华东理工大学高等数学习题
华东理工大学高数答案第2章

第2章 (之1)第2次作业教学内容: §2.1 导数概念**1. 设x x x f 2)(3+=,试用导数定义求)(x f '.解:lim ()()lim()()∆∆∆∆∆∆∆x x f x x f x x x x x x x xx →→+-=+++--003322 =+322x .**2. 试用导数定义计算下列函数的导数:(1)xx f 1)(=, 求)1(f '; (2)()38t t g -=,求()2g '; (3)()t t t -=23ϕ,求()1-'ϕ.解:(1)x f x f f x ∆-∆+='→∆)1()1(lim )1(0=+-→lim ∆∆∆x xx0111=-+=-→lim ∆∆x x 0111.(2) ()()()tt g t t g t g t ∆-∆+='→∆0lim()[][]()()tt t t t t t t tt t t t t t t t t t ∆∆+∆+∆+-=∆∆+-=∆--∆+-=→∆→∆→∆32233033033033lim lim 88lim()22033lim t t t t t ∆-∆--=→∆23t -=,即 ()23t t g -=', ()122-='∴g .(3) ()()()tt t t t t ∆-∆+='→∆ϕϕϕ0lim()()[][]ttt t t t t t ∆--∆+-∆+=→∆22033limttt t t t ∆∆-∆+∆=→∆2036lim()16136lim 0-=-∆+=→∆t t t t , ()16-='∴t t ϕ, ()71-=-'ϕ.**3. 求曲线22x y = 在点 ()2,1=P 处的切线方程.解:曲线在点P 处切线的斜率为 4122lim 21=--→x x x ,所以切线方程为 ()214+-=x y .**4. 化学反应速率通常是以单位时间内反应物浓度的减少或生成物浓度的增加来表征。
华东理工大学级(下)高等数学期中考试试卷(学分)解答

华东理工大学级(下)高等数学期中考试试卷(学分)解答————————————————————————————————作者:————————————————————————————————日期:华东理工大学2013–2014学年第二学期《高等数学(下)11学分》课程期中考试试卷 2014.4开课学院:理学院, 专业:大面积, 考试形式:闭卷,所需时间 120 分钟考生姓名: 学号: 班级 任课教师题序 一二三四五六总分得分 阅卷人注 意:试 卷 共 两 页 六 大 题一.填空题(本大题共11小题,每小题4分,共44分):1、微分方程222'y x e yx y -=的通解为 。
答:C e xe e xx y +-=22412122、微分方程0''9)4(=+y y 的通解为 。
答:x C x C x C C y 3sin 3cos 4321+++=3、函数 zxy u )(= 对变量x 的偏导数 =x u 。
答:12)(--=z x xy x yz u 4、设 ))arctan(,,(xyz e y xze f u zy+=,其中f 关于所有变量有一阶连续偏导数, 则=∂∂yu。
答:3222211f zy x xz f f xze y u y +++=∂∂ 5、设函数z z x y =(,)由方程 ),(yzxz f z = 所确定,其中f 关于所有变量有一阶连续偏导数,则∂∂zy= 。
答:21222yf f xy y zf ---6、设1)(-=⋅⨯c b a ρρρ,则=+⨯+⋅)]()[(c b b a b ρρρρϖ 。
答: 17、函数)ln(22z y x u ++=在点)1,0,1(处最大的方向导数等于 。
答:228、微分方程 0'2''=+y xy 的通解=y 。
答: 21C xC y +-= 9、设平面π过直线⎩⎨⎧=+-=++04,05:z x z y x L 则原点到平面π距离d 的范围是 。
2006-2007高数下(8学分)期末试题A及解答

华东理工大学2006-2007学年高等数学下(8学分)期末考试试卷A 2007.7一. 填空题(每小题4分, 共36分) 1.微分方程22x x e xy y -=+'满足初始条件0)0(=y 的特解为y =____________. 2.微分方程09)4(=''+y y 的通解为y =________________.3.1||||==b a , a 与b 夹角等于3π, 则|32|b a-=_____________.4.过直线⎩⎨⎧=-=+21:z y y x L 且平行于}4,1,2{--=l 的平面方程是____________5.设),4()(2)4(t e t f t F -+=, 其中1),(C y x f ∈且有a f =-)1,2(及b f =-')1,2(1, c f =-')1,2(2, 则)0(F '=______________6.设函数),(y x z z =由方程xz xy e z y x -=-+32确定, 则)0,0(dz =_____________.7.σd y x y x y x ⎰⎰≤++++12222222)(1)(=______________.8.广义积分dx x x ⎰+∞+1)1(1=_______________. 9.极坐标系下心脏线)cos 1(2ϑρ+=所围成区域D 的面积为A =_______________.二. 选择题(每小题4分, 共32分)1.椭圆122≤+y x 绕x 轴和y 轴旋转所得的体积分别是上x V 和y V , 则 ( ) (A)y x V V 49=; (B)y x V V 32=; (C)y x V V 94=; (D)y x V V 23=.2.函数Cx y =是微分方程032=+'-''y y x y x 的 ( ) (A)通解; (B)特解; (C)是解, 但既不是通解, 也不是特解; (D)以上都不对.3.若a 与b 不平行, 且μλ≠, 则b aλ+与b a μ+ ( ) (A)必不平行; (B)模不相等; (C)必不垂直(正交); (D)不排除有平行的可能性; 4.“函数),(y x f 在),(00y x 点两个一阶偏导数都存在”是“函数),(y x f 在),(00y x 点 可微”的 ( ) (A)充分条件, 但不是必要条件; (B)必要条件, 但不是充分条件;(C)必要条件; (D)既不是充分条件, 也不是必要条件.5.设2C f ∈, ),,2(xz z y y x f u -+=, 则yx u∂∂∂2= ( )(A)131122f z f ''+''; (B)23131122f z f z f ''+''+''; (C)2313121122f z f z f f ''+''+''+''; (D)23131211222f z f z f f ''+''+''+'' 6.C f ∈, 则⎰⎰ϑϑπρρρρϑρϑcos 2sec 40)sin ,cos (d f d = ( )(A)⎰⎰--111102),(y dx y x f dy ; (B)⎰⎰-22121),(x x dy y x f dx ; (C)⎰⎰-2202),(x x dy y x f dx ; (D)⎰⎰-+211110),(y dx y x f dy .7.下列极限中等于0的是 ( ) (A)dx e n nn xn ⎰+∞→12lim ; (B)dx e n nn xn ⎰+∞→12lim ; (C)dx e n nn xn ⎰+∞→12lim ; (D)dx e n nn xn ⎰+∞→1222lim .8.边际成本等于边际收益是利润最大的 ( )(A)充要条件; (B)充分条件, 非必要条件;(C)必要条件, 非充分条件; (D)既不是必要条件, 也不是充分条件.三. (本题8分) 微分方程y y y y ''='+''2)(2满足初始条件2)0(=y , 3)0(='y 的特解.四. (本题8分)求曲线⎩⎨⎧-=++=++30zx yz xy z y x L :上的点P , 使L 在点P 处的切线平行与平面0=-+z y x .五. (本题8分) 利用夹逼性准则求极限)332211(lim 2222nn nn n n n n n n n ++++++++++++∞→ . 六. (本题8分)求有二阶连续导数的函数)0)((>t t f , 使)(22y x f u +=满足12222=∂∂+∂∂y ux u .华东理工大学2006-2007学年第二学期《高等数学(下)》课程期终考试试卷参考答案与评分标准一.填空题(每小题4分,共36分)1.)1e (e 2--x x 2.x C x C x C C 3sin 3cos 4321+++ 3. 7 4. 123=++z y x5. )8(3c b a -6. y x d 20d 1+7.8. 2ln9. π6二.选择题(每小题4分,共32分):8.C. 7.C; 6.D; 5.B; B; 4.A; 3.; C 2.; 1.D三.以y p '=为新未知函数,暂以y 为新自变量,原方程可化为 p ypy 2d d )1(=----(2分)解得 21)1(-=y C p ------------------------------------------------(2分)由32==y p可得31=C ---------------------------------------------------------------------------(1分)由2)1(3-='y y 解得x C y 3112-=----------------------------------------------------------(2分) 根据条件2)0(=y 可得12=C ,即x y 3111-=-或x x y 3132--=------------------------(1分)四.因为{}1,1,11=→n ,{}y x x z z y n +++=→,,2,所以切向量为 {}y x x z z y n n t ---=⨯=→→→,,21 --------------------------( 3分){}{}y x y x x z z y l t lt =⇒=-⋅---⇒=⋅⇒⊥→→→→1,1,1.,0 ------------(3分)代入原曲线方程(组)得⎩⎨⎧-=+=+32,022zx x z x 解得)2,1,1(1-=P 和)2,1,1(2--=P -------(2分)六.(本题8分)记22y x t +=,则有)(t f u =,所以t x t f x u ⋅'=∂∂)(,tyt f y u ⋅'=∂∂)(-------------------------------(1分) 322222)()(t y t f t x t f x u ⋅'+⋅''=∂∂,322222)()(tx t f t y t f y u ⋅'+⋅''=∂∂---------(2分) 原方程可化为 1)(1)(='+''t f tt f ---------------------------------------------------------(1分) 以)(t f p '=为新的未知函数,仍然以x 为自变量,得到新方程为11=+'p tp ------------------------------------------------(2分)解得tC t p t f 121)(+==',从而有212ln 21)(C t C t t f ++=--------------------------(2分)。
华东理工 高等数学 作业解答 第14章

,其中 L 是从 O(0,0)沿曲线
,到 B (0,2).
108
x dx 2 xydy ,其中 L 是由 y x 与 y x 2 构成的简单闭曲线. x 1 x 解: dx 2 xydy L x 1 1 0 x x ( 4 x 4 )dx ( x)dx 0 x 1 1 x 1
教学内容: § 14.2 格林公式(续) 1. 选择题
114
**(1) 曲线积分
的值
(
)
(A) 与曲线 L 及起点、终点均有关; (B) 与曲线 L 无关,仅与其起点及终点有关; (C) 与曲线 L 及起点无关,仅与终点无关; (D) 与曲线 L 及起点终点都无关. 答: (B)
**(2) 设 C 是从 A (1,1)到 B (2,3)的直线,则
第 14 章 (之 1) (总第 75 次)
教学内容: § 14.1 第二型曲线积分 **1.设 L :
x cos x , y sin t ,
0t
2
, 则 x 2 ydy y 2 xdx
L
(
)
(A)
cos t
2 0
sin t sin t cos t dt ;
0
t2 t5 dt (1 t 3 ) 3
a2 2
0
t2 a2 1 a2 dt 6 (1 t 3 ) 0 6 (1 t 3 ) 2
4.在下列各题中适当补上一条曲线,使积分路径成闭曲线,再考虑用格林公式: **(1)
xy sin x sin y dx x
w fds
L
L
x y dx 2 dy 2 x y x y2
华东理工大学高等数学答案第2章.doc

第2章 (之8)第9次作业教学内容:§2.3.4函数的间断点及其分类 §2.3.5闭区间上连续函数的性质 §2.4.1函数可导与连续的关系 §2.4.2函数的和差积商的求导法则**1.型为( ),则此函数间断点的类、的间断点为函数2123122=+--=x x x x y是第一类.是第二类,.是第二类;是第一类,.都是第二类;,.都是第一类;,.21212121======x x D x x C x B x AC 答:***2. 设xx x x x f 1sin1)(22--=,则1-=x 是)(x f 的 ___ 间断点; 0=x 是)(x f 的_____ 间断点;1=x 是)(x f 的 ____ 间断点.答案:1、无穷;2、可去;3、跳跃.***3.对怎样的 a 值,点 a x = 是函数()a x x x f --=42 的可去间断点? 解:函数在可去间断点处a x =极限必存在。
由极限基本定理,设A a x x a x =--→4lim 2,则必有()()()a x x a x A x -+-=-α42,其中()x α是a x →时的无穷小。
而()44lim 22-=-→a x a x ,另一方面,()()()[]0lim =-+-→a x x a x A ax α。
所以由042=-a 得2±=a 。
经验证,当 2±=a 时,a x x a x --→4lim 2存在,故 2±=a 为所求.**4.指出的间断点,并判定其类型.f x x xx x()sin =--21解: ,,210πππn x x x ±±±===,,,,,都是的间断点f x (), ∞==∈≠=→)(lim 0sin ,)0(x f n z n n n x n x πππ,处, 在,的第二类间断点是,,,故)(32x f x πππ±±±=;,无意义处在1sin 1)1(lim)(lim ,)0(,00-=--==→→xx x x x f f x x x∴=x f x 0是的可去间断点();,1sin 1)01(1sin 1)01(1=+-=-=f f x ,处在)01()01(+≠-f f 的跳跃间断点是 )(1x f x =∴.***5 、指出下面函数的无穷间断点:x x xx f sin cos 1)(-=.解:依题意,0=x 及),2,1( ±±==k k x π是)(x f 的间断点. 而x x x x x x x f x x x ⋅=-=→→→2lim sin cos 1lim )(lim 200021=. 故0=x 不是无穷间断点.又)0(0)2()2(lim )2sin()2cos(1lim sin cos 1lim 221222≠=---=----=-→→→k x k x x k x k x x k x x x k x k x k x πππππππ,而)2,1,0(sin cos 1lim2 ±±=∞=-+→k x x xk x ππ,∴ 函数)(x f 的无穷间断点为 ,5,3,πππ±±±=x .**6.设()x f y =在[]1,0上连续,且()10≤≤x f 。
华东理工高等数学作业本第1次作业答案

华东理工高等数学作业本第1次作业答案第3章(之3)第15次作业教学内容: §3.3.1 00型3.3.2 ∞∞型1. 填空题*(1)若0≠p ,则px px xx x cos sin 1cos sin 1lim0-+-+→________=.解:p 1.**(2)_______)e1ln()e 1ln(lim11=+--+-∞→x x x .解:2e -。
2. 选择题。
**(1)若)()(limx g x f x x →是00待定型,则“Ax g x f x x =''→)()(lim 0”是“Ax g x f x x =→)()(lim 0”的( B )(A )充要条件; (B)充分条件,非必要条件;(C )必要条件,非充分条件; (D) 既非充分条件,也非必要条件.**(2)若)()(limx g x f x x →是∞∞的未定型,且Ax g x f x x =''→)()(lim 0,则=→)(ln )(ln lim 0x g x f x x( B )(A )A ln ;(B )1; (C)2A ; (D)21A.***3 求极限 xx x xxx arctan 3 3e2elim220---+-→.解:原式= =+----→2201116e2e2limxxxxx 2203e elim2xxx xx ---→xxxx 23e e2lim220-+=-→31ee4lim20=-=--→xxx .4 求下列极限:**(1)+→0lim x )0()sin ln()sin ln(>>a b bx ax ; **(2)∞→x lim)43ln()35ln(236+-++x x x x .解:(1)原式bxa x cos cot lim+→=ax b bxa x tan tan lim+→=1=.(2))431ln(ln )751ln(ln lim 22636x x x x x x x +-++++=∞→原式=++++-+→∞limln()ln ln()ln x x xxx x x 3157113436222=3.****5. xex x x -+→1)1(lim.解: ])1[(lim )00()1(lim 10'+=-+→→xx x x x x e x 210)1()1)](1ln()1([lim x x x x x x x x ++++-=→2]21)1ln(1lim[])1ln()1(lim[02e xx e xx x x e x x -=-+-=++-=→→.***6. 若已知()x f '在0=x 连续,且有()00=f ,2)0(='f ,求极限()()[]2limxx f f x f x ?→.解:xx f f xx f xx f f xx f xx f f x f x x x x )]([lim)(lim)]([)(lim)]([)(lim2→→→→?=?=?82)]0('[)]0('[)0(')('1)](['lim1)('lim3320===?=??=→→f f f x f x f f x f x x .***7. 设()x f 具有2阶连续导数,且()00=f ,试证()x g 有1阶连续导数,其中()()()??=≠=.0,0,0,'x f x xx f x g证明:依题意,当0≠x 时,2)()(')('xx f x x f x g -?=均连续.故只需证明 )0(')('lim 0g x g x =→ 即可.由导数定义,有)0("212)0(')('lim)0(')(lim)0(')(lim0)0()(lim)0('02f xf x f xxf x f xf xx f x g x g g x x x x = -=-=-=--=→→→→又)0(')0(''212)(')(')(''lim)()('lim)('lim 020g f xx f x f x x f xx f x x f x g x x x == -+=-=→→→.故命题得证.。
华理高数答案第6章

***16.求
arctan(tan 2 x) sin 2 x cos 4 x sin 4 x dx
dx .
解:
arctan(tan 2 x) sin 2 x cos 4 x sin 4 x
arctan(tan 2 x)2 tan x sec 2 x dx 1 (tan 2 x) 2
***3.
x a x3
2
dx .
解:
2 dx 3 a 2 x3
x
d (x 2 ) a 2 (x 2 )2
3
3
2 x2 arcsin C. 3 a
3
**4.
1 x dx . 1 x 1 x 1 x dx dx 1 x 1 x2
解:
dx 1 x2
***11.
dx 1 ex
x
.
解: 设 1 e t . 则e t 1 e dx 2tdt
x
2xBiblioteka 原式 ln2t dt t 1 dt 2 2 ln C t (t 1) t 1 t 1
2
t 2 1 c x 2 ln 1 1 e x C . (t 1) 2
ln sin x d x .
cot x
d(ln sin x) cot x dx ln ln sin x C . ln sin x ln sin x
**13. 求
( x ln x)
3 2
1 ln x
3 2
dx. d( x ln x) ( x ln x)
3 2
解:
华东理工大学本科生线性代数第三册

1 1 1 1 0, 0 1 1 1 0 1 0, 0 0
A21 1, A22 1, A23 0, A24 0, A31 0, A32 1, A33 1, A34 0, A41 0, A42 0, A43 1, A44 1.
.
x
解:原式
r21 ( 1)
1 1 x 1 0 1
r43 ( 1)
1 1 y
1 1 y
1
= xy
1 1 x 0 0 0
1 1 y
2.4 行列式的计算 1. 计算下列 n 阶行列式 1 3 3 3
1 1
1 n n 1
.
3 2 3 (1) 3 3 3 3 3 3
3 1 1 3 ; (2) Dn n 1 n n 1
1 x 1 1 x 1 1 0 y 0 1 0 0 1 xy 1 1 1 1 1 1 x 1 1 y x2 y2 . 0 1 y xy 1 1 1 y 1 1 0 1 1 1 1 1y 1 0 1 0 1 0 1 1 1 1 x 1
8. 计算行列式
1 1 1 x 0 1 1 0 0
a b
c c
d a a c
3. 设 4 阶行列式 D4
c d
b d b
,则 A13 A23 A33 A43 ____.
a b d
解:0 4. 设 A 1,2 , 1 , B 1,2 , 2 均 为 3 阶 矩 阵 , 若 已 知
| A | 2, | B | 3 ,求 2 A 5B 的值.
和. 解:解法一:直接计算各代数余子式
1 1 1 0 1 2 A11 (1) 0 1 1 1, A12 (1) 0 0 0 1 0 0 1 1 0 1 3 1 4 A13 (1) 0 0 1 0, A14 (1) 0 0 0 1 0