华东理工大学2011年高等数学下答案
华东理工大学高数答案第2章

第2章 (之1)第2次作业教学内容: §2.1 导数概念**1. 设x x x f 2)(3+=,试用导数定义求)(x f '.解:lim ()()lim()()∆∆∆∆∆∆∆x x f x x f x x x x x x x xx →→+-=+++--003322 =+322x .**2. 试用导数定义计算下列函数的导数:(1)xx f 1)(=, 求)1(f '; (2)()38t t g -=,求()2g '; (3)()t t t -=23ϕ,求()1-'ϕ.解:(1)x f x f f x ∆-∆+='→∆)1()1(lim )1(0=+-→lim ∆∆∆x xx0111=-+=-→lim ∆∆x x 0111.(2) ()()()tt g t t g t g t ∆-∆+='→∆0lim()[][]()()tt t t t t t t tt t t t t t t t t t ∆∆+∆+∆+-=∆∆+-=∆--∆+-=→∆→∆→∆32233033033033lim lim 88lim()22033lim t t t t t ∆-∆--=→∆23t -=,即 ()23t t g -=', ()122-='∴g .(3) ()()()tt t t t t ∆-∆+='→∆ϕϕϕ0lim()()[][]ttt t t t t t ∆--∆+-∆+=→∆22033limttt t t t ∆∆-∆+∆=→∆2036lim()16136lim 0-=-∆+=→∆t t t t , ()16-='∴t t ϕ, ()71-=-'ϕ.**3. 求曲线22x y = 在点 ()2,1=P 处的切线方程.解:曲线在点P 处切线的斜率为 4122lim 21=--→x x x ,所以切线方程为 ()214+-=x y .**4. 化学反应速率通常是以单位时间内反应物浓度的减少或生成物浓度的增加来表征。
华东理工大学级(下)高等数学期中考试试卷(学分)解答

华东理工大学级(下)高等数学期中考试试卷(学分)解答————————————————————————————————作者:————————————————————————————————日期:华东理工大学2013–2014学年第二学期《高等数学(下)11学分》课程期中考试试卷 2014.4开课学院:理学院, 专业:大面积, 考试形式:闭卷,所需时间 120 分钟考生姓名: 学号: 班级 任课教师题序 一二三四五六总分得分 阅卷人注 意:试 卷 共 两 页 六 大 题一.填空题(本大题共11小题,每小题4分,共44分):1、微分方程222'y x e yx y -=的通解为 。
答:C e xe e xx y +-=22412122、微分方程0''9)4(=+y y 的通解为 。
答:x C x C x C C y 3sin 3cos 4321+++=3、函数 zxy u )(= 对变量x 的偏导数 =x u 。
答:12)(--=z x xy x yz u 4、设 ))arctan(,,(xyz e y xze f u zy+=,其中f 关于所有变量有一阶连续偏导数, 则=∂∂yu。
答:3222211f zy x xz f f xze y u y +++=∂∂ 5、设函数z z x y =(,)由方程 ),(yzxz f z = 所确定,其中f 关于所有变量有一阶连续偏导数,则∂∂zy= 。
答:21222yf f xy y zf ---6、设1)(-=⋅⨯c b a ρρρ,则=+⨯+⋅)]()[(c b b a b ρρρρϖ 。
答: 17、函数)ln(22z y x u ++=在点)1,0,1(处最大的方向导数等于 。
答:228、微分方程 0'2''=+y xy 的通解=y 。
答: 21C xC y +-= 9、设平面π过直线⎩⎨⎧=+-=++04,05:z x z y x L 则原点到平面π距离d 的范围是 。
2011年高等数学(高数)学位考试答案与平分标准

| | | | | | | |装| | | | |订| | | | | |线| | | | | | | | |2011年《高等数学》学位考试试卷 (答题时间150分钟)一、单项选择题(在每个小题四个备选答案中选出一个正确答案,15分,共计5小题,每小题3分)1. 若0x x →时,)(),(x x βα都是无穷小量,则当0x x →时,下列表达式中哪一个不一定是无穷小量 D ;A.)()(x x βα+B.22()()x x αβ+ C.[]ln 1()()x x αβ+⋅ D.2()()x x αβ 2. 曲面xy yz zx ++=11在点(,,)123处的切平面方程为 BA.334251-=-=-z y x B.0)3(3)2(4)1(5=-+-+-z y x C.x y z -+-+-=1524330 D.53423140()()()x yz -+-+-+= 3. 若区域D 为x 2+y 2≤2x ,则二重积分化成累次积分为 DA.2cos 202(cos sin d πθπθθθ-+⎰⎰B.2cos 30(cos sin )d r dr πθθθθ+⎰⎰C.2cos 3202(cos sin )d r dr πθθθθ+⎰⎰D.2cos 322(cos sin )d r dr πθπθθθ-+⎰⎰4. 222arctan (),ln(1)x t d yy y x dx y t =⎧==⎨=+⎩设确定了则 C A.2 B.221t + C.22(1)t + D.212t- 5. 设2222()()0()0m ax by dx bx ay dy x y x y ab ⎛⎫++++≠ ⎪+≠⎝⎭是某二元函数的全微分,则m = A A.0 B.1 C.2 D.3二、填空题(将正确答案填在横线上。
本大题共15分,共计5小3分) 6. xx exx 21lim 30--→= 17. 设u x y x y =+-44224,则∂∂22u x =22812yx - 8. 设幂级数∑∞=0n nnx a的收敛半径是4,则幂级数∑∞=+012n n n x a 的收敛半径是 29. 设)(x f 连续,则⎰=+bady y x f dx d )()()(x a f x b f +-+ ,其中a ,b 为常数,且b a <。
华南理工大学2011高数下期中考试及答案

华南理工大学2011-2012学年第二学期《高等数学》期中考试试卷评分标准一. 解答下列各题 (每小题5分,共20分) 1.求极限22()lim (e x y x y x y -+→+∞→+∞+).解:lim e 0k t t t -→+∞= 2'22()2()lim (e lim (e 20x y x y x yx x y y x y x y xe ye -+-+--→+∞→+∞→+∞→+∞⎡⎤+=+-=⎣⎦)) 3'2.求由方程组222222320z x yx y z ⎧=+⎪⎨++=⎪⎩所确定的()y x 及()z x 的导数d d y x 及d d z x . 解:()()226023220xdx z dz xdx ydy z xdx ydy -++=⎧⎪⎨+++=⎪⎩ 3' 6,1326dz x dy x xydx z dx y yz+==-++ 2'3.设,u f 可微,证明: ()()grad grad f u f u u '= 证明:()()()()()()(){}()()(){},,,,x y z xyzf u f u f u f u f u u f u u f u u '''''''''==⋅⋅⋅grad 3'(){}(),,x y z f u u u u f u u '''''==grad 2'4.求曲线23x ty t z t =⎧⎪=-⎨⎪=⎩的切线,使它与平面21z y z ++=平行.解:设切点为()23000,,M t t t -,则切向量为{}2001,2,3T t t =- . 1'_____________ ________学号学院 专业 座位号( 密 封 线 内 不 答 题 ) ……………………密………………………………………………封………………………………………线……………………………………{}{}2200001,2,31,2,11430T n t t t t ⋅=-⋅=-+=解得01t =或013t =,相应切点为()1,1,1-或111,,3927⎛⎫- ⎪⎝⎭, 2' 因此,所求切线为1111:123x y z L -+-==-, 21113927:321x y z L -+-==- 2'二. 解答下列各题 (每小题10分,共30分)5.设()()()()()22,,0,0,0,,0,0x y xy x y x y f x y x y -⎧≠⎪+=⎨⎪=⎩,试研究该函数在()0,0点的可微性. 解:()()()()0,00,00,0lim0,0,000x y x f x f f f x →-===- 4'又()()()()2222022(,)()limlim0(()())x x y y f x y x y x y x y x y x y ∆→∆→∆→∆→∆∆∆∆∆-∆=≠∆+∆∆+∆∆+∆ 5'函数(),f x y 在点()0,0处是不可微的 1'6.设函数(),f x y 具有二阶连续偏导数,满足等式2220x yy x y xy y xx f f f f f f f -+=,且0y f ≠,(,)y y x z =是由方程(,)z f x y =确定的函数.求 22yx∂∂.解:x yf yx f ∂=-∂ 4' 220yx ∂=∂ 6'7.在经过点12,1,3⎛⎫ ⎪⎝⎭的所有平面中求一个,使这个平面在第一卦限内与三个坐标平面所围成的四面体的体积最小.解:设该平面为1x y za b c++=, 1' 四面体的体积为16V abc =. 1'问题化为求16V abc =在约束条件21110,0,0,03a b c a b c++-=>>>下的最小值点.构造拉格朗日函数()1211,,,163f a b c abc a b c λλ⎛⎫=+++- ⎪⎝⎭3' 由22222110,0,0,1066633a b c bc ac ab f f f f a b c a b cλλλλ=-==-==-==++-= 3' 得唯一一组解6,3,1a b c ===,该实际问题的最小值一定存在,从而该点一定是要求的最小值点了.因此所要求的平面为163x yz ++= 2'三. 解答下列各题 (每小题8分,共32分) 8.计算11301ydy x dx +⎰⎰.解:21113330111x yDdy x dx x d dx x dy σ+=+=+⎰⎰⎰⎰⎰⎰4'()112333011113x x dx x d x =+=++⎰⎰ 3' ()22219=- 1' 9.计算22y Dx edxdy -⎰⎰,其中区域D 是由直线0,1,x y y x ===所围成的区域.解:22y Dx e dxdy -⎰⎰21200yy dy x e dx -=⎰⎰ 4’ 213013y y e dy -=⎰ 2’ 1163e =- 2’10.计算2()x y dV Ω+⎰⎰⎰.其中Ω是曲线22,0y z x ⎧=⎨=⎩绕z 轴旋转一周而成的曲面与两平面2,8z z ==所围成的区域.解:求出旋转面方程为222x y z += 1'2()x y dV Ω+⎰⎰⎰=()22x y dV Ω+⎰⎰⎰ 1' =()8222Dzdz x y dxdy +⎰⎰⎰ 3'82283220022336z dz d r dr z dz πθππ⎛⎫=== ⎪⎝⎭⎰⎰⎰⎰ 3' 11.计算三重积分2y dV Ω⎰⎰⎰,其中(){}222,,2x y z xy z z Ω=++≤.解:2y dV Ω⎰⎰⎰22cos 2342sin sin d d dr ππϕθθϕϕρ=⎰⎰⎰5'415π=3'四. 解答下列各题 (每小题9分,共18分)12.求由两圆周()22224x y a a +-=和()222(0)x y a aa +-=>所围的均匀薄片的质心.解:0x = 2'4sin 2202sin 11sin 3a a D Dy ydxdy d r dr S a πθθθθπ==⎰⎰⎰⎰5'=73a 2'13. 计算由曲面22x y az +=和222(0)z a x y a =-+>所围立体的表面积.解:22222224412x y a x y S dxdy a a+≤=+++⎰⎰6'2(2)3a a π=+ 3'。
华东理工大学高等数学答案第2章.doc

第2章 (之8)第9次作业教学内容:§2.3.4函数的间断点及其分类 §2.3.5闭区间上连续函数的性质 §2.4.1函数可导与连续的关系 §2.4.2函数的和差积商的求导法则**1.型为( ),则此函数间断点的类、的间断点为函数2123122=+--=x x x x y是第一类.是第二类,.是第二类;是第一类,.都是第二类;,.都是第一类;,.21212121======x x D x x C x B x AC 答:***2. 设xx x x x f 1sin1)(22--=,则1-=x 是)(x f 的 ___ 间断点; 0=x 是)(x f 的_____ 间断点;1=x 是)(x f 的 ____ 间断点.答案:1、无穷;2、可去;3、跳跃.***3.对怎样的 a 值,点 a x = 是函数()a x x x f --=42 的可去间断点? 解:函数在可去间断点处a x =极限必存在。
由极限基本定理,设A a x x a x =--→4lim 2,则必有()()()a x x a x A x -+-=-α42,其中()x α是a x →时的无穷小。
而()44lim 22-=-→a x a x ,另一方面,()()()[]0lim =-+-→a x x a x A ax α。
所以由042=-a 得2±=a 。
经验证,当 2±=a 时,a x x a x --→4lim 2存在,故 2±=a 为所求.**4.指出的间断点,并判定其类型.f x x xx x()sin =--21解: ,,210πππn x x x ±±±===,,,,,都是的间断点f x (), ∞==∈≠=→)(lim 0sin ,)0(x f n z n n n x n x πππ,处, 在,的第二类间断点是,,,故)(32x f x πππ±±±=;,无意义处在1sin 1)1(lim)(lim ,)0(,00-=--==→→xx x x x f f x x x∴=x f x 0是的可去间断点();,1sin 1)01(1sin 1)01(1=+-=-=f f x ,处在)01()01(+≠-f f 的跳跃间断点是 )(1x f x =∴.***5 、指出下面函数的无穷间断点:x x xx f sin cos 1)(-=.解:依题意,0=x 及),2,1( ±±==k k x π是)(x f 的间断点. 而x x x x x x x f x x x ⋅=-=→→→2lim sin cos 1lim )(lim 200021=. 故0=x 不是无穷间断点.又)0(0)2()2(lim )2sin()2cos(1lim sin cos 1lim 221222≠=---=----=-→→→k x k x x k x k x x k x x x k x k x k x πππππππ,而)2,1,0(sin cos 1lim2 ±±=∞=-+→k x x xk x ππ,∴ 函数)(x f 的无穷间断点为 ,5,3,πππ±±±=x .**6.设()x f y =在[]1,0上连续,且()10≤≤x f 。
高等数学 下册 (殷锡铭 许树声 著) 华东理工出版社 课后答案 第9章 khdaw

1第9章(之6)(总第49次)教学内容:§9.4.3二阶线性常系数微分方程的解法(A )**1.求下列方程的通解(1);08=+′′y y 解:,,082=+λi 222,1±=λ。
x c x c y 22sin 22cos 21+=(2)'6"+y y 解:62+λλ所以通解为(1)'8''−y y 解:∵82−λ通解为:)1('=c y 得到:1c (2)'4"+y y 解:42+λλ通解为:。
)5sin 5cos (212x c x c e y x +=−代入初始条件有:,πππe c c e y =⇒=+=−221)0()2(,)5cos 55sin 5()5sin 5cos (22('212212x c x c e x c x c e y x x +−++−=−−π得:。
特解为:。
πe c −=1)5sin 5cos (2x x e y x+−=−π2(3);10)0(',6)0(,03'4"===++y y y y y 解:,,0342=++λλ0)3)(1(=++λλ所以通解为。
x x e c e c y 321−−+=代入初始条件有:,6)0(21=+=c c y ,1033)0('21321=−−=−−=−−c c e c e c y x x 特解为:。
x x e e y 3814−−−=**3.求解初值问题1)0(1d 20≥⎪⎩⎪⎨⎧==++′∫x y x y y y x 解:将原方程对求导得x ′′+′+=y y y 201()且有′=−=−y y ()()01201微分方程(1)的通解为:,y e C x C x =+−()12代入初始条件,得,1)0(,1)0(−=′=y y 1,021==C C 故所求问题的解为:。
x e y −=***4.设函数二阶连续可微,且满足方程,求函数。
11-12-2高等数学下(通信、电子本科)A卷及标准答案

2011 - 2012学年第二学期期末考试《高等数学(下)》试卷(A)答卷说明:1、本试卷共6页,四个大题,满分 100分,120分钟完卷。
2、闭卷考试。
3、适用班级:11级通信系、电子系本科各班题号-一--二二三四总分分数评阅人: ____________ 总分人: __________________________、单项选择题(共 10小题,每小题3分,共30分)。
【A 】设有直线L : 口 =丄二二2及平面二:2x y =1,则直线L1 -2 1(A)平行于二 (B) 在二内 (C)垂直于二 (D) 与二斜交【D 】2.锥面z立体在xoy 面的投影为[A l 4.函数z = f (x, y)在点(x 0, y 0)处可微分,则函数在该点1 1【C 】5.将二次积分pdx. f(x,y)dy 转化成先对x ,后对y 的二次积分为(A)必连续 (C)必有极值(D)(B)偏导数必存在且连续偏导数不一定存在(A) (x -1)2 y 2=1 (B) (x-1)2 y 2 乞 1(C)z= 0,(x -1)2y 2 -1(D)z =0,(x_1)2y 2 _1【C 3.设函数z 二z(x, y)由方程e z = e + xyz 确定,则一z的值为(1,0,1)(A) d(B)e (C)(D)11 1 x( A )°dy y f(x, y)dx(B)°dy 0f(x,y)dx( C )1 y0dy 0f(x,y)dx(D) 1 10dy 0f(x,y)dx【D] 6.设L为圆周x22y =1(逆时针方向),则口L(x y)dx (3y -2x)dy( A 3 二(B) 2 二(C) 4 二(D) -3':【D】7.下列级数中,收敛的级数是001(A) ----------- (B)n4 . 2n 1f (3n4 2n(C)1 nn4 1 * n2(D)nm n ■ 1°°(x _1)n 【B] 8.幕级数a(x n丿■的收敛域为心n3n(A) ( -2, 4) (B)[-2,4)(C)[-2,4](D)(-2, 4]【C】9.微分方程y - y = 0满足初始条件y l x出=2的特解为(A) y =e x1( B)xy = e 2x x(C) y = 2e (D) y = e【B] 10.具有特解y1.x .x二e , y2 二xe的二阶常系数齐次线性微分方程是(A) y -2y y = 0(B)y 2y y = 0(C) y y - 2y = 0(D)y - y 2y = 0得分|二、填空题(共5小题,每小题3分,共15分)1. 设两点A(1,2,1)及B (2,1,3),则| AB | = | AB | = •、6 _;向量AB与z轴的夹角为,r则方向余弦COS ;* = ____ . COS f = ----32. 设z = y x,则dz=_dz = y x In yd^xy x^dy.3. 函数f(x, y) =x2y — y2在点P(1,1)处方向导数的最大值为_T5 _____________ .4. 设L是连接(1,0)及(0,1)两点的直线段,则[(x + y)ds=_J2 _______________ .15.函数 展开成X 的幕级数为3 x1.已知曲面Z =x 2 ・y 2-2上一点M (2,1,3),⑴ 求曲面在M 点处的一个法向量;(2) 求曲面在M 点处的切平面及法线方程•2.求函数 f (x, y) = 2(x 「y)「x 2「y 2 的极值.2 2 2 23.平面薄片的面密度为」(x,y)=x y 1,所占的闭区域 D 为圆周x y =1及坐标轴所围成的第一象限部分,求该平面薄片的质量.4.利用高斯公式计算曲面积分(3z 2x)dydz - (y 3 -2xz)dxdz - (3x 2z)dxdy ,其中Z为上半球面z = a 2 -x 2 - y 2及平面z = 0所围立体的整个边界曲面的外侧5.设曲线通过原点,且曲线上任一点 M (x, y)处的切线斜率等于 x - y ,求该曲线的方程.6. 求微分方程y -3y ,2y =e x 的通解.3n7. 判断级数v (-1)n °半是否收敛?如果收敛,是绝对收敛还是条件收敛?心 4四、综合应用题(共2小题,共13分,其中第1题6分,第2题7分).1. (6分)要用钢板造一个体积为4( m 3)长方体无盖容器,应如何选择容器的尺寸,使n 1n z03nx , -3 ::三、计算题(共7小题,每小题6分,共42分)得用料最省?》 2 * 》2. (7分)设在xoy平面有一变力F(x, y) =(x • y2) i (2x^8) j构成力场,(1)证明质点在此力场中移动时,场力所作的功与路径无关 ;(2)计算质点从点 A(1,0)移动到点《高等数学(下)》试卷(A) 第5页 共6页B(2,1)时场力所作的功(1)|ABH<6; COS 63x(2) dz = y Inydx xy x_l dy、2「¥x n ,—3»3n £3三.计算题(每小题6分,共42分).1.(6 分)(1)由 z = x 2y 2 -2 得,Z x =2x,Z y =2y ,曲面在点M (2,1,3)处的一个法n=(-4, -2,1))2分)⑵ 在点M (2,1,3)的切平面方程为4(x-2),2(y-1)-(z-3) =04x 2y-z -7 -0选择题每小题3分共30分)..填空题(每小题3分,共15分).... (2 分) 法x y 42分)线z -3 -1A 二 f xx (1,—1) = —2,B 二 f xy (1,—1) = °,C 二 f yy (1, — 1) = -2,则2AC - B=4 ° , A :: ° , .................................................................................. (2 分)所 以 (-1 为 极 大 值 点 , 极 大 值f (1,—1) =2 ............................................................. (2 分) 3.(6分)平 面 薄 片的 质M 二 J(x, y )dxdy 二(x 2 y 2 1)dxdy .......................... ( 2 分)DD1 o2dr C 1)Z ° - °v/【丄加丄詩彳二3二 ................................ (2分)2 4 2 84.(6 分)所围空间区域 门={( x, y, z ) |0 _ z _ a 2-X 2 - y 2} 由高斯公式,有原式r "耳◎迅)dv0 ex oy cz!!! (3z 2 3y 2 3x 2)dv ............................. ( 2 分)Q2 a=3茁 2sin 「d 「r 2 r 2dr ................................. ( 2 分)0 - 0 02.(6 分)f x =2_2x, f y =-2—2yf x 二 0,占八(2 分)y=°,(2 分)(-1 xy丑1 6=3 2二[-cos J: [ r5]0 a5......................... ( 2 分)5 55.(6分)设所求曲线为y = y(x),由题意得,y = x- y , y(0) = 0,该方程为一阶线性微分方程y・y=x, 其中P( x) 1 Q, x ........................... x .......................... ( 2 分)_p(x)dx |P(x)dx _|dx f dx故通解为y = e [ e Q(x)dx C] =e [ xe dx C] [xe x dx C]二e ▲ (xe x _ e x C)二Ce」x -1(2 分)2分)从而Q(x)二-x,特解y - -xe x, (2 分)y(0)=0 从而所求曲线为6.(6 分)对应的齐次方程y”-3y、2y=0的特征方程为r2-3r•2=0,得特征根则对应的齐次方程的y =C1e x C2e2x2分)对于非齐次方程y ” -3y: 2y二e x, ' =1为r2-3r *2=0的单根,P(x) =1,设其* y特解为y -Q(x)e x,其中Q(x)=ax, a为待定系数,Q(x)满足Q (x) (2' p)Q(x)二P(x)0 (2 1 _3)(a) =17.(6分)由于》(一1)n 4 3n4ny 二C^x C2e2x_xe x.而|im 加=lim匸匕=丄 , 贝U (—2卑1 )收y u n F 4n 4 心4n 敛,................................... ( 3 分)3n从而'•(_ ni i3n )也收敛,且为绝对收心4n敛. ....................................... (3分)四、综合应用题(共2小题,共13分,其中第1题6分,第2题7分).41.(6分)设该容器的长,宽,高为x, y,z,由题意知xyz=4,则z ,容器的表面积xy4 8 8A = xy 2yz 2xz = xy 2(x y) xy , x 0, y 0xy x y分)( 2 分)因实际问题存在最小值,且驻点唯一,所以当x二y = 2( m), z = 1( m)时,容器的表面积最小,从而用料最省. .....................................................................(1分)2.(7 分)证明:(1)P(x, y)=x y2, Q(x, y) = 2xy-8,由于在xoy面内,—=2y Q恒成立,且P连续,® ex cy ex2分)故质点在该力场中移动时场力所作的功与路径无关. ................................... (4分)⑵质点从点A(1,0)移动到点B(2,1)时场力所作的功(与路径无关),路径L可取折线段A > C,C > B,其中点C(2,0),从而(2,1) * (2,1)W F dr Pdx Qdy%,。
高数下 第10章答案 华东理工

( A2 B 2 0)
(3) 过点 P (1,2,1) 与向量 S1 i 2 j 3k , S 2 j k 平行的平面方程为_____ . 答: x y z 0 (4) 点 M 0 (6,2,1) 到平面 x 2 y 2 z 6 0 的距离为 d ___________. 解: d
.
第 10 章(之 3) (总第 55 次)
教学内容:§10.3 平面与直线[10.3.1]
**1.解下列各题 (1) 平行于 x 轴,且过点 P (3,1,2) 及 Q (0,1,0) 的平面方程是______ . 答: y z 1
(2) 与 xOy 坐标平面垂直的平面的一般方程为______ . 答: Ax By d 0
即
2 2 2c o s , 则 cos
0 ,所以
3 3 ,即 a 与 b 的夹角为 . 4 4
** 9.在 yz 平面内求模为 10 的向量 b,使它和向量 a 8i 4 j 3k 垂直. 解:∵ 向量 b 在 yz 平面内, ∵ b a,
∴P 点的径向量为 r0 ta . ** 4.设 a 2, b 3 ,a 与 b 的夹角等于 (1) a b ; (3) (a) b ;
2 ,求: 3
( 2) (3a 2b) (a 2b) ; ( 4) 3a 2b .
解: (1) a b a b cos a, b 2 3 cos
(4) 3a 2b
2
2 2 3a 2b 3a 2b 9 a 4 b 12ab
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
3
x , 100 t
从时刻 t 到 t dt ,对应盐量由 x 变到 x dx ,在时间段 [t , t dt ] 内,流出的盐量为
x 2 dt ,从而有 100 t
解得
dx
2x dt , 100 t
x
C , (100 t ) 2
5
代入初始条件 x (0) 10 ,得 C 10 , 所以
11 学分: 1. (6,2,0) ; 4.0; 7. ln 2 2. x 1 5.4;
y 1 z 1; 0
3.
2 (5 ln 2 3) ; 3
y 1
6. yx
f 1 y x ln y f 2 ;
y
n 1
1n1 x n
n2
1 x n
(2 x 2) ; 8.1; 3 3 x C 3 sin x) ; 2 2
三. (本题 7 分)以 u
y 为新的未知函数,变换方程 x2 x 2 y ( x 2 4 x) y (2 x 2 2 x 6) y 0 ,
并求原方程的通解。 解:
y x 2u , y 2 xu x 2 u , y 2u 4 xu x 2 u ,
华东理工大学 2010–2011 学年第二学期
《高等数学(下)》期中考试试卷 解答 2011.4
一. (11 学分)求过点 M ( 0,0,1) 和 N ( 3,0,0) ,且与 xoy 平面成 解: M , N 为平面与 z 轴, x 轴的交点 设所求平面方程为 :
角的平面方程。 3
x y z 1 3 b 1
2
二. (11 学分)函数 y y ( x ), z z ( x ) 由方程组
所确定,求
d y dz , 。 dx dx
解:
dy z dz 1 d x e d x 0 d y dz 1 2 y 0 dx dx dy 1 ez , d x 2 ye z 1 dz 1 2y d x 2 ye z 1
法向量为
1 1 n { , ,1} 3 b
由 与 xoy 平面成
角,故 cos cos( n, k ) 3 3
1 1 1 1 9 b2
解得: b
3 26
,故平面方程为: x
26 y 3 z 3 0 。 x y ez 1 x y z 1
x
10 5 kg (100 t ) 2 x 10 5 2.5 kg 。 (100 100) 2
令 t 100 ,得
五.选择题(每小题 4 分,共 24 分) 请将选择题的答案写入下面表格的指定位置 1 2 3 4 5 6 D C A B B B
六.填空题(每小题 4 分,共 48 分)
代入原方程,化简得
u u 2u 0 ,
通解为
u C1e x C 2 e 2 x , y x 2 (C1e x C 2 e 2 x )
原方程通解为
1
四. (本题 7 分)容器内有 100 m 的盐水,含 10kg 的盐,现在以每分钟 3 m 的均匀速度从 A 管放进净水冲淡盐水,又以每分钟 2 m 的均匀速度将混合均匀后的盐水从 B 管抽出,问 100 分钟后容器内还剩多少盐? 解:设 t 分钟容器内含盐量为 x x (t ) ,此时容器内盐的密度为
9. xy 1 e
11. 12dx 8dz ;
12. sin x cos x 。
2