442ππππn n e e i i n n n i n i n n n +-==+=-++. 因此)( !4cos 2cos 02+∞<<-∞=∑∞=x x n n x e n n n x π.习题11-7 1.下列周期函数f <x >的周期为2π,试将f <x >展开成傅里叶级数,如果f <x >在[-π,π>上的表达式为:<1>f <x >=3x 2+1<-π≤x <π>;解 因为)1(2)13(1)(1220+=+==⎰⎰--πππππππdx x dx x f a , ⎰-=ππππdx n x f a n cos )(1 2212)1(cos )13(1n dx n x n -=+=⎰-ππππ <n =1,2,⋅⋅⋅>, ⎰-=ππππdx n x f b n sin )(1 0sin )13(12=+=⎰-ππππdx n x <n =1,2,⋅⋅⋅>, 所以f <x >的傅里叶级数展开式为)( cos )1(121)(122+∞<<-∞-++=∑∞=x nx n x f n n π.<2>f <x >=e 2x <-π≤x <π>;解 因为πππππππππ21)(12220----===⎰⎰e e dx e dx x f a x ,⎰-=ππππdx n x f a ncos )(1πππππππ)4()()1(2cos 12222+--==--⎰n e e dx n e n x<n =1,2,⋅⋅⋅>, ⎰-=ππππdx n x f b n sin )(1πππππππ)4()()1(sin 12222+---==--⎰n e e n dx n e n x<n =1,2,⋅⋅⋅>, 所以f <x >的傅里叶级数展开式为∑∞=--+-+-=1222)sin cos 2(4)1(41[)(n n nx n nx n e e x f πππ<x ≠<2n +1>π,n =0,±1,±2,⋅⋅⋅>.<3>⎩⎨⎧<≤<≤-=ππx ax x bx x f 0 0)(<a ,b 为常数,且a >b >0>.解 因为)(211000b a axdx bxdx a -=+=⎰⎰-πππππ, ]cos 1cos 100⎰⎰+=-ππππnxdx ax nxdx bx a nn n a b )1(1[2---=π<n =1,2,⋅⋅⋅>,⎰⎰+=-ππππ00sin 1sin 1nxdx ax nxdx bx b nnb a n +-=+1)1(<n =1,2,⋅⋅⋅>, 所以f <x >的傅里叶级数展开式为∑∞=-+-+---+-=112}sin )()1(cos )]()1(1[{)(4)(n n n nx n b a nx n a b b a x f ππ <x ≠<2n +1>π,n =0,±1,±2,⋅⋅⋅>.2.将下列函数f <x >展开成傅里叶级数:<1>3sin2)(x x f =<-π≤x ≤π>; 解 将f <x >拓广为周期函数F <x >, 则F <x >在<-π,π>中连续, 在x =±π间断, 且)()]()([21πππ-≠-+-+-f F F ,)()]()([21πππf F F ≠++-, 故F <x >的傅里叶级数在<-π,π>中收敛于f <x >, 而在x =±π处F <x >的傅里叶级数不收敛于f <x >. 计算傅氏系数如下: 因为3sin2x <-π<x <π>是奇函数, 所以a n=0<n =0,1,2,⋅⋅⋅>,⎰⎰+--==ππππ00])31cos()31[cos(2sin 3sin 22dx x n x n nxdx x b n19318)1(21-⋅-=+n nn π<n =1,2,⋅⋅⋅>, 所以∑∞=+--=12119sin )1(318)(n n n nx n x f π<-π<x <π>.<2>⎩⎨⎧≤≤<≤-=ππx x e x f x 0 10)(.解 将f <x >拓广为周期函数F <x >, 则F <x >在<-π,π>中连续, 在x =±π间断, 且)()]()([21πππ-≠-+-+-f F F ,)()]()([21πππf F F ≠++-,故F <x >的傅里叶级数在<-π,π>中收敛于f <x >, 而在x =±π处F <x >的傅里叶级数不收敛于f <x >. 计算傅氏系数如下:ππππππ---+=+=⎰⎰e dx dx e a x 1][1000, )1()1(1]cos cos [1200n e nxdx nxdx e a n xn +--=+=--⎰⎰πππππ<n =1,2,⋅⋅⋅>,]sin sin [100⎰⎰+=-πππnxdx nxdx e b xn})1(11])1(1[{12n n e n n n --++---=-ππ<n =1,2,⋅⋅⋅>, 所以πππ21)(--+=e x f∑∞=----++-+-++--+122}]sin )1(11)1([cos 1)1(1{1n n n n nx n n ne n nx n e πππ <-π<x <π>.3.设周期函数f <x >的周期为2π,证明f <x >的傅里叶系数为⎰=ππ20cos )(1nxdx x f a n <n =0, 1, 2,⋅⋅⋅>,⎰=ππ20sin )(1nxdx x f b n <n =1, 2,⋅⋅⋅>.证明 我们知道, 若f <x >是以l 为周期的连续函数, 则⎰+la adx x f )(的值与a 无关, 且⎰⎰=+lla adx x f dx x f 0)()(,因为f <x >,cos nx ,sin nx 均为以2π为周期的函数, 所以f <x >cos nx ,f <x >sin nx 均为以2π为周期的函数, 从而⎰⎰+---==πππππππ2cos )(1cos )(1nxdx x f nxdx x f a n⎰=ππ20cos )(1nxdx x f <n =1, 2,⋅⋅⋅>.同理 ⎰=ππ20sin )(1nxdx x f b n <n =1, 2,⋅⋅⋅>.4.将函数2cos )(xx f =<-π≤x ≤π>展开成傅里叶级数: 解 因为2cos )(x x f =为偶函数, 故b n =0<n =1, 2,⋅⋅⋅>, 而⎰⎰==-πππππ0cos 2cos 2cos 2cos 1nxdx x nxdx x a n⎰+--=ππ0])21cos()21[cos(1dx x n x n 1414)1(21-⋅-=+n n π<n =1, 2,⋅⋅⋅>. 由于2cos )(x x f =在[-π,π]上连续, 所以 ∑∞=+--+=121cos 141)1(422cos n n nx n x ππ<-π≤x ≤π>. 5.设f <x >的周期为2π的周期函数, 它在[-π,π>上的表达式这⎪⎪⎩⎪⎪⎨⎧<≤<≤--<≤--=ππππππππx x x x x f 2 222 2 2)(,将f <x >展开成傅里叶级数.解 因为f <x >为奇函数, 故a n =0<n =0,1,2,⋅⋅⋅>, 而]sin 2sin [2sin )(22200⎰⎰⎰+==πππππππnxdx nxdx x nxdx x f b n2sin 2)1(2ππn n n n +--=<n =1,2,⋅⋅⋅>,又f <x >的间断点为x =<2n +1>π,n =0,±1,±2,⋅⋅⋅, 所以nx n n n x f n n sin ]2sin 2)1([)(121∑∞=++-=ππ< x ≠<2n +1>π,n =0,±1,±2,⋅⋅⋅>.6. 将函数2)(x x f -=π<0≤x ≤π>展开成正弦级数.解 作奇延拓得F <x >:⎪⎩⎪⎨⎧<<---=≤<=0)(0 00 )()(x x f x x x f x F ππ,再周期延拓F <x >到<-∞,+∞>, 则当x ∈<0,π]时F <x >=f <x >,)0(20)0(f F =≠=π.因为a n =0<n =0,1,2,⋅⋅⋅>, 而nnxdx x b n 1sin 220=-=⎰πππ <n =1,2,⋅⋅⋅>, 故 nx nx f n sin 1)(1∑∞==<0<x ≤π>,级数在x =0处收敛于0.7.将函数f <x >=2x 2<0≤x ≤π>分另别展开成正弦级数和余弦级数. 解对f <x >作奇延拓,则a n =0<n =0, 1, 2,⋅⋅⋅>,而]2)2()1[(4sin 2232302n n n nxdx x b n n ---==⎰ππππ<n =1, 2,⋅⋅⋅>,故正弦级数为nx n n n x f n n sin ]2)2()1[(4)(1323∑∞=---=ππ<0≤x <π>, 级数在x =0处收敛于0.对f <x >作偶延拓,则b n =0<n =1, 2,⋅⋅⋅>,而20203422πππ==⎰dx x a , 2028)1(cos 22nnxdx x a n n -==⎰ππ <n =1, 2,⋅⋅⋅>, 故余弦级数为nx nx f n n cos )1(832)(122∑∞=-+=π<0≤x ≤π>.8.设周期函数f <x >的周期为2π, 证明<1>如果f <x -π>=-f <x >, 则f <x >的傅里叶系数a 0=0,a 2k =0,b 2k =0<k =1,2,⋅⋅⋅>; 解 因为020200)(1)(1)(1a dt t f dx t f dx x f a xt -=-=-=⎰⎰⎰+=-πππππππππ令,所以a 0=0. 因为dx t k t f kxdx x f a xt k )(2cos )(12cos )(1202ππππππππ--=⎰⎰+=-令k a ktdt t f 2202cos )(1-=-=⎰ππ,所以a 2k =0.同理b 2k =0<k =1,2,⋅⋅⋅>.<2>如果f <x -π>=f <x >, 则f <x >的傅里叶系数a 2k +1=0,b 2k +1=0<k =1,2,⋅⋅⋅>. 解因为)12cos()(112⎰-++=πππxdx k x f a kdx t k t f xt ))(12cos()(1 20πππππ-+-⎰+=令1220)12cos()(1+-=+-=⎰k a tdt k t f ππ,所以a 2k +1=0<k =1,2,⋅⋅⋅>. 同理b 2k +1=0<k =1,2,⋅⋅⋅>.习题11-81. 将下列各周期函数展开成傅里叶级数<下面给出函数在一个周期内的表达式>: <1>)2121(1)(2<≤--=x x x f ;解 因为f <x >=1-x 2为偶函数, 所以b n =0<n =1,2,⋅⋅⋅>, 而611)1(4)1(2/12210221020=-=-=⎰⎰dx x dx x a ,⎰-=21022/1cos )1(2/12dx x n x a n π2212102)1(2cos )1(4ππn xdx n x n +-=-=⎰<n =1,2,⋅⋅⋅>,由于f <x >在<-∞,+∞>内连续, 所以∑∞=+-+=12122cos )1(11211)(n n x n n x f ππ,x ∈<-∞,+∞>.<2>⎪⎪⎩⎪⎪⎨⎧<≤-<≤<≤-=121 1210 101 )(x x x x x f ;解 21)(1212100111-=-+==⎰⎰⎰⎰--dx dx xdx dx x f a n ,⎰⎰⎰⎰-+==--1212100111cos cos cos cos )(xdx n xdx n xdx n x xdx n x f a n ππππ2sin 2])1(1[122πππn n n n +--= <n =1,2,⋅⋅⋅>,dx x n xdx n xdx n x xdx n x f b n ⎰⎰⎰⎰-+==--121210111sin sin sin sin )(πππππππn n n 12cos 2+-= <n =1,2,⋅⋅⋅>.而在<-∞,+∞>上f <x >的间断点为x =2k ,212+k ,k =0,±1,±2,⋅⋅⋅,故 }sin 2cos 21cos ]2sin 2)1(1{[41)(122x n n n x n n n n x f n nπππππππ-++--+-=∑∞= <x ≠2k ,212+≠k x ,k =0,±1,±2,⋅⋅⋅>.<3>⎩⎨⎧<≤<≤-+=30 1 03 12)(x x x x f .解 1])12([31)(313003330-=++==⎰⎰⎰--dx dx x dx x f a ,]3cos 3cos )12([313cos )(31300333⎰⎰⎰--++==dx x n dx x n x dx x n x f a n πππ])1(1[622n n --=π<n =1,2,⋅⋅⋅ >, ]3sin 3sin )12([313sin )(31300333⎰⎰⎰--++==dx x n dx x n x dx x n x f b n πππn n )1(6-=π<n =1,2,⋅⋅⋅ >, 而在<-∞,+∞>上,f <x >的间断点为 x =3<2k +1>,k =0,±1,±2,⋅⋅⋅,故 }3sin 6)1(3cos])1(1[6{21)(1122∑∞=+-+--+-=n n n x n n x n n x f ππππ,<x ≠3<2k +1>,k =0,±1,±2,⋅⋅⋅>.2. 将下列函数分别展开成正弦级数和余弦级数:<1>⎪⎩⎪⎨⎧≤≤-<≤=lx x l l x x x f 2l20 )(; 解 正弦级数:对f <x >进行奇延拓, 则函数的傅氏系数为 a 0=0<n =0,1,2,⋅⋅⋅>,2sin 4]sin )(sin [22221210ππππn n l dx l x n x l dx l x n x l b l n =-+=⎰⎰<n =1,2,⋅⋅⋅ >故 ∑∞==122sin 2sin14)(n l x n n nl x f πππ,x ∈[0,l ].余弦级数:对f <x >进行偶延拓, 则函数的傅氏系数为2])([2212100l dx x l xdx l a l=-+=⎰⎰,⎰⎰-+=l n dx l x n x l dx l x n x l a 21210]cos )(cos [2ππ ])1(12cos 2[222n n n l ---=ππ <n =1, 2,⋅⋅⋅ > b n =0<n =1, 2,⋅⋅⋅ >,故lx n n n l l x f n n πππcos ])1(12cos2[124)(122∑∞=---+=,x ∈[0,l ].<2>f <x >=x 2<0≤x ≤2>.解正弦级数:对f <x >进行奇延拓, 则函数的傅氏系数为 a 0=0<n =0, 1, 2,⋅⋅⋅>,]1)1[()(168)1(2sin 2231202--+-==+⎰n n n n n dx x n x b πππ,故 2sin }]1)1[()(168)1{()(131x n n n x f n n n πππ∑∞=+--+-=2sin }]1)1[(2)1({81231x n n n n n n πππ∑∞=+--+-=,x ∈[0,2>. 余弦级数:对f <x >进行偶延拓, 则函数的傅氏系数为38222020==⎰dx x a2202)(16)1(2cos 22ππn dx x n x a n n -==⎰<n =1, 2,⋅⋅⋅>, b n =0<n =1, 2,⋅⋅⋅>,故 2cos )(16)1(34)(12x n n x f n n ππ∑∞=-+=2cos )1(1634122x n n n n ππ∑∞=-+=,x ∈[0,2].总习题十一 1.填空: <1>对级数∑∞=1n n u ,0lim =∞→n n u 是它收敛的________条件,不是它收敛的________条件; 解 必要; 充分.<2>部分和数列{s n }有界是正项级数∑∞=1n n u 收敛的________条件; 解 充分必要. <3>若级数∑∞=1n n u 绝对收敛,则级数∑∞=1n n u 必定________;若级数∑∞=1n n u 条件收敛,则级数∑∞=1||n n u 必定________. 解 收敛; 发散.2.判定下列级数的收敛性: <1>∑∞=11n n nn ; 解因为11lim 11lim ==∞→∞→n n nn nnn n ,而调和级数∑∞=11n n发散,故由比较审敛法知,级数发散. <2>∑∞=1222)!(n nn ;解因为∞==⋅++=∞→∞→+∞→222221lim )!(2)1(2])!1[(lim lim n n n n n u u n n n n n , 故由比值审敛法知,级数发散.<3> ∑∞=1223cos n n n n π; 解因为n n n n n 223cos 2<π,12121lim 2lim <==∞→∞→n n n n n n n所以由根值审敛法,级数∑∞=12n n n 收敛;由比较审敛法,级数∑∞=1223cos n nn n π收敛. <4>∑∞=110ln 1n n;解 因为∞==∞→∞→nn n u n n n 10ln lim 1lim, 而调和级数∑∞=11n n发散, 故由比较审敛法知, 原级数发散. 提示:∞===⋅⋅⋅==⋅=∞→∞→∞→∞→∞→xx x x x x x x x x x x x x 11lim !101ln lim !101 ln lim 1011ln 101limln lim9910<5>∑∞=1n s nna <a >0,s >0>. 解 因为a n a n a s n n ns n n ==∞→∞→)(lim lim , 故由根值审敛法知, 当a <1时级数收敛, 当a >1时级数发散.当a =1时, 原级数成为∑∞=11n s n, 这是p =s 的p -级数, 当s >1时级数收敛, 当s ≤1时级数发散. 3.设正项级数∑∞=1n n u 和∑∞=1n n v 都收敛,证明级数∑∞=+12)(n n n v u 与收敛. 证明 因为∑∞=1n n u 和∑∞=1n n v 都收敛, 所以0lim =∞→n n u ,0lim =∞→n n v . 又因为0)2(lim 2lim 2=+=+∞→∞→n n n nn n n n v u u v u u ,0lim lim 2==∞→∞→n n n n n v v v , 所以级数∑∞=+12)2(n n n n v u u 和级数∑∞=12n n v 都收敛, 从而级数 ∑∑∞=∞=+=++12122)(])2[(n n n n n n n n v u v v u u也是收敛的.4.设级数∑∞=1n n u 收敛,且1lim =∞→n n n u v ,问级数∑∞=1n n v 是否也收敛?试说明理由. 解 级数∑∞=1n n v 不一定收敛. 当∑∞=1n n u 和∑∞=1n n v 均为正项级数时, 级数∑∞=1n n v 收敛, 否则未必. 例如级数∑∞=-11)1(n n 收敛, 但级数∑∞=+-1]11)1[(n n n 发散, 并且有 11)1(11)1(lim =-+-∞→nn n n .5.讨论下列级数的绝对收敛性与条件收敛性:<1>∑∞=-11)1(n p n n ; 解∑∑∞=∞==-111|1)1(|n p n p n n n 是p 级数.故当p >1时级数∑∞=11n p n 是收敛的,当p ≤1时级数∑∞=11n p n 发散.因此当p >1时级数∑∞=-11)1(n p n n 绝对收敛. 当0<p ≤1时,级数∑∞=-11)1(n p n n 是交错级数,且满足莱布尼茨定理的条件,因而收敛,这时是条件收敛的. 当p ≤0时,由于01)1(lim ≠-∞→p nn n ,所以级数∑∞=-11)1(n p n n 发散. 综上所述,级数∑∞=-11)1(n p n n 当p >1时绝对收敛,当0<p ≤1时条件收敛,当p ≤0时发散. <2>∑∞=+++-1111sin )1(n n n n ππ; 解因为1111|1sin )1(|+++≤+-n n n n πππ,而级数∑∞=+111n n π收敛,故由比较审敛法知级数|1sin )1(|111∑∞=+++-n n n n ππ收敛,从而原级数绝对收敛. <3> ∑∞=+-11ln )1(n n n n ; 解因为1ln )11ln(lim 1ln lim 1|1ln )1(|lim ==+=+=+-∞→∞→∞→e n n n n nn n n n n n n ,而级数∑∞=11n n发散,故由比较审敛法知级数|1ln )1(|1∑∞=+-n n n n 发散,即原级数不是绝对收敛的. 另一方面,级数∑∞=+-11ln )1(n n n n 是交错级数,且满足莱布尼茨定理的条件,所以该级数收敛,从而原级数条件收敛.<4>∑∞=++-11)!1()1(n n nn n . 解令1)!1()1(++-=n n n n n u .因为 11)11(112lim )1(12lim )!1()1()!2(lim ||||lim 121<=+⋅++=+⋅++=+⋅++∞→∞→++∞→+∞→enn n n n n n n n n n u u n n n n n n n n n n , 故由比值审敛法知级数|)!1()1(|11∑∞=++-n n n n n 收敛,从而原级数绝对收敛. 6.求下列级限: <1>∑=∞→+n k k k n k n 12)11(311lim ; 解 显然∑=+=nk k k n k s 12)11(31是级数∑∞=+12)11(31n n n n 的前n 项部分和. 因为13)11(31lim )11(31lim 2<=+=+∞→∞→e n n n n n n n n , 所以由根值审敛法, 级数∑∞=+12)11(31n nn n 收敛, 从而部分和数列{s n }收敛.因此01lim )11(311lim 12=⋅=+∞→=∞→∑n n n k k k n s n k n . <2>])2( 842[lim 312719131n n n ⋅⋅⋅⋅⋅∞→. 解n n nn 3 27392313127191312)2( 842+⋅⋅⋅+++=⋅⋅⋅⋅⋅.显然n n n s 3 2739231+⋅⋅⋅+++=是级数∑∞=13n n n 的前n 项部分和. 设∑∞=-=11)(n n nx x S ,则210)1(1]111[][])([)(x x x dx x S x S n n x -='--='='=∑⎰∞=. 因为43)311(131)31(31)31(3132111=-⋅===∑∑∞=-∞=S n n n n n n , 所以43lim =∞→n n s , 从而 4331271913122lim ])2( 842[lim ==⋅⋅⋅⋅⋅∞→∞→nn s n n n .7.求下列幂级数的收敛域:<1>∑∞=+153n n n n x n ; 解 51)53(5)53(31lim 53153lim ||lim 111=++⋅+=+⋅++=∞→++∞→+∞→n n n n n n n n n n n n n n n a a , 所以收敛半径为51=R . 因为当51=x 时, 幂级数成为]1)53[(11+∑∞=n n n , 是发散的; 当51-=x 时, 幂级数成为]1)53[()1(1+-∑∞=n n n n , 是收敛的, 所以幂级数的收敛域为)51,51[-. <2>∑∞=+12)11(n n n x n ; 解 n n n x n u 2)11(+=, 因为||||)11(lim ||lim x e x nu n n n n n =+=∞→∞→, 由根值审敛法, 当e |x |<1, 即ex e 11<<-时, 幂级数收敛; 当e |x |>1,时幂级数发散. 当e x 1-=时, 幂级数成为∑∞=+1)1()11(2n n n e n ;。

高等数学方明亮版第十一章答案

高等数学方明亮版第十一章答案
高等数学方明亮版第十一章
习 题 11-1
1.判断下列方程是几阶微分方程?
(1) ;(2) ;
(3) ;(4) .
解微分方程中所出现的未知函数的导数(或微分)的最高阶数,叫做微分方程的阶.所以有,
(1)一阶微分方程;(2)一阶微分方程;
(3)三阶微分方程;(4)三阶微分方程.
2.指出下列各题中的函数是否为所给微分方程的解:

故有 .
设子弹穿过木板的时间为 秒,则

又已知 时, 米/秒,于是

从而,

为此有

所以
(秒),
故子弹穿过木板运动持续了 (秒).
4.求下列齐次方程的通解或特解:
(1) ;(2) ;
(3) ;(4) ;
(5) , ;(6) , .
解(1)原方程变形,得

令 ,即 ,有 ,则原方程可进一步化为

分离变量,得

(4)显然,原方程是一个齐次方程,又注意到方程的左端可以看成是以 为变量的函数,故令 ,即 ,有 ,则原方程可化为

整理并分离变量,得

两端积分,得



将 代入上式并整理,得原方程的通解为

(5)原方程可化为

令 ,有 ,则原方程可进一步化为



两端积分,得

将 代入上式,得

代入初始条件 ,得
(1) , ;
(2) , ;
(3) , ;
(4) , .
解(1)将 代入所给微分方程的左边,得左边 ,而右边=2 左边,所以 是 的解.
(2)将 , 代入所给微分方程的左边,得左边 右边,所以 是所给微分方程 的解.

高数 下 典型习题及参考答案 第8、9、10、11、12章习题及答案

高数 下 典型习题及参考答案 第8、9、10、11、12章习题及答案
dx
4 f (x, y)dy
x2
0
0
0
C、
4
y
∫0 dy∫0
f
(x,
y )dx
D、
4
∫0 dy∫0
y
f
(x,
y)dx
2、设 Ω 是由 x = 0, x = 1, y = 0, y = 1, z = 0, z = 1所围成的区域,则 ∫∫∫ xyzdxdydz =

3、旋转抛物面 z = x 2 + y 2 在 0 ≤ z ≤ 2 那部分的曲面面积 S=( ) 2
−a
a2 −x2
0
−a
28、设 D 由 x 轴和 y = sin x, x ∈ [0,π ]所围成,则积分 ∫∫ dσ = D
29、设 Ω :
0

x

1,0

y
≤ 1,0

z

K
,且
∫∫∫
xdxdydz =
1 4
,则
K
=

二、解答题
( ) ( ) 1、计算三重积分 ∫∫∫ x2 + y 2 dv ,其中Ω是由曲面 2 x2 + y 2 = z 与平面 z = 4所围成的区域。

∫ ∫ ∫ ∫ ∫ ∫ ( ) 正确的(
)A、


a
1
dr
r 3dz
B、


a
dr
1
r
r2
+
z2
dz
0
0
0
0
0
0
∫ ∫ ∫ ∫ ∫ ∫ ( ) C、

高等数学下册 第十一章 综合练习题答案

高等数学下册 第十一章 综合练习题答案

第十一章自测题参考答案一、填空题: 1.()⎰Γ++ds R Q P γβαcos cos cos 切向量2.()⎰⎰∑++dS R Q P γβαcos cos cos 法向量3.⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂D dxdy y P x Q 4. 0 5. π4 6. π2 7. 0 8.()⎰⎰101,dy y x f dx , ()⎰⎰-110,dy y x f dx , 09.()⎰-Lds x x y x P 22,二、选择题:1.C2.C3.A4.A5.D 三、计算题:1.解 由于曲线L 表达式中x ,y, z 是对称的,所以⎰Lds x 2=⎰Lds y 2=⎰Lds z 2,故⎰L ds x 2=()⎰++ds z y x 22231=3223223131a a a ds a L ππ=⋅=⎰. 2.解 原式=()[](){}⎰+---π20sin cos 1cos 12dt t t t()⎰+=π202sin sindt t t =π202sin 2121⎪⎭⎫ ⎝⎛-t t =π 3.解 记222:y x a z S --=,D :xoy 平面上圆域222a y x ≤+原式=()dxdy y z x z y x a y x D222221⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+--++⎰⎰ =()⎰⎰--⋅--++Ddxdy yx a y x a y x a2222221注意到积分区域D 关于坐标轴的对称性及被积函数的奇偶性知⎰⎰--Ddxdy yx a x 222=⎰⎰--Ddxdy yx a y 222=0,所以原式=⎰⎰Ddxdy a=2aa π⋅=3a π.4.解 利用高斯公式原式=()⎰⎰⎰Ω++dxdydz z y x 2其中Ω为S 所围成的空间区域。

由Ω关于坐标平面的对称性知⎰⎰⎰Ωxdxdydz =⎰⎰⎰Ωydxdydz =0,所以,原式=⎰⎰⎰Ωzdxdydz 2=⎰⎰⎰+1222y x D zdz dxdy xy=()⎰⎰--xyD dxdy y x 221=()⎰⎰-12201ρρρθπd d=2412ππ=⋅5.解 原式=()()[]()⎰+--π202222sin cos 1cos 1dt t a t a t a=()⎰-π20253cos 12dt t a =⎰π20253sin 8dt at=du u a⎰π53sin 16=315256a 6.解 ()()()()()x f y x Q y x f e y x P x -=+=,,,要使曲线积分与路径无关,当且仅当xQ y P ∂∂=∂∂,即()()x f x f e x '-=+ 解此微分方程可得()x xe Cex f 21-=-,又()210=f ,所以C =1,故()x x e e x f 21-=- 现在计算从()0,0A 到()1,1B 的曲线积分的值.由于积分与路径无关,故选取有向折线________CB AC +进行积分,其中()0,1C 。

2021年高三数学下学期第十一次大练习 文(含解析)

2021年高三数学下学期第十一次大练习 文(含解析)

2021年高三数学下学期第十一次大练习 文(含解析)1.复数满足,则复数的实部与虚部之差为A .B .C .D .【答案】D【解析】由得,所以复数的实部与虚部之差为1-1=0. 2.已知集合,,则等于A .(-∞,5)B .(-∞,2)C . (1,2)D .【答案】C 【解析】因为集合,,所以=(1,2)。

3. 执行右边的程序框图,若输出的是,, 则判断框内的应是A .B .C .D . 【答案】C【解析】第一次循环:; 第二次循环:; 第三次循环:231111713,22228n n n s s =+==+=++=,此时应输出,故判断框内的应是4.4.如图是一个几何体的三视图,该几何体的体积是A .B .C .D . 【答案】B【解析】由三视图知:该几何体为底面边长是2,髙为1的正三棱柱,所以该几何体的体积为。

5. 已知数列的前项和为,且,则等于A.B. 1C. 2D. 4【答案】D【解析】当;。

6. 的值为A. B. C. D. 【答案】C【解析】222211sin140cos50sin(250)cos70sin70cos701222 cos155sin25cos25sin25cos50cos50 -==== --。

7. 函数的大致图像是A B C D【答案】B【解析】函数的图像是由函数向左平移一个单位,然后再把函数图像y轴左侧的去掉,并把右侧的对称到左侧去,所以答案选B。

8.设,把的图象按向量平移后,图象恰好为函数的图象,则的值可以为A. B. C. D.【答案】D【解析】因为,所以,又因为把的图象按向量平移后,图象恰好为函数的图象,则的值可以为。

9.过点P(4,2)作圆的两条切线,切点分别为A、B,0为坐标原点,则的外接圆方程是A. B.C. D.【答案】A【解析】由圆x2+y2=4,得到圆心O坐标为(0,0),∴的外接圆为四边形OAPB的外接圆,又P(4,2),∴外接圆的直径为|OP|,半径为外接圆的圆心为线段OP的中点是(2,1),所以的外接圆方程是。

高数下册课后习题答案(机械工业出版社).

高数下册课后习题答案(机械工业出版社).

∂2z ∂x∂y
=
2 yf1′ +
2xf 2′
+
2 xy 3
f1′′1
+
5x2
y2
f1′′2
+
2x3 yf2′′2 ;
∂2z ∂y 2
=
2xf1′ + 4x2 y 2
f1′1′
+
4x3 yf1′2′
+
x4
f 2′′2 ;
(3)
∂2z ∂x 2
= e x+ y f3′ −
f1′sin x +
f1′′1 cos2 x + 2 f1′3′ e x+ y cos x +
3.(8 ,16); 55
4. 正方体的边长为 2a . 3
5。(8 ,16) 55
6. 当矩形的边长为 p , 3
该矩形的周长)
p 时,饶短边旋转所得的圆柱体的体积最大。(其中 p 表示 6
8. − 1 2
9.(1)

x
=
64 ,
y
=
38
时取得最大收益;
21 21
(2) 当 x = 0.25, y = 1.25 时收益最大.

⎪ ⎩
z = 0;
(0 ≤ t ≤ 2π )
习题 7.5 1.略
2. 3x − 7 y + 5z − 4 = 0
3. x − 3y − 2z = 0
4.
6x + 8y + 7z −139 = 0
5.
(1)
y+5=0
(2) x + 3y = 0
(3) 9 y − z − 2 = 0

高等数学下册第十一章习题答案详解

高等数学下册第十一章习题答案详解

高等数学下册第十一章习题答案详解1.设L 为xOy 面内直线x a =上的一段,证明:(,)d 0LP x y x =⎰,其中(),P x y 在L 上连续.证:设L 是直线x =a 上由(a ,b 1)到(a ,b 2)这一段,则 L :12x ab t b y t =⎧≤≤⎨=⎩,始点参数为t =b 1,终点参数为t =b 2故 ()()()221d ,d d 0d 0d b b L b b a P x y x P a,t t P a,t t t ⎛⎫=⋅=⋅= ⎪⎝⎭⎰⎰⎰2.设L 为xOy 面内x 轴上从点(,0)a 到点(,0)b 的一段直线,证明:(,)d (,0)d bLaP x y x P x x =⎰⎰,其中(),P x y 在L 上连续.证:L :0x xa xb y =⎧≤≤⎨=⎩,起点参数为x =a ,终点参数为x =b . 故()(),d ,0d bLaP x y x P x x =⎰⎰3.计算下列对坐标的曲线积分: (1)22()d Lxy x -⎰,其中L 是抛物线2y x =上从点(0,0)到点(2,4)的一段弧;(2)d Lxy x ⎰,其中L 为圆周()222x a y a -+=(0)a >及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);(3)d d Ly x x y +⎰,其中L 为圆周cos ,sin x R t y R t ==上对应t 从0到π2的一段弧; (4)22()d ()d Lx y x x y y x y+--+⎰,其中L 为圆周222x y a +=(按逆时针方向绕行); (5)2d d d x x z y y z +-⎰Γ,其中Γ为曲线,,x k y acos z asin θθθ===上对应θ从0到π的一段弧;(6) 322d 3d ()d x x zy y xy z ++-⎰Γ,其中Γ是从点3,2,1()到点0,0,0()的一段直线;(7)d d d x y y z -+⎰Γ,其中Γ为有向闭折线ABCA ,这里AB C 、、依次为点1,0,0()、010(,,)、(001),,;(8)22(2)d (2)d Lx xy x y xy y -+-⎰,其中L 是抛物线2y x =上从点(1,1)-到点(1,1)的一段弧.解:(1)L :y =x 2,x 从0变到2,()()22222435001156d d 3515L x y x x x x x x ⎡⎤-=-=-=-⎢⎥⎣⎦⎰⎰ (2)如图11-1所示,L =L 1+L 2.其中L 1的参数方程为图11-1cos 0πsin x a a tt y a t =+⎧≤≤⎨=⎩L 2的方程为y =0(0≤x ≤2a ) 故()()()()()12π20π320ππ32203d d d 1+cost sin cos d 0d sin 1cos d sin d sin dsin π2LL L axy x xy x xy xa a t a a t t x a t t ta t t t ta =+'=⋅++=-+=-+=-⎰⎰⎰⎰⎰⎰⎰⎰(3)()π20π220π220d d sin sin cos cos d cos 2d 1sin 220Ly x x y R t R t R tR t t Rt tR t +=-+⎡⎤⎣⎦=⎡⎤=⎢⎥⎣⎦=⎰⎰⎰(4)圆周的参数方程为:x =a cos t ,y =a sin t ,t :0→2π. 故()()()()()()222π202π220d d 1cos sin sin cos sin cos d 1d 2πLx y x x y yx y a t a t a t a t a t a t t a a t a +--+=+---⎡⎤⎣⎦=-=-⎰⎰⎰(5)()()()2π220π3220π3320332d d d sin sin cos cos d d 131ππ3x xz y y zk k a a a a k a k a k a Γθθθθθθθθθθ+-=⋅+⋅--=-⎡⎤=-⎢⎥⎣⎦=-⎰⎰⎰(6)直线Γ的参数方程是32=⎧⎪=⎨⎪=⎩x t y t z t t 从1→0.故()()322322103141d 3d d 27334292d 87d 1874874x x zy y x y z t t t t t tt tt Γ++-⎡⎤=⋅+⋅⋅+-⋅⎣⎦==⋅=-⎰⎰⎰(7)AB BC CA Γ=++(如图11-2所示)图11-21:0y x AB z =-⎧⎨=⎩,x 从0→1()01d d d 112AB x y y z dx -+=--=-⎡⎤⎣⎦⎰⎰. 0:1x BC y z =⎧⎨=-⎩,z 从0→1()()()1010120d d d 112d 12232BC x y y z z dz z zz z -+=--+-⎡⎤⎣⎦=-⎡⎤=-⎢⎥⎣⎦=⎰⎰⎰0:1y CA z x =⎧⎨=-⎩,x 从0→1[]1d d d 1001CAx y y z dx -+=-+=⎰⎰.故()()d d d d d d 312122LABBCCAx y y zx y y z-+=++-+=-++=⎰⎰⎰⎰(8)()()()()()221224211235412d 2d 222d 224d 1415L x xy x y xy yx x x x x x x xxx x x x---+-⎡⎤=-⋅+-⋅⋅⎣⎦=-+-=-⎰⎰⎰4. 计算()d ()d Lx y x y x y ++-⎰,其中L 分别是:(1)抛物线2y x =上从点(1,1)到点(4,2)的一段弧; (2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从点(1,1)到点(1,2),然后再沿直线到点(4,2)的折线; (4)曲线2221,1x t t y t =++=+上从点(1,1)到点(4,2)的一段弧. 解:(1)L :2x y y y ⎧=⎨=⎩,y :1→2,故()()()()()2221232124321d d 21d 2d 111232343L x y x y x yy y y y y yy y y yy y y ++-⎡⎤=+⋅+-⋅⎣⎦=++⎡⎤=++⎢⎥⎣⎦=⎰⎰⎰ (2)从(1,1)到(4,2)的直线段方程为x =3y -2,y :1→2 故()()()()()2121221d d 32332d 104d 5411L x y x y x yy y y y y y yy y ++-=-+⋅+-+⎡⎤⎣⎦=-⎡⎤=-⎣⎦=⎰⎰⎰ (3)设从点(1,1) 到点(1,2)的线段为L 1,从点(1,2)到(4,2)的线段为L 2,则L =L 1+L 2.且 L 1:1x y y=⎧⎨=⎩,y :1→2;L 2:2x x y =⎧⎨=⎩,x :1→4;故()()()()()12122211d d 101d 1d 212L x y x y x yy y y y y y y ++-=+⋅+-⎡⎤⎣⎦⎡⎤=-=-⎢⎥⎣⎦=⎰⎰⎰()()()()()()24144211d d 220d 12d 22272L x y x y x yx x x x x x ++-=++-⋅⎡⎤⎣⎦⎡⎤=+=+⎢⎥⎣⎦=⎰⎰⎰从而()()()()()12d d d d 1271422LL L x y x y x yx y x y x y++-=+++-=+=⎰⎰⎰(4)易得起点(1,1)对应的参数t 1=0,终点(4,2)对应的参数t 2=1,故()()()()()()122132014320d d 32412d 10592d 10592432323L x y x y x y t t t tt t tt t t tt t t t ++-⎡⎤=++++--⋅⎣⎦=+++⎡⎤=+++⎢⎥⎣⎦=⎰⎰⎰5. 设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比.若质点由(,0)a 沿椭圆移动到0,Bb (),求力所做的功. 解:依题意知 F =kxi +kyj ,且L :cos sin x a t y a t=⎧⎨=⎩,t :0→π2()()()()π2022π20π222022d d cos sin sin cos d sin 2d 2cos 2222LW kx x ky yka t t kb t b t t k b a t tk b a t k b a =+=-+⋅⎡⎤⎣⎦-=--⎡⎤=⎢⎥⎣⎦-=⎰⎰⎰(其中k 为比例系数)6. 计算对坐标的曲线积分:(1)d xyz z ⎰Γ,Γ为2221x y z ++=与z y =相交的圆,方向按曲线依次经过第Ⅰ、Ⅱ、Ⅶ、Ⅷ卦限;(2)222222(-)d ()d ()d y z x z x y x y z +-+-⎰Γ,Γ为2221x y z ++=在第Ⅰ卦限部分的边界曲线,方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分. 方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分. 解:(1)Γ:2221x y z y z ⎧++=⎨=⎩ 即2221x z y z ⎧+=⎨=⎩其参数方程为:cos x ty tz t =⎧⎪⎪⎪=⎨⎪⎪=⎪⎩ t :0→2π 故:2π2π2202π202π0222d cos sin sin cos d 2sin cos d 2sin 2d 21cos 4d 22πxyz z t t t t t t t t t t ttΓ=⋅⋅⋅==-==⎰⎰⎰⎰⎰(2)如图11-3所示.图11-3Γ=Γ1+Γ2+Γ3.Γ1:cos sin 0x ty t z =⎧⎪=⎨⎪=⎩t :0→π2,故()()()()()1222222π2220π3320π320d d d sin sin cos cos d sincos d 2sin d 24233yz x z x y x y zt t t t tt t tt t Γ-+-+-⎡⎤=--⋅⎣⎦=-+=-=-⋅=-⎰⎰⎰⎰又根据轮换对称性知()()()()()()1222222222222d d d 3d d d 4334y z x z x y x y z y z x z x y x y zΓΓ-+-+-=-+-+-⎛⎫=⨯- ⎪⎝⎭=-⎰⎰ 习题11-31. 应用格林公式计算下列积分:(1)(24)d (356)d Lx y x x y y -+++-⎰,其中L 为三顶点分别为()()0,0,3,0和(32),的三角形正向边界;(2)222(cos 2sin e )d (sin 2e )d x x Lx y x xy x y x x x y y +-+-⎰,其中L 为正向星形线222333x y a +=0a >();(3)3222(2cos )d (12sin 3)d Lxy y x x y x x y y -+-+⎰,其中L 为抛物线22πx y =上由点0,0()到点π,12⎛⎫⎪⎝⎭的一段弧; (4)22()d (sin )d Lxy x x y y --+⎰,其中L 是圆周22y x x =-上由点0,0()到()1,1的一段弧;(5)(e sin )d (e cos )d x x Ly my x y m y -+-⎰,其中m 为常数,L 为由点(),0a 到0,0()经过圆22x y ax +=上半部分的路线(a 为正数).图11-4解:(1)L 所围区域D 如图11-4所示,P =2x -y +4,Q =3x +5y -6,3Qx∂=∂,1P y ∂=-∂,由格林公式得 ()()d d 24356d d 4d d 4d d 1432212LD DDx yx y x y Q P x y x y x yx y+-++-∂∂⎛⎫-= ⎪∂∂⎝⎭===⨯⨯⨯=⎰⎰⎰⎰⎰⎰⎰(2)P =x 2y cos x +2xy sin x -y 2e x ,Q =x 2sin x -2y e x , 则2cos 2sin 2e x P x x x x y y∂=+-∂,2cos 2sin 2e x Qx x x x y x∂=+-∂.从而P Qy x∂∂=∂∂,由格林公式得.()()222d dcos2sin e sin2ed d++--∂∂⎛⎫-= ⎪∂∂⎝⎭=⎰⎰⎰x xLDx yx y x xy x y x x yQ Px yx y(3)如图11-5所示,记OA,AB,BO围成的区域为D.(其中BO=-L)图11-5P=2xy3-y2cos x,Q=1-2y sin x+3x2y2262cosPxy y xy∂=-∂,262cosQxy y xx∂=-∂由格林公式有:d d d d0L OA AB DQ PP x Q y x yx y-++∂∂⎛⎫-+==⎪∂∂⎝⎭⎰⎰⎰故π2122001222d d d dd d d dππd d12sin3243d12π4π4++=+=+++⎛⎫=+-+⋅⋅⎪⎝⎭⎛⎫=-+⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰L OA ABOA ABP x Q y P x Q yP x Q y P x Q yO x yy yyy y(4)L、AB、BO及D如图11-6所示.图11-6由格林公式有d d d d++∂∂⎛⎫-+=- ⎪∂∂⎝⎭⎰⎰⎰L AB BO DQ PP x Q y x yx y而P=x2-y,Q=-(x+sin2y).1∂=-∂Py ,1∂=-∂Q x,即,0∂∂-=∂∂Q P x y 于是()d d d d 0+++++=+=⎰⎰⎰⎰LABBOL AB BOP x Q y P x Q y从而()()()()()()()22222211220011300d d d d sin d d d d sin sin d d 1sin 131sin 232471sin 264LLBA OB P x Q y x yx y x y x y x yx y x y x y x y y x x y x y y +=--+=-+--+-+=-++⎡⎤⎡⎤=+-+⎢⎥⎢⎥⎣⎦⎣⎦=-+⎰⎰⎰⎰⎰⎰(5)L ,OA 如图11-7所示.图11-7P =e x sin y -my , Q =e x cos y -m , e cos x P y m y ∂=-∂,e cos x Q y x ∂=∂ 由格林公式得:22d d d d d d d d 1π22π8L OA D DDQ P P x Q y x y x y m x ym x ya m m a +∂∂⎛⎫-+= ⎪∂∂⎝⎭==⎛⎫=⋅⋅ ⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰ 于是:()()[]220202πd d d d 8πd 0e sin 00e cos08π0d 8π8+=-+=-+⋅⋅-⋅⋅-=-=⎰⎰⎰⎰L OA a x x a m a P x Q y P x Q y m a xm m m a xm a2. 设a 为正常数,利用曲线积分,求下列曲线所围成的图形的面积:(1) 星形线 33cos ,sin ;x a t y a t == (2) 双纽线 22cos2;r a θ= (3) 圆 22x y ax ++=解:(1) ()()()()()2π3202π2π242222002π202π202π202d sin 3cos d sin 33sin cos d sin 2sin d 43d 1cos 41cos 2163d 1cos 2cos 4cos 2cos 416312π+d cos 2cos 61623π8LA y x a t a t tt a t t t a t t t a t t t a tt t t t a t t t a =-=-⋅-==⋅=--=--+⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰(2)利用极坐标与直角坐标的关系x =r cos θ,y =r sin θ得 cos cos 2x a θ=sin cos 2y a θ=从而x d y -y d x =a 2cos2θd θ. 于是面积为:[]π24π4π24π4212d d 2cos 2d sin 22LA x y y x a a a θθθ--=⋅-===⎰⎰(3)圆x 2+y 2=2ax 的参数方程为 cos 02πsin x a a y a θθθ=+⎧≤≤⎨=⎩故()()[]()2π022π021d d 21d a+acos sin 2d 1cos 2πcos sin L A x y y xa a a a a θθθθθθθ=-=-=+=⋅-⎰⎰⎰ 3. 证明下列曲线积分与路径无关,并计算积分值: (1)(1,1)(0,0)()(d d )x y x y --⎰;(2)(3,4)2322(1,2)(6)d (63)d xy y x x y xy y -+-⎰;(3)(1,2)2(1,1)d d y x x yx +⎰沿在右半平面的路径; (4)(6,8)(1,0)⎰.证:(1)P =x -y ,Q =y -x .显然P ,Q 在xOy 面内有连续偏导数,且1P Q y x∂∂==-∂∂,故积分与路径无关.取L 为从(0,0)到(1,1)的直线段,则L 的方程为:y =x ,x :0→1.于是()()()()11,100,00d 0d d x x y x y ==--⎰⎰(2) P =6xy 2-y 3,Q =6x 2y -3xy 2.显然P ,Q 在xOy 面内有连续偏导数,且2123Pxy y y∂=-∂,2123Qxy y x∂=-∂,有P Q y x ∂∂=∂∂,所以积分与路径无关. 取L 为从(1,2)→(1,4)→(3,4)的折线,则()()()()()()[]3,423221,2432214323212d d 663d d 63966434864236x y xyy x y xy y x y y x y y x x +--=+--=+⎡⎤--⎣⎦=⎰⎰⎰(3)2y P x =,1Q x =-,P ,Q 在右半平面内有连续偏导数,且21P y x ∂=∂,21Q x x ∂=∂,在右半平面内恒有P Qy x∂∂=∂∂,故在右半平面内积分与路径无关. 取L 为从(1,1)到(1,2)的直线段,则()()()21,2211,1d d d 11x y x x y y -==--⎰⎰(4) P =,Q ,且P Qy x∂∂==∂∂分在不含原点的区域内与路径无关, 取L 为从(1,0)→(6,0)→(6,8)的折线,则()()686,811,0801529x y =+⎡=+⎣=⎰⎰⎰4.验证下列()(),d ,d P x y x Q x y y +在整个xOy 平面内是某一函数(),u x y 的全微分,并求这样的一个函数(),u x y :(1)()()2d 2d x y x x y y +++;(2)22d d xy x x y +;(3)223238d 812e d yx y xy x x x y y y ++++()(); (4)222cos cos d 2sin sin d x y y x x y x x y y ++-()(). 解:证:(1)P =x +2y ,Q =2x +y .2P Q y x ∂∂==∂∂,所以(x +2y )d x +(2x +y )d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分. ()()()()()(),0,0022022d d ,22d d 2222222x y xy yu x y x y x y x y x x yx y x y xy x y xy =+++=++⎡⎤=++⎢⎥⎣⎦=++⎰⎰⎰(2)P =2xy ,Q =x 2, 2P Qx y x∂∂==∂∂,故2xy d x +x 2d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分. ()()(),20,02022d d ,0d d x y xy u xy x x y x y x x yx y=+=+=⎰⎰⎰(3)P =3x 2y +8xy 2,Q =x 3+8x 2y +12y e y ,2316∂∂=+=∂∂P Qx xy y x,故(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y 是某个定义在整个xOy 面内函数u (x ,y )的全微分, ()()()()()(),22320,03200322d ,38812e 0d d 812e 412e 12e 12x y y xyyy y u x x y x y x y x x y y x y x x y y x y x y y =++++=+++=++-+⎰⎰⎰(4)P =2x cos y +y 2cos x ,Q =2y sin x -x 2sin y ,2sin 2cos P x y y x y ∂=-+∂,2cos 2sin Qy x x y x∂=-∂, 有P Qy x∂∂=∂∂,故(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y 是某一个定义在整个xOy 面内的函数u (x ,y )的全微分,()()()()()(),220,020022d d ,2cos cos 2sin sin 2d d 2sin sin sin cos x y xyu x y x y x y y x y x x y x x yy x x y y x x y=++-=+-=+⎰⎰⎰5.证明:22xdx ydyx y ++在整个xOy 平面内除y 轴的负半轴及原点外的开区域G 内是某个二元函数的全微分,并求出这样的一个二元函数。

高等数学同济第七版下册习题与答案完整版

高等数学同济第七版下册习题与答案完整版

高等数学同济第七版下册习题与答案完整版引言在学习高等数学课程中,习题是提高理解和掌握知识的重要方式。

然而,有时候我们在学习的过程中可能会遇到一些难题,不知道如何解答。

为了帮助同学们更好地学习和掌握高等数学知识,我们整理了高等数学同济第七版下册的习题与答案完整版,供大家参考。

第一章无穷级数习题1.11.讨论级数 $\\sum_{n=1}^{\\infty} \\frac{n^3 +2n}{(2n^2 + 3n - 4)^2}$ 的敛散性。

2.求级数 $\\sum_{n=1}^{\\infty} \\frac{(-1)^n}{n^2}$ 的和。

答案1.首先,我们将这个级数进行比较审敛法。

考虑到n3+2n的最高次项为n3,而(2n2+3n−4)2的最高次项为(2n2)2=4n4,因此我们可以得到 $\\frac{n^3 +2n}{(2n^2 + 3n - 4)^2} < \\frac{n^3 + 2n}{4n^4}$。

根据比较审敛法的基本原理,只需讨论 $\\sum_{n=1}^{\\infty} \\frac{n^3 + 2n}{4n^4}$ 的敛散性。

根据级数的性质,我们可以分别求前两项、前三项的和,并观察和的变化规律。

经过计算,可得前两项的和为 $\\frac{1}{16}$,前三项的和为 $\\frac{5}{96}$。

观察可以发现,当 n 的值逐渐增大时,和逐渐减小,并且趋于一个有限值。

因此,根据比较审敛法,原级数$\\sum_{n=1}^{\\infty} \\frac{n^3 + 2n}{(2n^2 + 3n - 4)^2}$ 也收敛。

2.我们可以使用交错级数的性质求解这个问题。

根据交错级数的性质,交错级数 $\\sum_{n=1}^{\\infty}\\frac{(-1)^n}{n^p}$ 的和为 $S = \\ln 2$,其中n=1。

对于这个问题,我们可以发现,级数$\\sum_{n=1}^{\\infty} \\frac{(-1)^n}{n^2}$ 的形式和交错级数一样,只是n=2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七次作业
1.函数3
2z
xy u =
在点A )2,1,5(处沿到点B )14,4,9(的方向

AB 上的方向导数为 。

解 填13
992
802,8)2,1,5(3
)2,1,5()2,1,5(32)2,1,5(====xyz u z y u y x {}12,3,4,603)
2,1,5(22
)2,1,5(====→AB T z
xy u z
,13
12
cos ,133cos ,134cos ===γβα
则u 在点A 处沿→
AB 的方向导数为:
13
992131260133801348)2,1,5(=⨯+⨯+⨯=∂∂T u
2.函数
()2
2
2
ln z
y x u -+=在点
M
)1,1,1(-处的梯度
=M gradu 。

解 填{}2,2,2--
2
22222222z y x z 2z u ,z y x y 2y u ,z y x x 2x u -+-=∂∂-+=∂∂-+=∂∂
2,2,2)
1,1,1()1,1,1()1,1,1(=∂∂-=∂∂=∂∂∴---z u y u x u {}2,2,2-=∴M gradu
3.对二元函数(,)z f x y =而言( )。

A.,x y f f 存在且连续,则(,)f x y 沿任一方向的方向导数存在;
B.
(,)f x y 的偏导数都存在,则(,)f x y 沿任一方向的方向导
数存在;
C.沿任一方向的方向导数存在,则函数(,)f x y 必连续;
D .以上结论都不对。

解 填(A )
x y f f ,存在且连续f ⇒可微⇒沿任一方向的方向导数存在。

4.若函数(,,)u u x y z =
在点(,,)x y z 处的三个偏导数都存在
且不全为0,则向量,,u u u x y z ⎧⎫∂∂∂⎨⎬∂∂∂⎩⎭的方向是函数u 在点
(,,)x y z 处的( )。

A .变化率最小的方向; B .变化率最大的方向;
C .可能是变化率最小的方向,也可能是变化率最大的方向;
D .既不是变化率最小的方向,也不是变化率最大的方向。

解 填(B )
方向{,,}u u u x y z
∂∂∂∂∂∂,即梯度方向,沿梯度方向变化率最大。

5.求由方程e xyz e
z
=-确定的隐函数),(y x z z =在点)
1,0(处沿)4,3(-=l
方向的方向导数。

解 令xz F yz F e xyz e z y x F x x z
-=-=--=,,),,
(
xy
e xz
F F y z xy e yz F F x z xy e F z
z y z z x z
z -=-=∂∂-=-=∂∂-=,, 5
4
cos ,53cos ,0,1)1,0()1,0(-=
==∂∂=∂∂∴βαy z e x z e
e l z 53540531)1,0(=⎪⎭⎫ ⎝⎛-⨯+⨯=∂∂∴ 6.求函数2
22z
y x u ++=
在曲线3
2,,t
z t y t x ===上点
)1,1,1(-处,沿曲线在该点的切线方向(对应于t 增大的方向)
的方向导数。

解 2
3,2,1t
z t y x t t t
='='='
∴曲线在点)1,1,1(-处的切线方向的方向向量为{}3,2,1=T

14
3
cos ,142cos ,141cos ===γβα
22,22)1,1,1()1,1,1()1,1,1()1,1,1(==∂∂==∂∂----y y u
x x u
,22)1,1,1()
1,1,1(-==∂∂--z z u
014
3
214221412)1,1,1(=⨯-⨯+⨯=∂∂-T u
7.求函数
22
221()x y
z a b =-+在
点(
,)a b 处沿曲线2
2
221x y
a b
+=在这点的内法线方向的方向导数。


z x
a ∂=-∂
,z y b ∂=-∂ 曲线2
2
221x y
a b
+=的切线的斜率是tan b a α=-,
从而内法线的斜率为tan a
b
θ=,由此得内法线的方向余弦:
cos b θ-=
sin a
θ-=
所以,
z l
∂=
∂()b
a -⋅-(
()()b
a
+-⋅-
ab =。

相关文档
最新文档