华东理工大学高等数学答案第12章

合集下载

华东理工大学级(下)高等数学期中考试试卷(学分)解答

华东理工大学级(下)高等数学期中考试试卷(学分)解答

华东理工大学级(下)高等数学期中考试试卷(学分)解答————————————————————————————————作者:————————————————————————————————日期:华东理工大学2013–2014学年第二学期《高等数学(下)11学分》课程期中考试试卷 2014.4开课学院:理学院, 专业:大面积, 考试形式:闭卷,所需时间 120 分钟考生姓名: 学号: 班级 任课教师题序 一二三四五六总分得分 阅卷人注 意:试 卷 共 两 页 六 大 题一.填空题(本大题共11小题,每小题4分,共44分):1、微分方程222'y x e yx y -=的通解为 。

答:C e xe e xx y +-=22412122、微分方程0''9)4(=+y y 的通解为 。

答:x C x C x C C y 3sin 3cos 4321+++=3、函数 zxy u )(= 对变量x 的偏导数 =x u 。

答:12)(--=z x xy x yz u 4、设 ))arctan(,,(xyz e y xze f u zy+=,其中f 关于所有变量有一阶连续偏导数, 则=∂∂yu。

答:3222211f zy x xz f f xze y u y +++=∂∂ 5、设函数z z x y =(,)由方程 ),(yzxz f z = 所确定,其中f 关于所有变量有一阶连续偏导数,则∂∂zy= 。

答:21222yf f xy y zf ---6、设1)(-=⋅⨯c b a ρρρ,则=+⨯+⋅)]()[(c b b a b ρρρρϖ 。

答: 17、函数)ln(22z y x u ++=在点)1,0,1(处最大的方向导数等于 。

答:228、微分方程 0'2''=+y xy 的通解=y 。

答: 21C xC y +-= 9、设平面π过直线⎩⎨⎧=+-=++04,05:z x z y x L 则原点到平面π距离d 的范围是 。

高等数学(上册)第12章(1)习题答案_吴赣昌_人民大学出版社_高数_

高等数学(上册)第12章(1)习题答案_吴赣昌_人民大学出版社_高数_

高等数学(上册)第12章(1)习题答案_吴赣昌_人民大学出版社_高数_第十二章微分方程内容概要§12.1微分方程的基本概念内容概要课后习题全解1.指出下列微分方程的阶数:知识点:微分方程阶的定义★(1)某(y)24yy3某y0;解:出现的未知函数y的最高阶导数的阶数为1,∴方程的阶数为1。

注:通常会有同学误解成未知函数y的幂或y的导数的幂。

例:(错解)方程的阶数为2。

((y))★(2)2某y2y某2y0;解:出现的未知函数y的最高阶导数的阶数为2,∴方程的阶数为2。

★(3)某y5y2某y0;解:出现的未知函数y的最高阶导数的阶数为3,∴方程的阶数为3。

★(4)(7某6y)d某(某y)dy0。

(n)思路:先化成形如F(某,y,y,,y解:化简得)0的形式,可根据题意选某或y作为因变量。

dy6y7某,出现的未知函数y的最高阶导数的阶数为1,∴方程的阶数为1。

d某某y2指出下列各题中的函数是否为所给微分方程的解:知识点:微分方程的解的定义思路:将所给函数及其相应阶导数代入方程验证方程是否成立。

★(1)某y2y,y5某2;2解:将y10某,y5某代入原方程得左边所以某10某25某22y右边,y5某2是所给微分方程的解。

y2y0,yC1co某C2in某;解:yC1in某C2co某,将y2C1co某2C2in某,yC1co某C2in某,代入原方程得:左边所以★(3)y2y2C1co某2C2in某2(C1co某C2in某)右边,yC1co某C2in某是所给微分方程的解。

y22yy20,yC1某C2某2;某某2解:将yC1某C2某,yC12C2某,y2C2,代入原方程得:2C14C2某2(C1某C2某2)22y左边=yy22C20右边2某某某某所以yC1某C2某2是所给微分方程的解。

y(12)y12y0yC1e1某C2e2某;1某解:将yC1eC2e2某,yC11e1某C22e2某,yC112e1某C222e2某,代入原方程得:左边y(12)y12y22C11e1某C22e2某(12)(C11e1某C22e2某)12(C1e1某C2e2某) 0所以右边,yC1e1某C2e2某是所给微分方程的解。

高等数学工科类教材答案

高等数学工科类教材答案

高等数学工科类教材答案一、导数和微分1. 基本概念和性质1.1 导数的定义和解释1.2 导数的性质1.3 微分的定义和计算方法2. 常用基本函数的导数2.1 幂函数2.2 指数函数2.3 对数函数2.4 三角函数2.5 反三角函数3. 高阶导数与高阶微分3.1 高阶导数的定义和计算方法3.2 高阶微分的应用二、积分与不定积分1. 不定积分的基本概念1.1 不定积分的定义与性质1.2 基本积分公式与常规积分计算方法2. 定积分的基本概念2.1 定积分的定义与性质2.2 定积分的计算方法2.3 定积分的应用:面积、弧长、物理问题等3. 反常积分3.1 反常积分的定义与性质3.2 收敛性与发散性3.3 反常积分的计算方法三、级数和幂级数1. 数项级数1.1 数项级数的定义与性质1.2 数项级数的敛散性判别法2. 幂级数的基本概念2.1 幂级数的收敛半径和收敛域2.2 幂级数的求和与收敛域的求取2.3 幂级数的应用:泰勒级数与函数展开四、多元函数与偏导数1. 多元函数的基本概念1.1 多元函数的定义与性质1.2 多元函数的极限与连续性2. 偏导数的概念与计算方法2.1 偏导数的定义与性质2.2 偏导数的计算方法与几何意义3. 高阶偏导数与混合偏导数3.1 高阶偏导数的定义与计算方法3.2 混合偏导数的计算方法与应用五、多元函数的微分与全微分1. 多元函数的微分1.1 多元函数的全微分定义与计算方法1.2 多元函数微分的应用2. 隐函数与参数方程的微分2.1 隐函数的微分法与几何意义2.2 参数方程的微分法与几何意义六、多元函数的积分和曲线积分1. 二重积分的基本概念1.1 二重积分的定义与性质1.2 二重积分的计算方法与应用2. 三重积分的基本概念2.1 三重积分的定义与性质2.2 三重积分的计算方法与应用3. 曲线积分的基本概念3.1 第一类曲线积分的定义与性质 3.2 第二类曲线积分的定义与性质3.3 曲线积分的计算方法与应用七、向量场和曲面积分1. 向量场的基本概念与性质1.1 向量场的定义与表示1.2 向量场的运算与性质2. 曲面的参数方程与切向量场2.1 曲面的参数方程与性质2.2 曲面的切向量场与法向量3. 曲面积分的基本概念3.1 曲面积分的定义与性质3.2 曲面积分的计算方法与应用八、无穷级数1. 数项级数的收敛性判定1.1 正项级数的比较判别法1.2 正项级数的比值判别法1.3 正项级数的根值判别法1.4 交错级数的收敛性判别法2. 无穷级数的运算与性质2.1 无穷级数的加法与乘法2.2 绝对收敛级数与条件收敛级数2.3 级数的收敛域与收敛半径九、常微分方程1. 一阶常微分方程1.1 可分离变量的方程1.2 首次线性的方程1.3 齐次的方程1.4 Bernoulli方程和Ricatti方程2. 二阶常系数线性微分方程2.1 齐次线性微分方程2.2 非齐次线性微分方程2.3 常系数齐次线性微分方程的特解3. 高阶常系数线性微分方程3.1 齐次线性微分方程3.2 非齐次线性微分方程3.3 常系数齐次线性微分方程的特解以上为《高等数学工科类教材答案》的大致目录。

东华理工大学高等数学A练习册答案(下)(学生用)

东华理工大学高等数学A练习册答案(下)(学生用)

第7章 微分方程§7.5 可降阶的高阶微分方程一、填空题答:1. 2121ln arctan C x C x x x y +++-= 2.22121C x x e C y x +--= 3.121C xy C e =+二、 y =C 1ln x +C 2 . 三、 22x x y -=.§7.6 高阶线性微分方程一、判断题1.( √ )2.( ╳ )3.( √ ) 二、选择题答:1.C 2.C 3.C 4.B§7.7 常系数齐次线性微分方程一、判断题1.( √ )2.( ╳ )3.( ╳ ) 二、填空题1、y =C 1e x +C 2e-2x2、 t t e C e C x 252251t +=, 3、 y =e -3x (C 1cos2x +C 2sin2x ).4、 y =C 1+C 2x +C 3e x +C 4xe x5、y =e 2x sin3x三、选择题答:1.B 2.B 3.A 4.C 5.B四、求下列微分方程(1) y =C 1+C 2e 4x . (2) y =e 2x (C 1cos x +C 2sin x ). (3) y =C 1+C 2x +C 3e x +C 4xe x . (4))2(21x e y x+=-.§7.8 常系数非齐次线性微分方程一、填空题 答:1、x x xe e C e C y ++=-2211,2、x xe x C x C e y x x 2cos 41)2sin 2cos (21-+=.3、x x x y 2sin 31sin 31cos +-+-= 4、x xx y cos 2sin 21+= 二、选择题答:1.D 2.B 3.A 4.C 5.D 6.D三、)323(2221x x e e C e C y x x x -++=--- 四、 2527521++-=x x e e y . 第12章 无穷级数§12.1 常数项级数的概念与性质一、判断题答:1. √2. √ 3. ×4. ×5. √ 6. √ 二、填空题答:1. 1/2、3/8 、5/16 2. [(-1)^(n-1)]*[(n+1)/n] 3. [x^(n/2)]*(1/2*n!) 4. 0 三、选择题答:1.C 2.A 3.C 4.C四、判定下列级数的收敛性(1)级数收敛. (2) 该级数发散. (3) 级数发散.§12.2 常数项级数的审敛法一、判断题答:1. √ 2. × 3. √4.√ 5√6. ×7. √8. √9.√ 二、填空题答:1.P>1 2. {}n s 有界 3. 绝对收敛 4. 收敛5.1lim 0n nn u u u +=⎧⎨>⎩三、选择题答:1. D 2.C 3.D 4.A 5.C四、用比较审敛法或极限形式的比较审敛法判定下列级数的收敛性: (1) 级数发散. (4) 级数收敛.五、用比值审敛法判定下列级数的收敛性: (1) 级数发散. (2) 级数收敛.六、用根值审敛法判定下列级数的收敛性:(1) 级数收敛; (2) 当b <a 时级数收敛, 当b >a 时级数发散. 七、 (1) 此级数是收敛的. 条件收敛的. (2) 级数收敛, 并且绝对收敛.§12.3 幂级数一、判断题答:1. √ 2. √ 3. √ 4. √ 5. × 二、填空题答:1.[-1/2、1/2] 2. [-1,5) 3. (-1,1) ,11ln21xx+- 4. 绝对收敛三、选择题 答:1.D 2.B 3 D四、求下列幂级数的收敛域:(1) 收敛域为(-1, 1). (2) 收敛域为[-1, 1]. 五、利用逐项求导或逐项积分, 求下列级数的和函数: (1) ()S x 21(11)(1)x x =-<<-. (2) ()S x 11ln (11)21x x x+=-<<- . 提示: 由)0()()(0S x S dx x S x-='⎰得⎰'+=xdx x S S x S 0)()0()(.§12.4 函数展开成幂级数一、判断题答:1. √2. × 3. × 二、填空题 1. 答:1.11ln 2(1)2nn nn x n ∞-=+-∑ ,(-2,2 ] 2. 1111()(4)23nn n n x ∞++=-+∑ ,(-6,-2) 3.)( ])3()!12(3)3()!2(1[)1(211202+∞<<-∞++++-+∞=∑x x n x n n n n nππ 三、选择题答:1.B 2.C 3.C四、(1) 210sh (21)!n n x x n -∞==-∑, x ∈(-∞, +∞). (2) 212212sin (1)(2)!n n n n x x n -∞=⋅=-∑ x ∈(-∞, +∞). 五、∑=<<--=n n n n x x x 0)60( )33()1(311.§12.5 函数的幂级数展开式的应用一、填空题答:1.3. ; 2、)( !4cos2cos 02+∞<<-∞=∑∞=x x n n x e n n nx π.§12.7 傅立叶级数一、判断题 答:1. × 2. √3.√4.√二、填空题 1.5 2. ,n n a b - 3. nx nx f n sin 1)(1∑∞==(0<x ≤π), 级数在x =0处收敛于0. 三、选择题答:1.A 2.C 3.B 4A 5.B四、∑∞=+--+=121cos 141)1(422cos n n nx n x ππ(-π≤x ≤π). 五、正弦级数为nx n n nx f n n sin ]2)2()1[(4)(1323∑∞=---=ππ(0≤x <π), 级数在x =0处收敛于0.余弦级数为 nx nx f n n cos )1(832)(122∑∞=-+=π(0≤x ≤π).§12.8 一般周期函数的傅里叶级数一、 ∑∞=+-+=12122cos )1(11211)(n n x n n x f ππ, x ∈(-∞, +∞).二、正弦级数13218(1)2[(1)1]{}sin2n n n n xn n πππ+∞=---+∑, x ∈[0, 2). 余弦级数:221416(1)cos 32n n n xn ππ∞=-+∑, x ∈[0, 2].第8章 空间解析几何与向量代数§8.1 向量及其线性运算一、判断题。

华东理工大学高等数学作业答案第10章

华东理工大学高等数学作业答案第10章

华东理⼯⼤学⾼等数学作业答案第10章第 10 章(之1)(总第53次)教学内容:§10.1向量及其运算* 1. 设 a b a b ==+=2232,,,则(,)a b ∧= .答:65π. ** 2.设向量 a 与 b 不平⾏,c a b =+,则(,)(,) a c b c ∧∧=的充分必要条件为.答:||||b a =.** 3.设直线L 经过点0P 且平⾏于向量a , 点0P 的径向量为0r ,设P 是直线L 的任意⼀点,试⽤向量0r ,a 表⽰点P 的径向量r .解:∵a P P ||0,∴a t P P=0,⽽P P r r 00+=,∴a t r r+=0∴P 点的径向量为 a t r+0.** 4.设 3,2==b a ,a 与b 的夹⾓等于π32,求:(1)b a ?;(2))2()23(b a b a +?-;(3)b a )(;(4)b a 23-.解:(1)??=?b a b a a ,cos b 332cos 32-=??=π.(2)()()b a b a223+?-b a b a 44322+-=()3634342322-=-?+?-?=.(3)()133-=-=?=bb a a b.()108312342922=-?-?+?=,3610823==-b a.** 5.设5,4==b a ,a 与b 的夹⾓等于π31,求:(1)b a b a -+)(;(2)b a 25+与b a -的夹⾓.解:(1)( )()b a ba b a--=-?2b a b a 222-+=213cos 5425422=??-+=π,∴21=-b a,()()()b a b a b a ba ba--+=+?-2122b a -=215422-=7213-=.(2)()()b a ba-+?25b a b a 32522--=03cos543524522=??-?-?=π** 6. 若a ,b 为⾮零向量,且b a b a -=+,试证b a ⊥.解:b a b a-=+,∴ 22b a b a-=+,∴()()()()b a ba b a ba --=++??,∴b a b a b a b a222222-+=++,∴0=?b a ,∴b a ⊥.***7.⽤向量的⽅法证明半圆的圆周⾓必是直⾓.解:如图所⽰,AC 为直径,B 为圆周上任⼀点, =→--OA →---OC , ||→--OB ==→--||OA ||→--OC ,则有→--AB →--=OB →---OA ,→--CB →--=OB →---OC →--=OB →--+OA ,→--AB →--?CB →--=OB (?→---)OA →--OB ()→--+OA 0||||22=-=→--→--OA OB ,∴半圆的圆周⾓必为直⾓.B第 10 章(之2)(总第54次)教学内容:§10.2空间直⾓坐标系与向量代数1.填空题**(2) 设平⾏四边形ABCD 的三个顶点为A B C (,,),(,,),(,,)231243313----,则 D 点为______ .答:(5,8,7--)**(3) 已知{}{}a b z =-=-45314,,,,,,且 a b a b +=-,则z =______ .答:8-**2. A,B 两点的坐标分别为)1,3,(),,5,2(--q p ,线段AB 与y 轴相交且被y 轴平分,求qp ,之值及交点坐标.解:令AB 与y 轴相交于C 点,即C 为AB 的中点,则C 点的坐标为 )21,235,22(+-+-p q ,⼜C 点在y 轴上,所以021,022=+=+-p q,即 1,2-==p q ,故C 点的坐标为)0,1,0(,即交点的坐标为)0,1,0(.**3.设A,B 两点的坐标分别为()()1,0,1,1,2,0-.求(1)向量AB 的模;(2)向量AB 的⽅向余弦;(3)使2=的C 点坐标.解:(1)}2,2,1{-=,则32)2(1222=+-+=,所以的模为3.(2)32cos ,32cos ,31cos =-==r βα.(3)设C 的坐标为(x ,y ,z ),由CB AC 2-= 则2)2(1)2(10=-+-?+=x , 2)2(1)2(02-=-+-?+=y , 3)2(1)2(1)1(=-+-?+-=z ,所以C 点的坐标为)3,2,2(-.**4. 求q p ,的值,使向量}4,,2{-p 与},0,1{q -平⾏,再求⼀组使此两向量垂直的q p ,值.解:向量}4,,2{-=p u 与},0,1{q v -=平⾏,∴q p 4012-==-,∴2,0==q p ,向量u 与v 垂直时,0=?v u,∴()()04012=?-+?+-?q p .∴21-=q , p 为任意值.**5.求作⽤于某点三个⼒}5,4,3{},4,3,2{},3,2,1{321-=--==F F F 之合⼒的⼤⼩及⽅向.解:321F F F F ++=合{}{}{}{}4,1,25,4,34,3,23,2,1=-+--+=,合⼒的⼤⼩ 21412222=++=合F,214cos ,211cos ,212cos ===γβα,其中γβα,,分别为合F与x 轴,y 轴,z 轴的夹⾓.** 6.试在xy 平⾯上求⼀与 }1,1,1{=a 成正交的向量.解:设所求向量为 {}z y x b ,,=,∵在xy 平⾯上,∴0=z ,且 0=?b a,即:{}{}01,1,10,,=?y x ,∴0=+y x ,y x -=,取 1,1-==y x ,∴向量 {}0,1,1-=b 与 {** 7.设}2,2,1{-=a ,}4,0,3{-=b ,求:(1)j a;(2)k b ?;(3))()2(b a b a -?+;(4))3()(b a b a -?+.解:(1)2)22(-=?+-=?.(2)33)43(-=?=?-=?.(3))}4(2,2,31{}422),2(2,312{)()2(----?-?-?+?=-?+b a b a260)2()4()2(5}6,2,2{}0,4,5{-=?+-?-+-?=--?-=.(4)}24,40,32{}10,6,0{}2,2,4{)3()(---=-?--=-?+b a b a . ** 8.设}1,1,0{-=a ,}1,1,2{-=b ,求:(1)a b b a )(,)(;(2)a 与b 的夹⾓.解:(1)11)1()2(}1,1,2{}1,1,0{)(22-=+-+-?-==b b a a ;(){}{}()2111,1,01,1,222-=-+-?-==aa b b a;(2)θcos =?b a ,即θc o s 222??=-,则 22cos -=θ,⼜πθ≤≤0,所以 43πθ=,即a 与的夹⾓为43π.** 9.在yz 平⾯内求模为10的向量b ,使它和向量 k j i a 348+-= 垂直.解:∵向量b在yz 平⾯内,∴可设坐标为 {}z y ,,0,∵ a b ⊥,∴ 0=?a b,即:{}{}03,4,8,,0=-?z y ,∴034=+-z y ,⼜ 1022=+=z y b的坐标为:{}8,6,0 或 {}8,6,0--.*** 10. 试证明∑∑∑===≥31312312i ii i ii iba ba.其中321,,a a a 及321,,b b b 为任意实数.解:设b a,的坐标分别为{}{}321321,,,,,b b b a a a ,b a b a b a b a≤=,cos ,即:232221232221332211b b b a a a b a b a b a ++?++≤++,∴∑∑∑===≥313122i ii i ii iba ba.第 10 章(之3)(总第55次)教学内容:§10.3平⾯与直线[10.3.1]**1.解下列各题(1) 平⾏于x 轴,且过点)2,1,3(-=P 及)0,1,0(=Q 的平⾯⽅程是______ .答:y z +=1(2) 与xOy 坐标平⾯垂直的平⾯的⼀般⽅程为______ .答:Ax By d A B ++=+≠0022()(3) 过点)1,2,1(=P 与向量k j S k j i S--=--=21,32平⾏的平⾯⽅程为_____ .答:x y z -+=0(4) 点 )1,2,6(0-=M 到平⾯ 0622=++-z y x 的距离为=d ___________.解: ()()222161222622=+-++-?+?-=d .(5)平⾯3360x y --=是()(A )平⾏于xOy 平⾯(B )平⾏于 z 轴,但不通过 z 轴(C )垂直于y 轴(D )通过z 轴答:B**2.填表讨论⼀般⽅程0=+++D Cz Bx Ax 中,系数A,B,C,D 中有⼀个或数个等于零的解:0=+++D Cz By Ax ,(1)0,0≠=ABD C 平⾏于z 轴(不包括过z 轴)的平⾯.(2)0,0≠?==C B D A 过x 轴的平⾯(不包括过y 轴、z 轴的平⾯).(3))0(,0,022≠?≠+==B A B A D C 过z 轴的平⾯.(4)0,0==≠C A B 平⾯垂直于y 轴.3.在下列各题中,求出满⾜给定条件的平⾯⽅程:**(1)过点()2,3,1--=P 及()1,2,0-=Q 且平⾏于向量{}1,1,2--=l垂直于向量{}1,1,2--=l与由点()2,3,1--=P 与点()1,2,0-=Q 构成的向量{}1,1,1-=,故取{}1,3,2112111=---=?=kj i l n.故可得所求平⾯⽅程为 ()()()023312=++-++z y x ,即 0532=-++z y x .**(2)过z 轴且垂直于平⾯0723=+--z y x ;解:平⾯0723=+--z y x 的法向量 {}1,2,3--=n ,故所求平⾯法向量n与0n 垂直,与z 轴正交,故可取{}0,3,21123--=--=?=kj i k n n ,所求平⾯过z 轴,故此平⾯必经过原点()0,0,0,故可得所求平⾯⽅程为 0032=+--z y x ,即 032=+y x .**(3)垂直于yz 坐标⾯,且过点()2,0,4-=P 和()7,1,15=Q ;解:由题意可知()2,0,4-=P 、()7,1,15=Q ,所以{}9,1,1=.⼜由题意可知所求平⾯法向量 n即与x 轴垂直,⼜与向量垂直,故可取{}1,9,0001911-==?=kj i i n,故可得所求平⾯⽅程为:()()()02109=+-+-z y ,即: 029=--z y .***4.⾃点)5,3,2(0-=P 分别向各坐标⾯作垂线,求过三个垂⾜的平⾯⽅程.解:垂⾜分别为:)0,3,2(=A 、)5,3,0(-=B 和)5,0,2(-=C ,所以}5,3,0{},5,0,2{--=--=平⾯法向量为}6,10,15{530502--=----=?=kj i n故平⾯⽅程为:15106600x y z +--= .x a y b z a b+-+=1,由于它过M N ,两点,则=+--=++1346134ba b a b a b 解得:a b ==-326,,,故平⾯⽅程为: 2366x y z --= 或 63218x y z +-=.**6.判断下列各组平⾯相对位置,是平⾏,垂直还是相交,重合.(1)ππ1221022430:,:x y z x y z -+-=-+-= (2)ππ122210220:,:x y z x y z ---=+-=解:(1)ππ12,法向量分别为n n n n 12211122242=-=-={,,},{,,}取π1上⼀点(,,)100,显然不在π2上,故ππ12,平⾏,不重合.(2)ππ12,法向量分别为n n n n 12212211220=--=-?={,,},{,,},故n n 21,垂直,从⽽ππ12,垂直.第 10 章(之4)(总第56次)教学内容:§10.3平⾯与直线[10.3.2,10.3.3]**1.解下列各题:(1)过点M M 12321102(,,),(,,)--的直线⽅程为.答:x y z +=-=--14221(2)直线x y z x y z -+-=+-+=??2302260在xOz 坐标⾯上的交点为=P ____________,并利⽤该点的坐标,写出此直线的对称式⽅程和参数⽅程.答: )3,0,0(=P .对称式⽅程为x y z 3435==-,参数⽅程为??+===3543t z t y tx(3)直线kzy a x =-=+21在平⾯3=-+z y x 上的充要条件是=a ______,=k _____.答:2-=a ,3=k .因为点)0,1,(a P -=在平⾯上,直线的⽅向向量{}k l ,2,1=→与平⾯的法向量{**2.求经过点)2,0,3(-=A 且与两个平⾯1=+z x 及1=++z y x 同时平⾏的直线⽅程.解:所求直线L 的⽅向向量 {}1,0,11=⊥n l,且 {}1,1,12=⊥n l ,∴可取 {}1,0,111110121-==?=kj i n n l,∴所求直线⽅程为:2013-==-+z yx .**3.求经过点)0,1,2(-=A 且与两条直线z y x ==及11201-=-=+zy x 同时垂直的直线⽅程.解:所求直线L 的⽅向向量 {}1,1,11=⊥l l ,且 {}1,1,02-=⊥l l,∴可取{}1,1,211011121-=-=?=kj i l l l ,∴所求直线⽅程为:z y x =+=--1122. **4. 求出过点)3,4,1(--=A 且与下列两条直线-=+=+-53142:1y x z y x L ??+-=--=+=tz t y tx L 23142:2均垂直的直线⽅程.解:?-=+=+-53142:1y x z y x L,{}1,4,211-=⊥n l ,{}0,3,121=⊥n l∴可取 {}10,1,3211-=?=n n l,23114223114223142:2+=-+=-=+=-+=-?+-=--=+=z y x t z t y tx t z t y t x L ,∴可取 {}2,1,42-=l ,1l l ⊥,且2l l⊥.∴可取 {}1,46,1221-=?=l l l,∴所求直线⽅程为13464121--=+=+z y x .**5.求通过点()5,1,20-=M 且与直线12131-=-=+zy x 相交并垂直的直线⽅程.解法⼀:直线132131:1--=-=+z y x L 上取⼀点()0,1,11-=M ,过点0M 与直线1L 的平⾯π的法向量n ,则1l n ⊥且 10M M n ⊥,∴{}{}{}6,12,105,0,31,2,3101-=-?-=?M M l ,故n 可取为 {}3,6,5-=n .因所求直线L 过点0M 点且与1L 相交,故L 亦在平⾯π上,故 {}28,14,0,1--=?⊥n l n l,故可取 {}2,1,0=l.故所求直线⽅程为251102+=-=-z y x .解法⼆:过点0M 作垂直于直线1L 的平⾯π:()()()051223=+--+-z y x ,即01323=--+z y x直线1L 与平⾯π的交点M 的坐标满⾜: -====????=-=-=+=--+13211213101323z y x t t zy x z y x∴M 点坐标为()1,3,2-,∴{}4,2,00=M M ,∴所求直线⽅程为:251102+=-=-z y x .** 6.试求k 值,使两条直线7144933:,33541:21+=--=+--=+=-z y x L z y k x L 相交.解:将第⼆条直线的参数⽅程-=+-=-=1479433t z t y t x 代⼊第⼀条直线⽅程,有3441357173t k t t -=-+=--解得 k =2**7.求直线l x y z 112110:-=--=+与l x y z 211032:-=+=-之间的夹⾓.解:l 1,l 2⽅向向量分别为S S 12110102=-=-{,,},{,,},cos(,)||||S S S S 121212110∧==-,故l 1,l 2之间的夹⾓为 arccos 110.**8.已知直线1121-=-=+zp y x 和平⾯126=+-z y qx 垂直,求常数q p ,之值.解: {}{}2,6,//1,,2-=-=q n p l ,∴3,42162=-=?-=-=p q p q .**9.求过直线??=-+-=--+04207572z y x z y x 且在x 轴和y 轴上的截距相等的平⾯⽅程.解:过直线?=-+-=--+04207572z y x z y x 的平⾯束⽅程可设为()()(*)427572=-+-+--+z y x v z y x u令0==z y ,求得在x 轴截距v u vu x 2247++=,令0==z x ,求得在y 轴截距vu vu y -+=747.∵y x = ∴vu vu v u v u -+=++7472247,∴v u v u v u -=+=+722047或,即:5374=-=v u v u 或,代⼊(*)式,可得满⾜条件的平⾯有两个(1)()()042757274=-+-+--+-z y x z y x ,即:027356=+-z y x ;(2)()()042757253=-+-+--+z y x z y x ,即:41101616=-+z y x .***10. 求直线z y x ==在平⾯135=-+z y x 上的投影直线.解:直线L 的⽅向向量 {}1,1,1=→l .在直线L 上取⼀点()0,0,0=A ,显然不满⾜⽅程135=-+z y x , ∴A 不在该平⾯上.设过A 做与平⾯135:0=-+z y x π的垂直的平⾯π.则平⾯π的法向量可取为 {}1,1,243511110---=-=?=kj i n l n,这就得到了π的⽅程为02=--z y x .从⽽得到投影直线⽅程为=--=-+02135z y x z y x .第 10 章(之5)(总第57次)教学内容:§10.4空间曲⾯1. 选择题 *(1) 曲⾯z x y =+22是()(A )zox 平⾯上曲线z x =绕z 轴旋转⽽成的旋转曲⾯(B )zoy 平⾯上曲线z y =绕z 轴旋转⽽成的旋转曲⾯(C )zox 平⾯上曲线z x =绕x 轴旋转⽽成的旋转曲⾯(D )zoy 平⾯上曲线z y =绕y 轴旋转⽽成的旋转曲⾯答:B** (2) ⽅程122=+z x 在空间表⽰()(A )z 轴(B )球⾯(C )母线平⾏y 轴的柱⾯(D )锥⾯答:C*(3) ⽅程x y z 2229251+-=-是() (A) 单叶双曲⾯ (B) 双叶双曲⾯ (C) 椭球⾯ (D) 双曲抛物⾯答:B*(4) 双曲⾯x y z 222491--=与yoz 平⾯() (A) 交于⼀双曲线(B) 交于⼀对相交直线 (C) 不交 (D) 交于⼀椭圆答:C*2. 求以)1,1,1(),5,4,1(21==M M 为直径的两个端点的球⾯的⽅程.解:M M 12,中点为)3,25,1(0=M ,M M 125=.即直径为5,半径为5/2.故球⾯⽅程为()()()()x y z -+-+-=1523522222.即x y z x y z 222256100++---+= .**3. 动点M 到两定点)0,0,4(),0,0,(21a P a P ==的两个距离之⽐等于1:2,求动点M 的轨迹⽅程.解:设动点M =(,,)x y zP M P M 1212::= 即 44222222[()]()x a y z x a y z -++=-++,即 x y z a 22222++=() .**4.动点),,(z y x M =到点()2,0,0=A 的距离和它到xy 平⾯的距离相等,求动点M 的轨迹⽅程.解:动点),,(z y x M =到点()2,0,0=A 的距离为 ()22212-++=z y x d ,动点M 到xOy 平⾯的距离为 212d d zd ==,∴动点M 的轨迹⽅程为 ()22222z z y x =-++,整理得:4422-=+z y x 是旋转抛物⾯.**5. 求yOz 平⾯上曲线y z 221-=分别绕y 轴,z 轴⽽成的旋转曲⾯的⽅程.解:绕y 轴 -+-=x y z 2221;绕z 轴 x y z 2221+-=.6. 把下列⽅程化为标准形式,从⽽指出⽅程所表⽰曲⾯的名称并画出图形. **(1)01422222=-++-+y x z y x ;解:01422222=-++-+y x z y x ,()()1422222=-+++z y y x x,()()142141222=-+++z y x ,是⼀个单叶双曲⾯,中⼼为()0,1,10--=M .**(2)09284222=--+--z y z y x .解:09284222=--+--z y z y x , ()()9224222=+---z z y y x ,()()4114222=+---z y x ,()()14114222=+---z y x ,是⼀个双叶双曲⾯,中⼼为()1,1,00-=M .第 10 章(之6)(总第58次)教学内容:§10.5向量函数空间曲线基本知识**1. 求曲线x y z x z 22216451230+-=-+=在xoy 平⾯上的投影柱⾯⽅程.解:消去z ,得x y x 2220241160+--=,即为所求投影柱⾯⽅程.**2.求以曲线?=+-=++112222222z y x z y x 为准线,母线平⾏于z 轴的柱⾯⽅程.解:131 1222222222=-=+-=++y x z y x z y x z消故所求柱⾯⽅程为1322=-y x .**3. 求曲线z x y x y z =+++=221在各坐标平⾯上的投影曲线⽅程.解:消去z ,得x y x y 221+++=故在xoy 平⾯上,投影曲线为 ?==+++0122z y x y x消去x ,得z y z y =--+()122故在yoz 平⾯上,投影曲线为 =+--=0)1(22x y z y z消去y ,得z x x z =+--221()故在xoz 平⾯上,投影曲线为 =--+=0)1(22y z x x z** 4.把曲⾯1222=++z y x 和1=+y x 的交线改写为母线分别平⾏于x 轴与y 轴的两个柱⾯的交线.解:)1(11222??=+=++y x z y x由(1)消去x ()022*******=+-?=++-?z y y z y y ,由(1)消去y ()022*******=+-?=++-?z x x z x x ,交线可写为?=-+=-+0220222222x z x y z y .**5. 求由曲⾯322x y z +=和z y =-12所围成的⽴体在 xOy 平⾯上的投影区域.解:投影区域由交线?-==+22213y z zy x 在xOy 平⾯上投影曲线所围成投影曲线为=-=+013222z y y x ,故投影区域为 =≤+0 12322z y x .**6. 试求曲线()k e j e i t t r t t-++= 对应于0=t 点出的切线⽅程.解:()k e j e i t r t t-++=θ,∴此空间曲线的参数⽅程为 ()()()()()()-======--t t t t et z e t y t x e t z e t y t t x ''1'.∴在对应于0=t 时, 00010e e z e e y x --=-=-,即:111--=-=z y x .**7. 试求曲线()()()k t j t i t t r23sin 23cos 2++= 从0=t 到4=t 这⼀段的弧长.解:空间曲线的参数⽅程为()()()()()()()()==-====t t z t t y t t x tt z t t y t t x 2'3cos 6'3sin 6'3sin 23cos 22.∴弧长()[]()[]()[]dt t z t y t x s ?++=40222''' dt t t t ?++=422243cos 363sin 363ln 9209242+=+=?dt t .。

高等数学习题册 第十二章 参考答案

高等数学习题册 第十二章  参考答案

1第十二章 无穷级数第一节 常数项级数的概念与性质1.填空: (1)1+1(-1)n n n -.(2)__0__.(3)111+-n , _1_. (4)11+-n a a ,1a a -.(5) 收敛 ,12-s u .(6) 发散_. 2.根据级数收敛与发散的定义判断下列级数的敛散性,如果收敛,则求级数的和:(1)解:级数的部分和为...n s +++1-.因为lim 1)n n n s →∞→∞=-=+∞,即部分和数列不存在极限,所以原级数发散. (2)解:将级数的一般项进行分解得211111()(1)(1)2111n u n n n n n ===-+--+-, 所以,级数的部分和为111111111[()+()()...()]213243511n s n n =--+-++--+1111(1)221n n =+--+. 因为11113lim lim (1)2214n n n s n n →∞→∞=+--=+, 即部分和数列存在极限,且极限值为34,根据定义可得,原级数收敛,且收敛于34.(3)解: 因为lim lim sin 6n n n n u π→∞→∞=不存在,根据收敛级数的必要性条件可知,级数的一般项极限不为零,则原级数必定发散.3.判断下列级数的敛散性,如果收敛,则求级数的和: (1)解:这是一个公比为34-的等比级数,因为314-<,所以收敛.其和为13343171()4u s q-===----. (2)解:这是公比为32-的等比级数,因为3>12-,所以发散.(3)解:因为1lim lim=0100+1100n n n n u n →∞→∞=≠,根据收敛级数的2必要性条件可知,原级数发散. (4)解:因为级数123nnn ∞=∑是公比为23的等比级数,所以收敛,而级数1131=3n n n n∞∞==∑∑是发散级数,根据收敛级数的性质可知,原级数发散.(5)解:原级数的一般项ln (1)-ln n u n n =+,所以原级数的部分和(ln 2-ln1)(ln 3-ln 2)...[(ln(1)-ln ]n s n n =++++ln(1)-ln1ln(1)n n =+=+,因为lim limln(1)n n n s n →∞→∞=+不存在,所以原级数发散.(6)解:原级数变形为111[()()]32n n n ∞=+∑,因为级数11()3nn ∞=∑和11()2n n ∞=∑均为公比1q <的等比级数,所以原级数收敛. 其和为113321121132s =+=--.(7)解:因为313lim =3lim()3lim011+(1+)(1+)n nn n n n nn n n e n n→∞→∞→∞==≠,根据收敛级数的必要条件可知,原级数发散.第二节 常数项级数的审敛法1.填空: (1) 收敛 .(2) 发散 ; 收敛 ;可能收敛也可能发散 . (3)1k <;1k >时,1k =.(4)1p >;1p ≤时.(5)发散 . (6)可能发散也可能收敛 . 2.选择:(1)D .(2)C .(3)B .(4)C .3.用比较审敛法及其极限形式判断下列级数的敛散性:(1)解:因为222+1++2lim lim 11+2n n n n n n n n→∞→∞==,而级数11n n∞=∑发散,根据比较审敛法的极限形式(或者极限审敛法),原级数一定发散.(2)解:因为2211(1)(21)limlim 1(1)(21)2n n n n n n n n →∞→∞++==++,而3 级数211n n∞=∑收敛,根据比较审敛的极限形式(或者极限审敛法),原级数一定收敛.(3)解:因为0sin 22n n ππ≤≤,而12n n π∞=∑是公比为12的等比级数,根据比较审敛法,原级数一定收敛.(4)解:当>1a 时,110<1n na a ≤+而11n n a∞=∑是公比为1<1a 的等比级数,根据比较审敛法,级数111nn a ∞=+∑一定收敛; 当0<1a <时,因为1lim=101nn a →∞≠+,根据级数收敛的必要性条件,级数111nn a ∞=+∑发散; 当=1a 时,原级数即112n ∞=∑,发散. (5*)解:因为ln (1+)(0,1)x x x x <≠-<<+∞,所以111ln =ln(1+)n n n n +<,即原级数为正项级数; 同时,111ln =ln ln(1)111n n n n n n +-=-->+++, 则:21111110<ln 1(1)n n n n n n n n+-<-=<++, 而211n n∞=∑收敛,所以原级数也收敛. 4.用比值审敛法判断下列级数的敛散性:(1)解:2+122(1)1113lim lim(1)1333n n n nn n n →∞→∞+=+=<,根据比值审敛法,原级数收敛.(2)解:135(2+1)2+1(+1)!limlim 2>1135(21)+1!n n n n n n n n →∞→∞⋅⋅⋅⋅⋅==⋅⋅⋅⋅⋅-,根据比值审敛法,原级数发散.4(3)解:+2+2+1+1(+1)tan+1122limlim 12tan 22n n n n n n n n n n ππππ→∞→∞=⋅=<,根据比值审敛法,原级数收敛.(4)解:1+12(1)!12(+1)lim 2lim()2lim <1112!(1+)n n n n n n n nnn n n n e n n n +→∞→∞→∞+===+, 根据比值审敛法,原级数收敛.5.用根值审敛法判别下列级数的敛散性:(1)解:1lim 12+12n n n n →∞=<,根据根值审敛法,原级数收敛. (2)解:1lim 01ln(+1)n n n →∞=<,根据根值审敛法,原级数收敛. (3)解:n b a, 当1ba<,即>a b 时,原级数收敛; 当>1ba ,即ab <时,原级数发散; 当1ba=,即=a b 时,原级数可能收敛也可能发散. 6.判别下列级数的敛散性: (1)解:10n n ==≠,根据收敛级数的必要条件可知,原级数发散.(2)解:原级数显然为正项级数,根据比较审敛法的极限形式,111lim =lim 1n n na b b aa n n→∞→∞+=+,所以原级数发散. (3)解:因为11lim 1>122nn n e n →∞⎛⎫+= ⎪⎝⎭, 所以原级数发散.7.判别级数的敛散性,若收敛,指出条件收敛还是绝对收敛: (1)解:因为11111(1)=33n n n n n n n ∞∞---==-∑∑,而1+11+113lim =lim <1333n n n n n n n n →∞→∞-=,所以级数113n n n ∞-=∑收敛,5因此原级数绝对收敛.(2)解:因为22(21)(21)cos 22n nn n n π++≤,又因为: 22+122(23)(23)12lim =lim 12(21)2(21)2n n n nn n n n →∞→∞++=<++,所以级数21(21)2nn n ∞=+∑收敛,因此原级数绝对收敛. (3)解:级数的一般项为:11(1)(1)10n n n u -=-+,因为1lim||lim(1)1010n n n n u →∞→∞=+=≠,所以原级数的一般项不趋近 于0,原级数发散. (4*)解:这是一个交错级数11(1)n n n u ∞-=-∑,因为级数1n ∞=-∑发散(见第一节习题2(1)),所以原级数不是绝对收敛,又因为:0n n =,1n n u u +-=---==-,根据莱布尼兹定理可知,原级数收敛且是条件收敛.8*.解:先讨论0x >的情形. 当=1x 时,级数为112n ∞=∑,显然发散;当0<<1x 时,级数为正项级数,利用比值审敛法,1221+122221lim =lim lim 111n n n n n n n n n n nu x x x x x u x x x ++++→∞→∞→∞++⋅==<++, 所以此时级数211+n nn x x ∞=∑收敛且是绝对收敛; 当1x >时,同样利用比值审敛法,2121+12222111lim =lim lim1111n n n n n n n nn u x x x x u x x x +++→∞→∞→∞+++==<++,6 所以此时级数211+nnn x x∞=∑收敛且是绝对收敛; 再看<0x 的情形.当1x =-,级数为1(1)2nn ∞=-∑,显然发散;当10x -<<和1x <-时,级数为21()(1)1nn n n x x ∞=--+∑,这是一个交错级数,对其一般项取绝对值得到正项级数21()1nnn x x ∞=-+∑,按照同样的方法可知21()1nnn x x∞=-+∑收敛,也即原级数绝对收敛; 而当0x =时,级数显然收敛且绝对收敛;综合得,原级数在1x =±时发散,其他均为绝对收敛. 9*.证明:设111(1)n n n a S ∞-=-=∑,若∑∞=-112n n a 收敛,设2121n n aS ∞-==∑,则122121111(1)n n n n n n n a a a S S ∞∞∞--====--=-∑∑∑,即21nn a∞=∑收敛,所以22-111(+)nn n n n aa a ∞∞===∑∑收敛,与11(1)n n n a ∞-=-∑条件收敛矛盾,所以∑∞=-112n n a 发散.因为11(1)n n n a ∞-=-∑条件收敛,所以∑∞=1n n a 发散.10*证明:因为222||0nnn n a b a b +≥≥,所以∑∞=1n nnba 收敛;因为2220()2||n n n nn n a b a b a b ≤+≤++,所以∑∞=+12)(n n nb a收敛;令1n b n =,因为∑∞=12n n b 收敛,所以∑∞=1n n n b a 收敛,即∑∞=1n n na 收敛.第三节 幂级数1.填空:(1)绝对收敛 ; 绝对收敛 .(2)1ρ;+∞;_0_.(3)_1_,7 (-1,1).(4)12=R R ;(5) (),R R -.2.选择:(1)B .(2)B . (3)A . (4)C . (5*)B (提示:令=1y x -,则1111(1)n n n n n n na x na y ∞∞++==-=∑∑21211=()n n n n n n yna yy a y ∞∞-=='=∑∑).(6)B .(7)D .3. 求下列幂级数的收敛域:(1)解:因为+11=lim lim 02(1)n n n na a n ρ→∞→∞==+,收敛半径为R =+∞,收敛域为(,)-∞+∞.(2)解:因为12121(1)(1)limlim 11(1)n n n n n na n a nρ++→∞→∞-+===-, 所以收敛半径1R =,收敛区间为(1,1)-;当1x =时,级数为211(1)nn n ∞=-∑,这是一个绝对收敛级数; 当1x =-时,级数为211n n∞=∑,这是一个收敛的正项级数; 综合得原级数的收敛域为[1,1]-.(3)解:121limlim 121n n n n a n a n +→∞→∞-==+1R ⇒=, 故当231x -<,即12x <<时级数绝对收敛,当1x =时,11(1)(1)12121n n n n n n ∞∞==--=--∑∑,级数发散,当2x =时, 1(1)21nn n ∞=--∑为收敛的交错级数,所以原级数的收敛域为(1,2].(4)解:这是一个缺奇次项的幂级数,直接使用比值审敛法得:1()lim ()n n n nu x u x +→∞=2222n x x =⋅=,8 所以当22<1x,即x <<时,级数绝对收敛;当22>1x时,即x >或<x -时,原级数发散;当x =时,级数为1n ∞=∑,发散;当x =时,级数为21(1)nn ∞=--∑,发散(见第一节习题2(1));所以,级数的收敛域为(-.(5*)解:因为+111111+231=limlim 111123n n n na n n a nρ→∞→∞+++⋅⋅⋅++=+++⋅⋅⋅+11lim(1)111123n n n→∞+=++++⋅⋅⋅+,因为正项级数11n n ∞=∑发散,因此111lim(1)23n n →∞+++⋅⋅⋅+=+∞,所以上述的=1ρ,即级数的收敛半径为1,收敛区间为(1,1)-.当1x =±时,级数为∑∞=+⋅⋅⋅+++1)131211(n n x n,因为 111=1()23n u n n+++⋅⋅⋅+→∞→∞, 所以发散,综合得原级数的收敛域为(1,1)-. 4.求下列幂级数的收敛域与和函数:(1)解:先求收敛域:利用比值审敛法可得454141()45lim lim =()41n n n n n nx u x n x u x x n +++→∞→∞+=+, 因此,当41x <,即||1x <时,级数收敛; 当1x =时,级数为141n n ∞=+∑,发散;当1x =-时,级数为1()41n n ∞=-+∑,发散,所以级数的收敛域为(1,1)-.9为求和函数,令410()=41n n x s x n +∞=+∑,两端同时求导得:4141440001()==,(1,1)41411-n n n n n n x x s x x x n n x ++∞∞∞===''⎛⎫⎛⎫'==∈- ⎪ ⎪++⎝⎭⎝⎭∑∑∑再两端同时积分得:400111+1()(0)=()==ln arctan 4121-xxx s x s s x dx dx x x x '-+-⎰⎰, 显然(0)=0s ,所以原级数的和函数为11+1()=ln arctan ,(1,1)412x s x x x x +∈--.(2)解:212121(22)lim lim 2n n n n n nu x n x u x n ++-→∞→∞+==, 故当211x x <⇒<时级数绝对收敛,当||1x >时,级数发散. 当1x =-时,21112(1)2n n n n n ∞∞-==-=-∑∑发散,当1x =时,12n n ∞=∑发散,⇒ 收敛域为(1,1)-.令211()2(0)0n n S x nxS ∞-==⇒=∑2212211()21xxn nn n x S t dt ntdt xx ∞∞-==⇒===-∑∑⎰⎰22222()(||1)1(1)x x S x x xx '⎛⎫⇒==< ⎪--⎝⎭. (3)解:先求收敛域:因为1(+1)(+2)limlim 1(+1)n n n n a n n a n n ρ+→∞→∞===, 所以收敛半径为1,明显当1x =±原级数发散,故级数的收敛域为(1,1)-;令1()(1)(0)0nn S x n n xS ∞==+⇒=∑,121111()(1)xx nn n n n n S t dt n n t dt nxxnx∞∞∞+-===⇒=+==∑∑∑⎰⎰222211(1)n n x x x x x x x ∞=''⎛⎫⎛⎫=== ⎪ ⎪--⎝⎭⎝⎭∑ 2232()(||1)(1)(1)x x S x x x x '⎛⎫⇒==< ⎪--⎝⎭.10(4)解:212121(21)lim lim (21)n n n n n nu x n x u x n ++-→∞→∞-==+,故当211x x <⇒<时级数绝对收敛, 当||1x >时,级数发散.当1x =-时, 12111(1)(1)(1)2121n n n n n n n +∞∞-==---=--∑∑为收敛的交错级数,当1x =时, 11(1)21n n n +∞=--∑为收敛的交错级数,⇒ 收敛域为[1,1]-.令1211(1)()(0)021n n n x S x S n +-∞=-=⇒=-∑, 122211()(1)1n n n S x x x∞+-='⇒=-=+∑ 201()(0)arctan 1xS x S dt x t ⇒-==+⎰()arctan (11)S x x x ⇒=-≤≤.第四节 函数展开成幂级数1.将下列函数展开成x 的幂级数,并求展开式成立的区间:(1)解:利用间接展开法.因为=0=,(,)!nxn x e x n ∞∈-∞+∞∑,所以ln ln 00(ln )(ln ),(,)!!xn n xa x ann n x a a a eex x n n ∞∞======∈-∞+∞∑∑.(2)解:利用间接展开法.因为1(1)ln(1)=,(1,1]1n n n x x x n ∞+=-+∈-+∑,所以 ln()=ln[(1)]ln ln(1)x xa x a a a a++=++110(1)ln ,(,](1)nn n n a x x a a n a∞++=-=+∈-+∑. (3*)解:利用间接展开法.因为2(1)(1)...(1)(1)1...,||12!!m nm m m m m n x mx x x x n ---++=++++<122(1)x x -=⋅+11357113135...,(1,1]224246x x x x x ⋅⋅⋅=-+-+∈-⋅⋅⋅. 注:当1=2m -时,在右端点处收敛.(4)解:利用间接展开法.因为20(1)cos =,(,)(2)!n nn t t x n ∞=-∈-∞+∞∑,所以22100000(1)(1)cos d =[]d d (2)!(2)!n nxxx n n n n t t t t t t t t n n ∞∞+==--=∑∑⎰⎰⎰ 212200(1)(1)=d ,(,)(2)!(2)!(22)n nxn n n n t t t x n n n ∞∞++==--=∈-∞+∞+∑∑⎰. 2. 解:111(1)=,(,)!nx x x x x e ee e e x n ∞-+-=-=⋅=∈-∞+∞∑.3.解:011111(2),(0,4)2422212n n n x x x x ∞==⋅=-∈---∑. 4.解:将sin x 变形为:1sin sin[()])cos()662626x x x x ππππ=-+=-+-, 利用sin x 和cos x 的展开式可得2-121211sin ()()...221!622!6(1))(),(,)622n!6n n n x x x x x x ππππ-=+---++⋅⋅--+-∈-∞+∞⋅.5.解:211=()34154x x x x x x ----+5(5)111=()531(5)414x x x +--⋅-+-+111005111=(1)(1)(5)(1)(1)(5)3344n n nn n n n n x x ∞∞+++==---+---∑∑, 其中第一个展开式的收敛域为|5|<1x -,第二个展开式的收敛域为|5|<14x -,所以原函数的展开式的收敛域为|5|<1x -,即46x <<.第五节 函数的幂级数展开式的应用1.利用函数的幂级数的展开式求下列各数的近似值: (1)解:根据ln (1+)x 的展开式可得:35111ln2(...)(11)135x x x x x x +=+++-<<-(见教材)12令1=51x x +-,解得2(1,1)3x =∈-,带入上述展开式可得 35793579212121212ln 52(...)335793333=+⋅+⋅+⋅+⋅,如果取前五项作为其近似值,则1113151751113151712121212||=2(...)111315173333r ⋅+⋅+⋅+⋅+1123112312114114114=2(1...)111391517399⋅⋅+⋅+⋅+⋅+1123112322444(1...)119399<⋅++++ 111111112212290.00384111153319<⋅⋅=⋅⋅≈-,符合误差要求,因此取前五项作为其近似值,即35793579212121212ln 52() 1.61335793333≈+⋅+⋅+⋅+⋅≈.(2)解:根据cos x 的幂级数展开式可得246111cos18cos1()()() (10)2!104!106!10ππππ==-+-+, 6-61() 1.335106!10π≈⨯,所以取前四项作为近似值,即 246111cos181()()()0.950992!104!106!10πππ=-+-≈.(3)解:根据cos x 的幂级数展开式可得2621cos 111...2!4!6!x x x x -=-++, 于是可得0.50.5262001cos 111d =(...)d 2!4!6!x x x x x x--++⎰⎰ 3511111111=()()...0.123272!24!326!52⋅-⋅⋅+⋅⋅+≈. 2.解:因为sin arctan x x 、的展开式分为可以写为:33sin ()3!x x x o x =-+,33arctan ()3x x x o x =-+,所以3333001()sin arctan 16lim lim 6x x x o x x x x x→→+-==.第七节 傅里叶级数1.填空:(1)其中的任何两个不同函数的乘积在区间[,]ππ-上的积分为130,相同函数的乘积在此区间上积分不为0 . (2)1()d f x x πππ-⎰,1()cos d (1,2,...)f x nx x n πππ-=⎰,1()sin d (1,2,...)f x nx x n πππ-=⎰. (3)02=0,()sin d n n a b f x nx x ππ=⎰.(4)1+π.(5)在一个周期内连续或者只有有限个第一类间断点 , 在一个周期内至多有有限个极值点 , 收敛 ,()f x , 左右极限均值.2.下列函数以π2为周期,且在[,)ππ-上取值如下,试将其展开成傅里叶级数:(1)解:先利用系数公式得出傅里叶级数.2220111()d d ()2x xx a f x x e x e e πππππππ---===-⎰⎰, 22212()(1)()cos ,( 1.2 (4)n e ea f x nxdx n n ππππππ----==⋅=+⎰, 2-2121(1)()sin ,(n=1,2...)4n n e e nb f x nxdx nππππππ+---==⋅+⎰, 所以,函数的傅里叶级数为2-22221(1)()(2cos sin )44nn e e e e f x nx n nx nππππππ-∞=---+-+∑. 再考虑其收敛性.易知函数满足收敛性定理的条件,其不连续点为(21)(0,1,2,...)x k k π=+=±±,在这些点处,上述的傅里叶级数收敛于左右极限的均值,即22(0)(0)22f x f x e e ππ-++-+=,在连续点处,傅里叶级数收敛于函数2()=xf x e ,因此2-22221(1)()(2cos sin )44nn e e e e f x nx n nx nππππππ-∞=---=+-+∑(,),(21)(0,1,2,...)x x k k π∈-∞+∞≠+=±±.(2)解:先根据系数公式求傅里叶级数.40113()d sin d 4a f x x x x ππππππ--===⎰⎰, 41131sin cos (2cos2cos4)cos 422n a x nxdx x x nxdx ππππππ--==-+⎰⎰, 根据三角函数系的正交性,仅当=2,=4n n 时,0n a ≠,易得142411,28a a =-=,由于4()sin f x x =是[,]ππ-的偶函数,故0n b =; 又因为函数4()sin f x x =是连续函数,所以可得:311()cos 2cos 4,<<828f x x x x =-+-∞∞.3.解:(1) ()()f x x x ππ=-<<作周期延拓的图象如下:其分段光滑,故可展开为傅里叶级数. 由系数公式得.当时,,,所以 11sin ()2(1)()n n nxf x x xππ∞+==--<<∑,为所求. (2)()(02)f x x x π=<<作周期延拓的图象如下:其分段光滑,故可展开为傅里叶级数. 由系数公式得.当时,011()d d 0a f x x x x ππππππ--===⎰⎰1n ≥11cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰11sin sin d 0|x nx nx x n n ππππππ--=-=⎰11sin d d(cos )n b x nx x x nx n ππππππ---==⎰⎰1112cos cos d (1)|n x nx nx x n n n ππππππ+---=+=-⎰220011()d d 2a f x x x x πππππ===⎰⎰1n ≥22011cos d d(sin )n a x nx x x nx n ππππ==⎰⎰15 ,,所以1sin ()2(02)n nxf x x x ππ∞==-<<∑,为所求. 4.解:要展开为余弦级数,需对函数进行偶延拓,即定义函数1cos 02()cos ,02x x f x x x ππ⎧≤≤⎪⎪=⎨⎪-≤≤⎪⎩,,并将1()f x 以2π周期延拓到整个数轴,得到偶函数()g x . 对()g x 进行傅里叶展开,显然有0n b =,且0024cos d 2x a x πππ==⎰,2024(1)cos cos d ()(=1,2,...)241nn x a nx x n n πππ-==--⎰,根据上述系数即可得到()g x 在整个数轴上的傅里叶展开式,由于()g x 连续,所以其傅里叶均收敛于()g x ,最后将展开式限制在[0,]π,既得()cos2xf x =的傅里叶展开式 2124(1)()cos ,[0,]41nn f x nx x n πππ∞=-=--∈-∑.4.解:将函数进行奇延拓,并求傅里叶系数:0(0,1,2,...)n a n ==,021sin [(1)1](1,2,...)42n n b nxdx n nπππ==---=⎰,因此函数()4f x π=的正弦级数展开式为11sin +sin 3sin 5...(0,)435x x x x ππ=++∈, 根据收敛性定理,在端点=0,=x x π处傅里叶级数收敛于零.令上式中的=2x π,即可得到1111 (4357)π=-+-+.第八节 一般周期函数的傅里叶级数1.填空:220011sin sin d 0|x nx nx x n n ππππ=-=⎰220011sin d d(cos )n b x nx x x nx n ππππ-==⎰⎰2200112cos cos d |x nx nx x n n n ππππ--=+=⎰16(1)-1()cos (0,1,2...)l n l n xa f x dx n l lπ==⎰-1()sin (1,2...)l n l n x b f x dx n l l π==⎰.(2)02()sin(n=1,2...)l n xf x dx l lπ⎰. 2.解:为展开为正弦级数,先将函数()f x 做奇延拓,其傅里叶系数为0(0,1,2,...)n a n ==;20222sin +(-)sin ll l n n x n xb x dx l x dx l l l lππ=⎰⎰224=sin2l n n ππ, 所以1()=sinn n n xf x b lπ∞=∑ 22224131517=(sin sin +sin sin +...)357l x x x xl l l l πππππ--, 由于()f x 连续,上述展开式对于任意的[0,]x l ∈均成立. 3.解:()2+||f x x =为偶函数,所以展为余弦级数,其系数为0(1,2,...)n b n ==,1002(2)d 5a x x =+=⎰,1222(cos 1)2(2)cos()(1,2,...)n n a x n x dx n n πππ-=+==⎰, 因为函数()2+||f x x =满足狄氏收敛定理,所以22152(cos 1)2||cos 2n n x n x n πππ∞=-+=+∑ 2225411(cos cos3cos5...)()235x x x x ππππ=-+++-∞≤≤∞. 令上式中的=0x ,可得2222111 (8135)π+++=,又2222222=11111111(...)(...)135246n n ∞=+++++++∑ 2222221111111(...)(...)4135123=+++++++所以22222=114111=(...)=36135n nπ∞+++∑.第十二章 自测题1.填空:17 (1)仍收敛于原来的和s .(2) 均收敛 ; 均发散 . (3)_1_;_2__.(4)34, 12, 34. 2.选择:(1)C .(2)A (提示:使用阿贝尔定理).(3)D (提示:ln ln ln 2ln ln 2ln 22()n n n e e n λλλλ--⋅--===). (4)B .(5)A . (6)C .3.判别下列级数的敛散性,若收敛指出绝对收敛或条件收敛: (1)解:根据正项级数的根值审敛法,有(!)lim n n n n →∞=+∞, 所以,原级数发散.(2)解:因为2211sin 4n n n π≤,而211n n∞=∑收敛, 所以原级数收敛且绝对收敛.(3)解:这是一个交错级数,由于(1)11=-ln -ln n n n n n n-≥,所以不是绝对收敛.因为111ln(1)ln n n n n-+-+-1ln(1)10(ln )[1ln(1)]n n n n n +-=<-+-+,且1lim=0ln n n n→∞-,根据莱布尼兹定理,级数收敛,即原级数条件收敛.(4*)解:根据比值审敛法,有1(1)lim ||lim ||1n pp n n n pa n n a a n a n +→∞→∞+⎛⎫== ⎪+⎝⎭, 所以,当||<1a 时,即11a -<<时,级数绝对收敛; 当||1a >,根据罗比达法则可知212+++ln (ln )lim lim lim(1)x x x p p p x x x a a a a a x px p p x --→∞→∞→∞=-, 因为p 是常数,有限次使用罗比达法则,可求出上述极限为无穷,因此lim np n a n→∞=∞,所以原级数发散;当1a =时,级数既为11pn n∞=∑,此时若01p <≤时,原级数18 发散,若1p >原级数收敛且绝对收敛;当1a =-时,级数既为1(1)npn n∞=-∑,此时,若01p <≤时,根据莱布尼兹定理可知,原级数条件收敛,若1p >时,根据比较审敛法可知,原级数绝对收敛.4.解:因为11113+(2)[3+(2)]1lim lim 3+(2)(1)[3+(2)]n n n n n nn n n n n n n n++++→∞→∞--+=-+-12[1+()]3lim 3112(1)[1+()]33n n nn +→∞-==+⋅⋅-,所以,级数的收敛半径为13,收敛区间为42(,)33--;在端点4=3x -处,级数为12(1)+()3nnn n ∞=-∑,因为级数11(1)21,()3n n n n n n ∞∞==-⋅∑∑均收敛,所以在此点处,原级数收敛; 在端点2=3x -处,级数为121+()3nn n ∞=-∑,因为级数11,n n ∞=∑发散,而121()3nn n∞=-⋅∑收敛,所以在此端点处,原级数发散; 综合得,原级数的收敛域为42[,)33--. 5.解:先利用比值审敛法求幂级数的收敛域.因为2+222(2+2)!lim =lim (2+2)(2+1)(2)!n n n n x x n n n xn →∞→∞=+∞, 所以级数的收敛域为(,)-∞+∞;令22420()1......(2)!2!4!(2)!n nn x x x x s x n n ∞===+++++∑, 则3521()+......3!5!(21)!n x x x s x x n -'=++++-,所以 234()()1......2!3!4!!nx x x x x s x s x x e n '+=+++++++=,19 即()()x s x s x e '+=,这是一个一阶线性微分方程,解之得1()+2x x s x ce e -=.又因为(0)1s =,带入求得常数12c =,所以幂级数的和函数为11()(,)22x xs x e e x -=+∈-∞+∞,.6.解:因为2ln(12)ln(1)ln(12)x x x x +-=-++,而11(1)ln(1)(11)n nn x x x n -∞=-+=-<≤∑,所以,=1ln(1)(11)nn x x x n∞-=--≤<∑,1=1(1)211ln(12)()22n n n n x x x n -∞-+=-<≤∑,于是得出原函数的展开式为12=1(1)2111ln(12)=()22n n n n x x x x n -∞--+--<≤∑.7.解:为展开为正弦级数,先将函数()f x 在[,0)π-上做奇延拓,再延拓到整个数轴,并求傅里叶系数0(0,1,2...)n a n ==, 02()sin d n b f x nx x ππ=⎰202sin d x nx x ππ=⎰221sincos (1,2,...)22n n n n n πππ=-=, 因此可得函数()f x 在[0,)π的傅里叶级数2=121()(sincos )sin ([0,),)222n n n f x nx x x n n πππππ∞=-∈≠∑, 由于3=2x π-为函数的不连续点,根据狄氏收敛性定理,和函数在3=2x π-处的值3()2s π-为左右极限的均值,即31()=24s ππ-,而5=4x π是函数的连续点,在此点处,收敛于(延拓后的)函数()f x ,即5()=04s π.8.考研题练练看:(1)C .解析:幂级数1(1)k kk ax ∞=-∑的收敛域中心为1x =,而20 =1(1,2,...)n n k k S a n ==∑无界表明1(1)k k k a x ∞=-∑在2x =发散,因此幂级数的收敛半径1R ≤,同时,根据莱布尼兹定理,数列{}n a 单减且收敛于0,表明1(1)kkk ax ∞=-∑在0x =收敛,因此幂级数的收敛半径1R ≥,综合得收敛半径为=1R ,因此选C . (2)A .解析:若1n n u ∞=∑收敛,则对其任意项加括号后仍收敛,其逆命题不一定成立,所以选A . (3)D .解析:=11(1)a n n ∞-∑绝对收敛,即1=121a n n∞-∑收敛,所以32α>,又由2=1(1)n a n n ∞--∑条件收敛可知12α≤<,所以选D .(4)C .解析:根据题意,将函数在[]1,1-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1,(0,1)2()1,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,其傅里叶级数以2为周期,则当()1,1x ∈-且()f x 在x 处连续时,()()S x f x =,所以 91111()()()()44444S S S f -=-=-=-=-.(5)D .解析:因为1P >时,=11P n n ∞∑收敛,且lim =lim 1Pn n n n Pa n a n →∞→∞存在,所以=1nn a∞∑收敛.(6)解:先求收敛域.222212(1)212+1lim lim 12+1(1)21n n n n n nxn n x x n x n +-→∞→∞--==<--,即11x -<<时级数绝对收敛;当=1x ±时,级数为1=1(1)21n n n -∞--∑,根据莱布尼兹定理,可知21此级数收敛,因此原级数的收敛域为[1,1]-.为求和函数,设112211=1(1)(1)()2121n n n n n n s x x x xn n --∞∞-=--==--∑∑, 令1211=1(1)()21n n n s x xn -∞--=-∑,则 1212112=1=1(1)1()=() (11)211n n n n n s x x x x n x -∞∞--'⎛⎫-'=-=-<< ⎪-+⎝⎭∑∑, 两端同时积分,得11201()(0)d arctan (11)1xs x s x x x x -==-<<+⎰,明显1(0)0s =,所以1()arctan (11)s x x x =-<<,既得()arctan (11)s x x x x =-<<,又因为=1x ±时,()arctan s x x x ,都有定义,且连续,所以()arctan (11)s x x x x =-≤≤.(7)B.(8)解:先求收敛域.22224(+1)4(+1)321lim 12(1)1443n n n n x x n n n →∞+++⋅⋅=<++++, 即11x -<<时级数绝对收敛;当=1x ±时,级数为2=044321n n n n ∞+++∑,发散,因此幂级数的收敛域为11x -<<.为求和函数,设2222=0=0443(21)2()==2121n nn n n n n S x x x n n ∞∞++++++∑∑,所以22=0=02()=(21)21nn n n S x n xx n ∞∞+++∑∑,令2212=0=02()=(21)()21nn n n S x n x S x x n ∞∞+=+∑∑,,对1()S x 两端积分得210=0()d =(21)d xx nn S x x n x x ∞+∑⎰⎰212=0= (11)1n n xx x x∞+=-<<-∑, 两端求导得212221()= (11)1(1)xx S x x xx '+⎛⎫=-<< ⎪--⎝⎭;22因为212=02()21n n xS x x n ∞+=+∑,两边求导得 222=02[()]2 (11)1n n xS x x x x ∞'==-<<-∑, 再对两端积分得22021()0(0) ln (11)11xxxS x S dx x xx +-⋅==-<<--⎰,所以211()ln((1,0)(0,1))1xS x x x x+=∈-⋃-, 又因为=0x 时,12(0) 1.(0)2S S ==,综合可得和函数为222111ln ,(1,0)(0,1)()1(1)3, 0x xx S x x xx x ⎧+++∈-⋃⎪=--⎨⎪=⎩. (9)(i)证明:由题意得1=1()n nn S x na x∞-'=∑,22=2=0()(1)(1)(2)n nn n n n S x n n a xn n a x ∞∞-+''=-=++∑∑,2(1)0n n a n n a ---=,2=(1)(2)(0,1,2...)n n a n n a n +∴++=, ()=()S x S x ''∴,即()()0S x S x ''-=.(ii) 解:()()0S x S x ''-=为二阶常系数齐次线性微分方程,其特征方程为210λ-=,从而特征根为1λ=±,于是其通解为12()x xS x C e C e -=+,由0(0)3S a ==,1(0)1S a '==得1212123121C C C C C C +=⎧⇒==⎨-+=⎩,,所以()2x x S x e e -=+. (10)解:(1)证明:由cos cos n n n a a b -=,及0,022n n a b ππ<<<<可得0cos cos 2n n n a a b π<=-<,所以02n n a b π<<<,由于级数1nn b∞=∑收敛,所以级数1nn a∞=∑也收敛,由收敛的必要条件可得lim 0n n a →∞=.(2)证明:由于0,022n n a b ππ<<<<,23 所以sin ,sin 2222n n n n n n n na b a b b a b a ++--≤≤2222sin sin cos cos 22222222n n nnn n n n n nn n n nn n n nn n n a b b a a a b b b b a b b a b a b b b b b +--==+--≤=<=由于级数1nn b∞=∑收敛,由正项级数的比较审敛法可知级数1nn na b ∞=∑收敛. (11)解:由于1lim1n n na a +→∞=,所以得到收敛半径1R =. 当1x =±时,级数的一般项不趋于零,是发散的,所以收敛域为()1,1-.令和函数)(x S =0(1)(3)n n n n x ∞=++∑,则2111()(43)(2)(1)(1)nn n nn n S x n n x n n x n x ∞=∞∞===++=++++∑∑∑211123"'3"'11(1)n n n n x x x x x x x x ∞∞++==⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭⎛⎫-⎛⎫=+= ⎪ ⎪---⎝⎭⎝⎭∑∑。

华理复变答案12次作业答案

华理复变答案12次作业答案

华理复变答案12次作业答案华东理⼯⼤学复变函数与积分变换作业(第1册)班级____________学号_____________姓名_____________任课教师_____________第⼀次作业教学内容:1.1复数及其运算 1.2平⾯点集的⼀般概念1.填空题:(1)35arctan 2,234,2523,25,23-+-πk i (2)3arctan 2,10,31,3,1-+-πk i(3))31(21i +- (4) 13,1=-=y x 。

2.将下列复数化成三⾓表⽰式和指数表⽰式。

(1)31i +; 解:32)3sin 3(cos 2)2321(231πππi e i i i =+=+=+ (2))0(sin cos 1π≤≤+-i 解:)22(2sin 2)]22sin()22[cos(2sin 2sin cos 1?π??π?π-=-+-=+-i e i i(3)32)3sin 3(cos )5sin 5(cos φφφφi i -+. 解:φφφφφφφφφ199********)/()()3sin 3(cos )5sin 5(cos i i i i i e ee e e i i ===-+-- φε19sin 19cos i +3.求复数11+-z z 的实部与虚部解:2|1|)1)(1()1)(1()1)(1(11++-=+++-=+-=z z z z z z z z z w 222|1|Im 2|1|1|1|)1(+++-=+--+=z z i z z z z z z z z 所以,2|1|1Re +-=z z z w ,2|1|Im 2Im +=z z w 4. 求⽅程083=+z 的所有的根. 解:.2,1,0,2)8()21(331==-=+k e z k i π即原⽅程有如下三个解:31,2,31i i --+5. 若 321z z z ==且0321=++z z z ,证明:以321,,z z z 为顶点的三⾓形是正三⾓形. 证明:记a z =||1,则232232223221|||(|2||z z z z z z z --+=+= 得22323||a z z =-221|)||(|z z -=,同样,22212123||a z z z z =-=- 所以.||||212321z z z z z z -=-=-6. 设2,1z z 是两个复数,试证明.212z z ++221z z -22122()z z =+. 并说明此等式的⼏何意义.证明:左式=(21z z +)(21z z +)+(21z z +)(21z z -)=(21z z +)(21z z +)+(21z z +)(21z z -) =2121221121212211z z z z z z z z z z z z z z z z ?-?-?+?+?+?+?+? =2(2221z z z z ?+?)=2(2221z z +)7.求下列各式的值: (1)5)3(i -; 解:5)3(i -=6556532)2()223(2ππi i e e i--==??- =i i 16316)65sin()65cos(32--=???-+-ππ(2)31)1(i -;解: 31)1(i -.2,1,0,2)2()221(23)24(631431===-=+--k e e i k i i πππ可知31)1(i -的3个值分别是)12sin 12(cos 22626πππi e i -=-;)127sin 127(cos 226276πππi e i +=)45sin 45(cos 226456πππi e i +=(3)求61-解:61-=.5,4,3,2,1,0,)(6/)21(612-=++k e e k i k i πππ可知61-的6个值分别是223,1,2236526i ei e i e i i i +-==+=πππ 223,,2234112367i e i e i e i i i -=-=--=πππ(4) ()()()()1001001001005050511+i +1-i =cos +isin +cos -isin 4444 =2cos 25+isin 25+2cos 25-isin 25 =-2ππππππππ8.化简2)1()1(--+n ni i 解:原式1222211)1(+-=-=??? ??-+-=n i n n i ie i i i π9. 设bi a iyx +=-+iy x ,其中y x b a ,,,均为实数,证明: 122=+b a解:先求出b a ,的y x ,表达式,因为bi a yx ixy y x iy x iy x +=++-=+-+=-+222222iy x iy x iy x ))(()(⽐较系数得b yx xy a y x y x =+=+-2222222, 于是1)2()(2222222222=+++-=+y x xy y x y x b a 10. 设ω是1的n 次根,且1≠ω,证明:ω满⾜⽅程:0112=++++-n zz z 解:因1=n ω,即01=—n ω故01)(1-(12=++++-)n ωωωω由于1≠ω,故01(12=++++-)n ωωω,即0112=++++-n z z z第⼆次作业教学内容:1.2 平⾯点集的⼀般概念 1.3复变函数1. 填空题(1)连接点i +1与i 41--的直线断的参数⽅程为10)52(1≤≤--++=t t i i z(2)以原点为中⼼,焦点在实轴上,长轴为a ,短轴为b 的椭圆的参数⽅程为π20sin cos ≤≤+=t t ib t a z2.指出下列各题中点z 的轨迹,并作图. (1)12≥-i z ;中⼼在i 2-半径为1的圆周及其外部。

华理高数下答案

华理高数下答案

第9章(之1) (总第44次)教学内容:§9.1微分方程基本概念*1. 微分方程7359)(2xy y y y =''''-''的阶数是 ( ) (A )3; (B )4; (C )6; (D )7. 答案(A )解 微分方程的阶数是未知函数导数的最高阶的阶数.*2. 下列函数中的C 、α、λ及k 都是任意常数,这些函数中是微分方程04=+''y y 的通解的函数是 ( ) (A )x C x C y 2sin )2912(2cos 3-+=; (B ))2sin 1(2cos x x C y λ+=; (C )x C k x kC y 2sin 12cos 22++=; (D ))2cos(α+=x C y . 答案 (D )解 二阶微分方程的通解中应该有两个独立的任意常数. (A )中的函数只有一个任意常数C ;(B )中的函数虽然有两个独立的任意常数,但经验算它不是方程的解;(C )中的函数从表面上看来也有两个任意常数C 及k ,但当令kC C =时,函数就变成了x C x C y 2sin 12cos 2++=,实质上只有一个任意常数;(D )中的函数确实有两个独立的任意常数,而且经验算它也确实是方程的解.*3.在曲线族 xx e c e c y -+=21中,求出与直线x y =相切于坐标原点的曲线.解 根据题意条件可归结出条件1)0(,0)0(='=y y , 由xxe c e c y -+=21, xxe c e c y --='21,可得1,02121=-=+c c c c ,故21,2121-==c c ,这样就得到所求曲线为)(21x x e e y --=,即x y sinh =.*4.证明:函数y e x x =-2333212sin 是初值问题⎪⎪⎩⎪⎪⎨⎧===++==1d d ,00d d d d 0022x x x y y y x yx y 的解.证明 '=-+--y e x e x x x 3332321212s i n c o s ,''=----y e x e x x x 3332321212sin cos ,代入方程得''+'+=y y y 0, 此外,,1)0(0)0(='=y y故y e x x =-2333212sin 是初始值问题的解.*5.验证y e e t Ce xt xx=+⎰2d (其中C 为任意常数)是方程'-=+y ye x x 2的通解.证明 '=+⋅+⎰y ee t e e Ce xt xx x x22d =++ye x x 2, 即 2x x e y y +=-',说明函数确实给定方程的解.另一方面函数y ee t Ce xt x x=+⎰2d 含有一任意常数C ,所以它是方程的通解.**6.求以下列函数为通解的微分方程: (1)31+=Cx y ;解 将等式31+=Cx y 改写为13+=Cx y ,再在其两边同时对x 求导,得C y y ='23,代入上式,即可得到所求之微分方程为1332-='y y xy . (2)xC x C y 21+=. 解 因为给定通解的函数式中有两个独立的任意常数,所以所求方程一定是二阶方程,在方程等式两边同时对x 求两次导数,得221x C C y -=',322xC y =''. 从以上三个式子中消去任意常数1C 和2C ,即可得到所求之微分方程为02=-'+''y y x y x .**7.建立共焦抛物线族)(42C x C y +=(其中C 为任意常数)所满足的微分方程[这里的共焦抛物线族是以x 轴为对称轴,坐标原点为焦点的抛物线].解 在方程)(42C x C y +=两边对x 求导有C y y 42=',从这两式中消去常数所求方程为)2(y y x y y '+'=.**8.求微分方程,使它的积分曲线族中的每一条曲线)(x y y =上任一点处的法线都经过坐标原点.解 任取)(x y y =上的点 ),(y x ,曲线在该点处的切线斜率为 y '=dxdy . 所以过点),(y x 的法线斜率为y '-1, 法线方程为y Y -=y '-1)(x X -, 因为法线过原点,所以=-y 0y '-1)0(x -从而可得所求微分方程为0='+y y x .第9章(之2)(总第45次)教学内容:§9.2 .1可分离变量的方程; §9.2 .2一阶线性方程**1.求下列微分方程的通解:(1)21)1(x y x y +-=';解: 分离变量21d 1d x x x y y +=-,两边积分⎰⎰+=-21d 1d x xx y y , 得C x y ln )1ln(21)1ln(2-+=--,即211xC y +-=.(2)222y x e yx y -='; 解:分离变量x xe y ye x y d d 222=,两边积分就得到了通解)d (21222x e xe e x x y ⎰-=c e xe x x +-=)21(2122.(3)042)12(=-+'+y y e y e x .解: 12d 42d +-=-x xe y e yy , C x e y ln 21)12ln(21)2ln(21++-=-, 即 ()()e x C y-+=221.**2.试用两种不同的解法求微分方程xy y x y +--='1的通解.解法一 (可分离变量方程的分离变量法)这是一个一阶可分离变量方程,同时也是一个一阶线性非齐次方程,这时一般作为可分离变量方程求解较为容易. 分离变量,)1)(1(y x y --=',x x yyd )1(1d -=-,并积分 x x y yd )1(1d -=-⎰⎰得c x x y +-=--221)1ln(,所求通解为 x x ce y -+=2211.解法二 (线性方程的常数变易法)将原方程改写为x y x y -=-+'1)1(,这是一个一阶线性非齐次方程.对应的齐次方程为0)1(=-+'y x y ,其通解为○1x x e C y -=221.代入原非齐次方程得x e C x x -='-1221,解得○2C e C x x +=-221,○2代入○1即可得原方程的通解xx Cey -+=2211.*3.求解下列初值问题:(1)21x yy -=',6)21(πe y -=.解: y '=21xy -,∴21d d xxy y -=(0≠y ), 21d d xx yy-=⎰⎰,∴C x y +=arcsin ln , ∴ x Ce y arcsin =,π6)21(e y -=,∴21arcsin 6Cee =-π,∴1-=C , ∴ x e y arcsin -=.(2)22x e xy y -=+',1)0(=y ;解: 22x e xy y -=+', x x p 2)(=∴,2)(x e x q -=,=∴)(x y ⎰-xx ed 2⎥⎦⎤⎢⎣⎡+⎰⎰-C dx e e x x x d 222x e -=⎥⎦⎤⎢⎣⎡+⎰⎰-C dx e e x x x d 2222x x Ce xe --+=, 1)0(=y , 101=⇒+=∴c c , 2)1(x e x y -+=∴.(3)x e x y y cos cot =+',1)2(=πy ;解: x e x y y cos cot =+', ∴x x P c o t )(=,x e x Q cos )(=.∴ ⎥⎦⎤⎢⎣⎡⎰+⎰=⎰-x C y xx x x x d e e e d c o t c o s d c o t )d e e (e sin ln cos sin ln ⎰+=-x C x x x)d sin e(csc cos ⎰+=x x C x xx C x csc )e (cos -=, 由1)2(=πy , 可确定 2=C ,所以x y x csc )e 2(cos -=.(4)0d )12(d 2=+-+x x xy y x ,01==x y .解: 方程变形为 2112xx y x y -=+',是一阶线性非齐次方程,其通解为⎥⎦⎤⎢⎣⎡⎰-+⎰=⎰-dx ex x c e y dx x dx x 222)11( ⎥⎦⎤⎢⎣⎡-+=⎰dx x x x c x 222)11(1⎥⎦⎤⎢⎣⎡-+=x x c x 22211x xc 1212-+= 由 0)1(=y , 得 21=c , 所以特解为:x xy 121212-+=.**4.求微分方程 0d )ln (d ln =-+y y x x y y 的通解(提示将x 看作是y 的函数). 解:将x 看作是y 的函数,原方程可化为yx y y dy dx 1ln 1=+,这是一阶线性方程,将其中yy Q y y y P 1)( ,ln 1)(==代入一阶线性方程求解公式,得通解 1e 1)ln(ln )ln(ln ln 1ln 1⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡⎰+⎰=⎰⎰--dy e y c dy ey c e x y y dy y y dy y y y y c dy y y c y ln 21ln ln ln 1+=⎥⎦⎤⎢⎣⎡+=⎰.**5.求满足关系式)(d )(22x y x u u uy x +=⎰的可导函数)(x y .解:这是一个积分方程,在方程等式两边同对x 求导,可得微分方程xy x x yx()d d =+2,即 d d y x xy x -=-2,分离变量得d d yy x x -=2,积分得y Ce x=+222, 在原方程两边以2=x 代入,可得初试条件22-==x y.据此可得14--=e C ,所以原方程的解为 24122+-=-x e y .**6.设降落伞自塔顶自由下落,已知阻力与速度成正比(比例系数为k ),求降落伞的下落速度与时间的函数关系. 解:根据牛顿运动第二定理有kv mg tvm -=d d .这是一个可分离变量方程,分离变量并积分得--=+1k mg kv tmC ln(). 由初始条件0)0(=v , 得)ln(1mg k C -=,即得 v mg k e kmt =-⎛⎝ ⎫⎭⎪-1.**7.求一曲线,已知曲线过点)1,0(,且其上任一点),(y x 的法线在x 轴上的截距为kx . 解:曲线在点(,)x y 处的法线斜率为y '-1,所以法线方程为Y y y X x -=-'-1().只要令0=Y ,就可以得到法线在x 轴上的截距为 y y x X '+= .据题意可得微分方程x yy kx +'=,即x k y y )1(-='.这是一个可分离变量方程,分离变量并积分得所求曲线C x k y =-+22)1(,由于曲线过点)1,0(,所以1=C ,所以所求曲线方程为 y k x 2211+-=().***8.求与抛物线族2Cx y =(C 是常数)中任一抛物线都正交的曲线(族)的方程.解:在给定曲线2cx y =上任意一点),(y x 处切线斜率为cx y k 20='=,从上面两式中消去c 得x y y k 20='=,这样就得到了给定曲线族所满足的微分方程xy y 2='. 设所求曲线方程为 )(x y y =,在同一点),(y x 处切线斜率为y k '=,则根据正交要求有10-=k k ,这样就得到了所求曲线族应该满足的微分方程yx y 2-='. 这是一个可分离变量方程,分离变量xdx ydy -=2,积分得所求曲线族c x y +-=2221,即椭圆族c x y =+2221. ***9.作适当变换,求微分方程 1224+-='-x e y y的通解. 解 原方程可化为4122=++'y ye x y e ,在换元y e z =下方程可化为4122=++'x zz ,这是一个一阶线性方程,其通解为⎭⎬⎫⎩⎨⎧+=⎰+⎰+-⎰x eC ez x xx xd 412d 212d 2}44{1212x x C x +++=.***10.作适当变换,求微分方程d d tan y x y x y y x =+⎛⎝ ⎫⎭⎪2122的通解. 解:令ux y =2,代入方程整理得 x x u u d tan d =,积分得 Cx u =sin ,以 xy u 2= 代入上式,即得原方程的通解: Cx xy =2sin .第9章 (之3) (总第46次)教学内容:§9.2 .3齐次型方程;9.2.4伯努利方程.**1.求下列微分方程的通解:(1) )ln ln 1(d d x y xyx y -+=; 解: )ln ln 1(d d x y x y x y -+=, ∴ dx dy =x y (1+xy ln ),这是一个一阶齐次型方程.令 xyu =,则 ux y =,即u x u y '+=',于是原方程可化为u u u x ln ='.这是一个可分离变量方程.分离变量x dx u u du =ln ,并积分⎰⎰=xdxu u du ln ,得c x u ln ln ln ln +=,即cx e u =. 以 xy u =代入,得所求的通解为cxxe y =.(2)()arctan xy y yxx '-=. 解:方程可化为xy xy y arctan1+=',这是一个一阶齐次型方程.令 xy u =,则 ux y =,即u x u y '+=',于是原方程可化为u x u x arctan 1d d =,这是一个可分离变量方程.分离变量后积分得 x u Ce u u 12+=arctan .以 xy u =代入上式得原方程的通解:x y Ce yxyx 22+=arctan . **2.求解下列初值问题:(1)0d )2(d 22=+-y y x x xy 满足初始条件 1)2(=y 的特解. 解: 0d )2(d 22=+-y y x x xy ,dy dx =x y y x +2, 令 yxu = , 则 u u dy du yu 12+=+, u u du 1+=y dy , ∴⎰+uu du 1=⎰y dy,c y u ln ln )1ln(212+=+∴, cy u =+∴12, 即 2221y c u =+ , 代回即得22yx +1=22y c , 1)2(=y , ∴52=c , 因此 22y x +=54y .(2)⎩⎨⎧==-++=.0,0d )(d )(0x y y y x x y x解:原方程可表为11d d -+=-+=xy x yx y y x x y ,令 x y u =,u x u y '+=', 代入方程,有 11-+='+u uu x u ,即 121d d 2--+=u u u x u x , 分离变量x x u u u u d 1d 2112=-+-,积分得 C x u u ln ln )21ln(212-=-+- ⇒通解 C y xy x =-+222,令 0,0==y x ,得 0=C .所以初值问题的解为 0222=-+y xy x .***3.试证明:当1221b a b a ≠时,总能找到适当的常数h ,k ,使一阶微分方程)(222111c y b x a c y b x a f y ++++='在变换k y s -=,h x t -=之下,可化为一阶齐次型方程)(d d 2211sb t a s b t a f t s++=. 并求方程 0d )32(d )12(=++++y y x x y x 的解.证明:令⎩⎨⎧+=+++=++s b t a c y b x a sb t ac y b x a 2222211111 1221b a b a ≠ ,∴可解得:⎪⎪⎩⎪⎪⎨⎧---=---=1221122112212112b a b a c b c b x t b a b a c a c a y s 因此可取:⎪⎪⎩⎪⎪⎨⎧--=--=1221122112212112b a b a c b c b h b a b a c a c a k解:0)32()12(=++++dy y x dx y x ,令⎩⎨⎧-=+=32x t y s ⎩⎨⎧==⇒x t ys d d d d[][]0)2(3)3(21)2(23=-++++-++∴ds s t dt s t ,()0)32(2=+++ds s t dt s t ,ts t sdt ds dtdst s t s 32210)32(21++-=⇒=+++⇒, 令dt du t u dt ds t s u +=⇒=, 23)1)(13(3221+++-=⇒++-=+∴u u u dt du t u u dt du t u ,⎰⎰-=⎥⎦⎤⎢⎣⎡+++∴-=+++⇒t dtdu u u t dt du u u u )13(23)1(21,)1)(13()23(, c t u u ln ln )13)(1ln(21+-=++即,c tst s t c t u u =++⇒=⋅++∴)13)(1()13)(1(,c x xy x y c x y x y x 243)3631)(321()3(22=+++⇒=-++-++-∴.**4.求下列微分方程的通解(1)0ln 2=+-'x y y y x ;解: 0ln '2=+-x y y xy xxy x y y ln 1'12-=-∴-- 令x x t x dx dt y t ln 11=+⇒=-, ,ln )Q( ,1)(xx x x x P ==∴ln 1 d ln )(d 1d 1⎥⎦⎤⎢⎣⎡⋅+=⎥⎦⎤⎢⎣⎡⎰+⎰=∴⎰⎰-xdx x x C x x e x x C e x t x x x x1ln C )ln (C 11-+=-+=---x x x x x x x x , 111ln --+-=Cx x y .(2)0d d )2(=+-y x x xy y .解: 0d d )2(=+-y x x xy y , x y d d +y x 1=212y x, y y '-21+211y x =x 2, 21y u =,x u d d +x 21x u 1=, ∴x x P 21)(=,xx Q 1)(.∴⎥⎦⎤⎢⎣⎡⎰+⎰=⎰-x e x C e x u x x x x d 1)(d 21d 2121-=x ⎥⎦⎤⎢⎣⎡+⎰x x x C d 121[]x C x +=-21, ∴ []x C xy +=-2121, ∴xC x y +=.(3)'=-y y xy x 3222()解一:令u y =2,原方程化为: d d u x u x u x =⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪-21,解此方程得 u Ce u x =, 以u y =2代入上式,原方程通解为 y Ce y x22=.解二:原方程写成d d x y y x yx -=-2232, 令xz -=1,则方程化为:322d d yz y y z =+, 则通解 z eC y ey yy y y=+⎡⎣⎢⎢⎤⎦⎥⎥-⎰⎰⎰2322d d d ]ln 2[12y C y+= , 故原方程通解:1122x yC y =+[ln ]. **5.求下列伯努力方程满足初始条件的特解:yxy y 2-=',1)0(=y . 解:x y yy', xy y y 22'21-=-∴-=- ,令 x t dxdty t 42 2-=-⇒=, x x Q x P 4)( ,2)(-=-=∴, []12010211)0(1212 )]2[ d 4 d )4()(2022222222d 2d 2+=∴=⇒++⨯=∴=++=∴++=++=-=⎥⎦⎤⎢⎣⎡⎰-+⎰=∴----⎰⎰x y C Ce y Ce x y x Ce e xe C e xxe C e x e x C e x t xx x x x x x x x,****6.作适当的变换求方程12222212+⋅'=++x y y x y e x sin sin 的通解.解:原方程化为:12222212+=++x yxx y e x d sin d sin ,令z y =sin 2,得d d z x x x ze x x -+=++21122122,故 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++=⎰⎰+-+⎰+x exeC ez xx x x x x x d 1d 12212d 12222)1ln(2121222x x e Ce x x +++=++原方程的通解为 sin ln()221212221y Ce e x x x x =+++++.***7.已知)(2d )(1)(2202x y x y y x+='+⎰ξξξ,求y x ().解:两边关于x 求导得 212yy y '-=-,解得 y Ce x 21=+,由yx ==00,求得 C =-1,故原方程的解为:y e x 21=-.***8.曲线过点(,)11,其上任一点与原点的距离平方等于该点横坐标与该点的曲线的法线在x 轴上的截距乘积的两倍,求曲线方程. 解:x y x x yy y 22211+=+'=(),(), 212yy xy x '-=- 令y z 2=,解得 z y x C x ==-2()由y ()11=, 得 C =2, 曲线方程为: x y x 222+=.***9.根据托里斥利定律,液体从容器小孔中流出的速度为 gh A v 2α=,其中 g 为重力加速度,h 为液面与底部孔口之间的距离,A 为孔口面积,α为孔口收缩系数,实验确定其取值为 62.0=α.现有一直径为1m ,高为2m 的直立圆柱形容器,其中盛满的水从底部直径为1=d cm 的圆孔流出,要多长时间容器内的水才会完全流尽?解:设在时刻t 时, 容器中液面高度)(t h ,则经过t ∆后液面高度为)(t t h ∆+, 于是有t t gh A t t h t h r ∆=∆+-)(2))()((2απ,即 22)()(rghA t t h t t h πα=∆-∆+-, 令0→∆t , 得⎪⎩⎪⎨⎧==-200)0(2d d 2h gh r At h πα解得200222+=t g rAh πα, 代入0=h , 980=g , 50=r , 4π=A , 62.0=α, 得10304=t (秒).第9章 (之4)(总第47次)教学内容:§9.3可降阶的高阶微分方程**1.解下列问题:(1).微分方程'+''=''y y xy 满足条件'==y y (),()2121的解是 ( ) (A )y x =-()12(B )y x =+-()122142(C )y x =-+121122()(D )y x =--()12542解:(C )(2).微分方程''-'=y yy 203满足条件'=-=y y (),()0101的解是 ( )(A )y x 3313=+(B )x y 331=- (C )y x 3313=-+(D )x y 331=-+ 解:(C )**2.求下列微分方程的通解. (1)0='+''y y x ;解: 0='+''y y x 是一不显含因变量y 的二阶方程, 令 y p '= ⇒ y ''x p d d =∴0=+'p p x , ⇒pp d =x x d -,⇒⎰⎰-=x xp p d d ⇒ 1ln ln ln C x p +-= ⇒xC p 1=, ∴=x y d d x C 1, x x C y d d 1=, ⎰⎰=x xC y d d 1 ,21ln C x C y +=. (2)()1212+''+'=x y xy ; 解:''++'=+y x x y x 211122,'=++y x x C 1121(), y x C x C =+++121212ln()arctan .(3)()02='+''y y y ;解:∵()02='+''y y y , 令 y p '=, 则 yppy d d ='',代入方程有 0d d 2=+⋅⋅p ypp y , 0)d d (=+⋅⇒p ypy p , 因为求通解,所以 p 满足 0d d =+⋅p ypy . 由⎰⎰-=⇒-=y yp p yy p p d d d d , y C p C y p 11ln ln ln '=⇒+-=⇒, ⎰⎰'=⇒'=⇒'=⇒x C y y x C y y yC x y d d d d d d 111212C x C y +=⇒. ∴ 通解:212C x C y +=. (4)()1222+''='y y yy解:令:'=''='y p y y pp (),,得()1222+⋅'=y p p p y , 即d d p p yy y =+212, 得 p C y =+121(),所以 d d yyC x 121+=,通解为:arctan y C x C =+12.第9章 (之5)(总第48次)教学内容:§9 .4 .1二阶线性方程和解的存在性;§9 .4 .2二阶线性方程解的结构**1.若21,y y 是方程)()()(x R y x Q y x P y =+'+''的两个解,试证12y y - 必是其对应齐次方程0)()(=+'+''y x Q y x P y 的解.证明:因为21,y y 是方程)()()(x R y x Q y x P y =+'+''的解. 所以成立下式:)2()()()()1()()()(222111x R y x Q y x P y x R y x Q y x P y =+'+''=+'+''将 (1)、(2) 两式相减,得)3(0))(())(()(212121=-+'-'+''-''y y x Q y y x P y y(2) 式可写为0))(())(()(212121=-+'-+''-y y x Q y y x P y y ,所以 21y y - 是齐次方程 0)()(=+'+''y x Q y x P y 的解.***2.已知23211,1,1x y x y y +=+==是方程22222xy x y x y =+'-''的三个特解,问能否求出该方程得通解?若能则求出通解来.解:按(1)证明可知 21312,x y y x y y =-=- 分别是其对应齐次方程0222=+'-''y xy x y 的解,并且线性无关,所以221x C x C + 为齐次方程的通解. 所以原方程的通解可以表示为:1221++=x C x C y .*3.验证:22,t t e e -是微分方程''-'-=x tx t x 1402的两个线性无关特解,并求此方程的通解.证明:因为()()222241t t t e t e te -'-"0421********=-⨯-+=t t t t e t te t e t e ,()()2222"41t t t e t e te ----'-=-+-⨯--=--241240222222e t e t te t e t t t t (),故22,t t e e -是方程的解,且≠=-2222t t t e ee 常数.于是22,t t e e -是方程线性无关的解(构成基本解组),故方程的通解为2221t t e C e C x -+=,其中21,C C 为任意常数.*4.已知函数 x y e y x ==21, 是方程 0)1(=-'+''-y y x y x 的两解,试求该方程满足初始条件 0)0(,1)0(='=y y 的特解.解:方程的通解为 x c e c y x 21+=,将初始条件代入,有:,,0)0('1)0(21211=+=+===c c c e c y c y x解得21,c c 为: 1,121-==c c ,所以特解为:x e y x -=.**5.设x t 1()是非齐次线性方程''+'+=x t a t x t a t x t f t ()()()()()()()1211的解.x t 2()是方程''+'+=x t a t x t a t x t f t ()()()()()()()1222的解.试证明 x x t x t =+12()()是方程''+'+=+x t a t x t a t x t f t f t ()()()()()()()()12123的解.解:因为)(2),(1t x t x 分别为方程(1)和方程(2)的解,所以)1()()()()()()(112111'≡+'+''t f t x t a t x t a t x''+'+≡'x t a t x t a t x t f t 2122222()()()()()()()()()12'+'得:()()())()()()()()()()()()(2121221121t f t f t x t x t a t x t x t a t x t x +='++'++"+即 x x t x t =+12()() 是方程(3)的解.第9章 (之6)(总第49次)教学内容:§9 .4 .3二阶线性常系数方程的解法**1.解下列问题:(1)方程08=+''y y 的通解为=y _______________.解:x c x c y 22sin 22cos 21+=.(2)方程025'6"=++y y y 的通解为=y _______________. 解:)4sin 4cos (213x c x c e y x +=-.(3)方程0158=+'-''y y y 的通解为=y _______________. 解:x x C C y 5231e e +=.(4)方程031525=+'+''y y y 的通解为=y _______________. 解:)(21515C x C e y x +=-.(3)方程06=+'+''py y y 的通解为)2sin 2cos (e 21x C x C y kx +=,则=p ___,=k _____. 解:11,3-.**2.求解下列初值问题:(1)0)1(,)1(,01684='==+'-''y e y y y y ;解:∵0)4(16822=-=+-λλλ, ∴421=,λ, 通解为:xe x c c y 421)(+=.将初始条件代入,有 4421)()1(e e c c y =+=,04)(4)(4)1('4424214242142=+=++=++=e e c e c c e c e x c c e c y x x得到:4521-==c c ,所以特解为:xex y 4)45(-=.(2)3)2(,1)2(,0294='==+'+''ππy y y y y ;解:02942=++λλ, i i5221042116164±-=±-=-±-=λ,通解为:)5sin 5cos (212x c x c ey x+=-.代入初始条件有: πππe c c ey =⇒=+=-221)0()2(,)5c o s 55s i n 5()5s i n 5c o s (2)2(212212x c x c e x c x c ey x x+-++-='--π,得:πe c -=1. 特解为:)5sin 5cos (2x x e y x +-=-π.(3)10)0(,6)0(,034='==+'+''y y y y y ;解: 0342=++λλ, 0)3)(1(=++λλ, 所以通解为 x x e c e c y 321--+=. 代入初始条件有:6)0(21=+=c c y ,1033)0('21321=--=--=--c c e c e c y x x ,特解为:x x e e y 3814---=.**3.求解初值问题'++==⎧⎨⎪⎩⎪≥⎰y y y x y x x210100d () 解:将原方程对x 求导得''+'+=y y y 201()且有'=-=-y y ()()01201微分方程(1)的通解为:y e C x C x =+-()12,代入初始条件1)0(,1)0(-='=y y ,得1,021==C C , 故所求问题的解为:xe y -=.***4.设函数)(x ϕ二阶连续可微,且满足方程⎰-+=xu u u x x 0d )()(1)(ϕϕ,求函数ϕ()x .解:原方程关于x 求导得⎰⎰=-+='xxu u x x x x u u x 0d )()()(d )()(ϕϕϕϕϕ,0)0(='ϕ,再求导得: )()(x x ϕϕ='', 且由原方程还有:1)0(=ϕ,微分方程的通解为:x x e C e C x -+=21)(ϕ,代入条件0)0(,1)0(='=ϕϕ,得2121==C C , 故所求函数为: x e e x x xch )(21)(=+=-ϕ.***5.长为100cm 的链条从桌面上由静止状态开始无摩擦地沿桌子边缘下滑.设运动开始时,链条已有20cm 垂于桌面下,试求链条全部从桌子边缘滑下需多少时间.解:设链条单位长度的质量为ρ,则链条的质量为ρ100.再设当时刻 t 时,链条的下端距桌面的距离为)(t x ,则根据牛顿第二定律有:gx dt x d ρρ=22100, 即 010022=-x gdtx d . 又据题意知:20)0(=x , 0)0(='x ,所以 )(t x 满足下列初值问题:⎪⎩⎪⎨⎧='==-0)0(20)0(010022x x x gdt x d , 解得方程的通解为:tg tgec ec x 102101-+=.又因为有初始条件: ()()⎩⎨⎧==⇒⎩⎨⎧==1010020021'c c x x所以 tg tgeex 10101010-+=.又当链条全部从桌子边缘滑下时,100=x ,求解t ,得:tg tg e e 10101010100-+=,即: 510=t gch, 510arch gt =.***6.设弹簧的上端固定,下端挂一个质量为2千克的物体,使弹簧伸长2厘米达到平衡,现将物体稍下拉,然后放手使弹簧由静止开始运动,试求由此所产生的振动的周期. 解:取物体的平衡位置为坐标原点,x 轴竖直向下,设t 时刻物体m 位于x t ()处,由牛顿第二定律:22222d d ()xtg g x gx =-+=- , 其中g =980厘米/秒2 其解为:x C g t C g t =+1222cossin , 振动周期为 T g ==≈222490028ππ..第9章 (之7)(总第50次)教学内容:§9.4.3二阶线性常系数方程的解法; §9.4.4高阶线性常系数微分方程 **1.微分方程x x y y sin =+''的一个特解应具有形式 ( )(A )()sin Ax B x +(B )x Ax B x x Cx D x ()sin ()cos +++ (C )x Ax B x x ()(cos sin )++ (D )x Ax B C x D x ()(sin cos )++ 解:(B )**2.设A B C D ,,,是待定常数,则微分方程''+=+y y x x cos 的一个特解应具有形式 ( )(A )Ax B C x ++cos(B )Ax B C x D x +++cos sin(C )Ax B x C x D x +++(cos sin ) (D )Ax B Cx x ++cos 答:(C )**3.求下列非齐次方程的一个解 (1)122+=-'-''x y y y ; 解:∵ 022=--λλ, ∴1,22,1-=λ, 0 不是特征根.设 01b x b y p +=, 代入原方程,得:1222011+=---x b x b b ,有:1,010-=b b ,特解为:x y -=.(2)xe y y y -=+'+''2. 解: ∵ 1- 是二重特征根, ∴ 设 02b e x y xp -=, 0202b e x b xe y xxp ---=',02002022b e x b xe b e x b e y x x x x p----+--='', 代入 xe y y y -=++'2'', 解得:210=b ,特解为:xe x y -=221.**4.求微分方程''-'+=y y y xe x 32满足条件y y ()()000='=的特解. 解:特征方程0232=+-r r 的根为2,121==r r ,相应齐次方程的通解为x x h e C e C y 221+=,设特解为x p e B Ax x y )(+=,代入方程得: 1,21-=-=B A . 故方程的通解为xxx e x x eC e C y ⎪⎪⎭⎫ ⎝⎛+-+=22221,代入条件0)0()0(='=y y ,得1,121=-=C C ,因此所求特解为 x xe x x e y ⎪⎪⎭⎫ ⎝⎛++-=1222.**5. 求下列非齐次方程的通解:)(2x f y y ='+''x x f e x f x x f x cos )()3,)()2,14)()12==+=;解:特征方程:022=+λλ, 特征根:2,021-==λλ,所以方程0'2=+''y y 的通解为 x h e c c y 221-+=.1)对于方程14'2+=+''x y y , 由于0是特征方程的单根,故设其特解为:x b x b y p )(10+=,代入方程有:14242100+=++x b x b b ,解得 21110-==b b , 所以特解为:x x y p 212-=. 所以方程的通解为:x x e c c y y y xp h 212221-++=+=-.2)对于方程xe y y 2'2=+''',由于2不是特征方程的根,故设其特解为:02b e y xp =, 代入方程有:810=b , xp e y 281=, 所以方程的通解为:x xp h e ec c y y y 222181++=+=-.3)对于方程:x y y cos '2=+''',由于i ±不是特征方程的根,故设其特解为: x b x b y p sin cos 10+=, 代入方程有:x b x b y p cos sin '10+-=, x b x b y p sin cos "10--=,x x b x b x b x b cos cos sin 2sin cos 1010=+---, 得:525120=-=b b , x x y p sin 52cos 51+-=,所以方程的通解为:x x e c c y y y xp h sin 52cos 51221+-+=+=-.**6.求微分方程''-'+=y y y e x x 6925sin 的通解.解:特征方程r r 2690-+=的根为r 123,=,相应齐次方程的通解为x h e x C C y 321)(+=设特解为y e A x B x p x=+(cos sin ),代入方程得:A B ==43,故方程的通解为 y C C x e e x x x x =+++()(cos sin )12343***7.已知曲线y y x x =≥()()0过原点,位于x 轴上方,且曲线上任一点),(00y x M =处切线斜率数值上等于此曲线与x 轴,直线x x =0所围成的面积与该点横坐标的和,求此曲线方程.解:由已知y ()00=,且'=+'=⎰y y x x y xd ,()000,将此方程关于x 求导得''=+y y 1其通解为: y C e C exx=+--121 ,代入初始条件y y (),()0000='=,得 C C 1212==, 故所求曲线方程为:y e e x xx =+-=--1211()ch .***8.设一物体质量为m ,以初速v 0从一斜面滑下,若斜面与水平面成θ角,斜面摩擦系数为μμθ(tan )0<<,试求物体滑下的距离与时间的关系.解:设t 时刻物体滑过的距离为S ,由牛顿第二定律m Stmg mg d d sin cos 22=-θμθ 且 S S v (),()0000='=方程的通解为S gt C t C =-++12212(sin cos )θμθ 代入初始条件得C v C 1020==,,故物体滑下的距离与时间的关系为S gt v t =-+1220(sin cos )θμθ***9.设弹簧的上端固定,下端挂一质量为m 的物体,开始时用手托住重物,使弹簧既不伸长也不缩短,然后突然放手使物体开始运动,弹簧的弹性系数为k ,求物体的运动规律.解:取物体未发生运动时的位置为坐标原点,x 轴垂直向下,设t 时刻物体位于x t ()处,由牛顿第二定律: m xtkx mg d d 22+=, 且 0)0(0)0(='=x x ,. 方程的通解为: x C k m t C k m t m kg =++12cos sin , 代入初始条件得C mkg C 120=-=,,故物体的运动规律为x mg k k m t =-⎛⎝ ⎫⎭⎪1cos .***10. 求下列方程的通解: (1)02)4(=''+'''-y y y;解: 02234=+-λλλ,0)12(22=+-λλλ, 0)1(22=-λλ,所以通解为 x e x c c x c c y )(4321+++=.(2)0365)4(=-''+y y y .解:036524=-+λλ, 0)9)(2)(2(2=++-λλλ,所以通解为 x c x c e c e c y x x 3sin 3cos 432221+++=-.****11* 试证明,当以 x t ln =为新的自变量时,变系数线性方程(其中a,b,c 为常数,这是欧拉方程))('"2x f cy bxy y ax =++可化为常系数线性方程)()(22t e f cy dt dya b dty d a =+-+并求下列方程通解:(1)022=-''y y x ; (2)x x y y x y x ln 22=+'-''. 证明:令 x t ln =, t e x =,dtdy x dx dt dt dy dx dy 1==,⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=dt dy dt y d x dt dy dx d x dt dy x dx y d 222222111, 将y y ''',代入方程有:()()te f cy dt dy a b dt y d a cy dt dy b dt dy dt y d a cy y bx y ax =+-+=++⎪⎪⎭⎫ ⎝⎛-=+'+''22222, 得证.(1)令 x t ln =, te x =,原方程化为:0222=--y dt dydty d . 其通解为t t e c e c y -+=221.将x 代入,得:xc x c y 221+=. (2) 令 x t ln =, te x =,原方程化为:tte y dt dy dty d =+-2222, 上述方程的相应其次方程的通解为:()t c t c e y t h sin cos 21+=.令上述方程一个特解为:()10b t b e y t p +=,代入方程得:0,110==b b , 即:t e y t p =.原方程得通解为:()t t c t c e y t ++=sin cos 21,即:()()[]x x c x c x y ln ln sin ln cos 21++=.***12.一质量为m 的潜水艇在水面从静止状态开始下降,所受阻力与下降速度成正比(比例系数为k >0),浮力为常数B ,求潜水艇下降深度x 与时间t 之间的函数关系. 解: ma B F F =--阻重, a 为加速度, ma B kv mg =--, v 为下降速度,因为 22,dt x d dt dv a dt dx v ===, 所以 22dtxd m B dt dx k mg =--,即 m B g dt dx m k dtx d -=+22 , 其特征方程为: 02=+λλmk , 解得特征根为 m k-==21,0λλ.所以对应的齐次方程的通解为:21c e c x t mkh +=-.由于0是特征方程的单根,故设其特解为:t b x 01=, 代入方程有:m B g b m k -=0, 得 kB mg b -=0. 所以微分方程的通解为:t kBmg c e c x t mk-++=-21, 因为初始位置为0,初始速度为0,所以有初始条件 ()()00,00'==x x ,代入微分方程有: ⎪⎩⎪⎨⎧=-+-=++000121k Bmg c m k c c 求得:222221,kgm Bm c k Bm g m c -=-=, 所以x 与t 的关系可表示为: t k B m g e k g m Bm x t m k-+⎪⎪⎭⎫ ⎝⎛--=-122.***13.证明:若有方程'=-f x f x ()()1,则必有''+=f x f x ()()0,并求解此方程. 证明:由于'=-f x f x ()()1,两边关于x 求导得''=-'-=---=-f x f x f x f x ()()[()]()111故得''+=f x f x ()()0(1)解方程(1)得通解为 f x C x C x ()cos sin =+12(2)'=-+f x C x C x ()sin cos 12 (3) '='=f f f f ()(),()()0110,将此代入(2),(3)得C C C C C C 1221211111cos sin sin cos +=-+=⎧⎨⎩ 解得:C C 21111=+sin cos所以原方程的解为: f x C x x ()cos sin cos sin =++⎛⎝⎫⎭⎪1111.第9章 (之8) (总第51次)教学内容:§9.6 微分方程应用举例 (机动)第9章 (之9) (总第52次)教学内容:§9.7 差分方程1. 已知t t e y 3=是二阶差分方程t t t e ay y =+-+11的一个特解,求a . 解: )31(3e ea -=.2. 求下列差分方程的一般解: (1) 0721=+-t t y y ; 解:tt C y )27(-=(2) 431-=--t t y y ; 解:23+=t t C y(3) 051021=-++t y y t t ; 解:)61(125)5(-+-=t C y tt (4) t t t y y 2124=-+; 解:144-+=t t t t C y (5) t t t t y y 21⋅=-+. 解:t t t C y 2)2(-+=3. 写出下列差分方程的一个特解形式: (1) t y y t t sin 1=-+; 解:t B t B Y t cos sin 21+=(2) t y y t t πcos 31-=++. 解:)sin cos (21t B t B t Y t ππ+=4. 设t y 为第t 期国民收入,t C 为第t 期消费,I 为每期投资(I 为常数).已知t y ,t C ,I 之间有关系 I C y t t +=,βα+=-1t t y C ,其中10<<α,0>β,试求t y ,t C . 解:t y 满足:βα+=--I y y t t 1,解得 αβα-++=1I C y tt , 从而 =-=I y C t t ααβα-++1I C t.5. 已知差分方程t t t cy y by a =++1)(,其中a ,b ,c 为正的常数.设初始条件0)0(0>=y y ,证明:(1) 对任意 ,2,1=t ,有0>t y ;(2) 在变换tt y u 1=之下,原差分方程可化为有关t u 的线性差分方程,写出该线性差分方程并求其一般解;(3) 求方程t t t y y y =++1)21(的满足初始条件20=y 的解. 解:(1)归纳法证明. (2)令 t t y u 1=,即t t u y 1=,111++=t t u y , 则原方程化为线性差分方程 b au cu t t =-+1, 其一般解为 a c ≠时, ac bcaC u tt -+=)( ; a c =时, b C u t +=. (3)令 tt y u 1=,原方程化为 21=-+t t u u ,一般解为 2+=C u t , 所以原方程的一般解为 t t u y 1=21+=C ,代入 20=y ,得 23-=C ,所以 特解为 2=t y .第 10 章 (之1)(总第53次)教学内容:§10.1向量及其运算* 1. 设 a b a b ==+=2232,,,则(,)a b ∧= .答:65π. ** 2.设向量 a 与 b 不平行,c a b =+,则(,)(,) a c b c ∧∧=的充分必要条件为 .答:||||b a =.** 3.设直线L 经过点0P 且平行于向量a , 点0P 的径向量为0r ,设P 是直线L 的任意一点,试用向量0r ,a 表示点P 的径向量r . 解:∵a P ||0, ∴a t P=0, 而P r r 00+=,∴a t r r+=0∴P 点的径向量为 a t r+0.** 4.设 3,2==b a ,a 与b 的夹角等于π32,求:(1)b a ⋅; (2))2()23(b a b a +⋅-; (3)b a )(; (4)b a 23-.解:(1)〉〈=⋅b a b a a ,cos b 332cos 32-=⨯⨯=π.(2)()()b a b a223+⋅-b a b a 44322+-=()3634342322-=-⨯+⨯-⨯=.(3)()133-=-=⋅=bb a a b.(4)()()b a b a b a 2323232-⋅-=-b a b a124922-+=()108312342922=-⨯-⨯+⨯=,3610823==-b a.** 5.设5,4==b a ,a 与b 的夹角等于π31,求:(1)b a b a -+)(; (2)b a 25+与b a -的夹角.解:(1)()()b a ba b a--=-⋅2b a b a 222-+=213cos 5425422=⨯⨯-+=π,∴21=-b a,()()()b a b a b a ba ba--+=+⋅-2122b a -=215422-=7213-=. (2)()()b a ba-+⋅25b a b a 32522--=03cos543524522=⨯⨯-⨯-⨯=π,∴向量b a b a-+,25垂直.** 6. 若a ,b 为非零向量,且b a b a -=+,试证b a ⊥.解:b a b a -=+,∴ 22b a b a -=+,∴()()()()b a ba b a ba --=++⋅⋅,∴b a b a b a b a222222-+=++, ∴0=⋅b a , ∴b a ⊥.***7.用向量的方法证明半圆的圆周角必是直角. 解:如图所示,AC 为直径,B 为圆周上任一点, =→--OA →---OC , ||→--OB ==→--||OA ||→--OC ,则有 →--AB →--=OB →---OA ,→--CB →--=OB →---OC →--=OB →--+OA ,→--AB →--⋅CB →--=OB (⋅→---)OA →--OB ()→--+OA 0||||22=-=→--→--OA OB ,∴ 半圆的圆周角必为直角.第 10 章(之2)(总第54次)教学内容:§10.2空间直角坐标系与向量代数1.填空题*(1) 点A (2,-3,-1)关于点M (3,1,-2)的对称点是______ .答:(4,5,3-)**(2) 设平行四边形ABCD 的三个顶点为A B C (,,),(,,),(,,)231243313----,则 D 点为______ . 答:(5,8,7--)**(3) 已知{}{}a b z =-=-45314,,,,,,且a b a b +=-,则z =______ . 答:8-**2. A,B 两点的坐标分别为)1,3,(),,5,2(--q p ,线段AB 与y 轴相交且被y 轴平分,求qp ,之值及交点坐标.B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


1 ( a b )e x ( a b ) e y ab dxdy dxdy 2(a b) . x y 2 x 2 1, y 2 1 2 x 2 e e 1, y 2 1
***4. 设 f ( x, y) 是连续函数,试利用积分中值定理求极限
lim
解:积分区域 D : x y r
D
1 6
2 2
(2) 设 f (t)为连续函数,则由平面 z=0,柱面 x y 1 和曲面 z
f 2 ( xy )
所围立体的体
积可用二重积分表示为___________________________________________. 答:
x 2 y 2 1
f
2
( xy )dxdy .
x y 1
2 2
f x, y dy
成立的充分条件是 (A) f ( x, y) f ( x, y) , f ( x, y) f ( x, y) ; (B) f ( x, y) f ( x, y) , f ( x, y) f ( x, y) ; (C) f ( x, y) f ( x, y) , f ( x, y) f ( x, y) ; (D) f ( x, y) f ( x, y) , f ( x, y) f ( x, y) . 答: (D) .
3
2
2
2

D
a 2 x 2 y 2 dxdy .
3
(A) 1; 答: (B) .
(B)
3 ; 2
3
(C)
3 ; 4
(D)
1 . 2
73
**2.解下列问题: (1) 利用二重积分性质,比较二重积分的大小: 中,D 为任一有界闭区间. 解:令 u x 2 y 2 ,且 f u e 1 u ,则有 f ' u e u 1 .

1

x
ex
2
2 x
d x 2 2x e x


2
2 x 2 1
**(2)
1
2 2 dx x 1 x y dy . 1
1 1 解:原式= dy x 1 x y dx = (1 y )dy = . 2 3 1 1 y
2 2
1
1
1
3
4.计算下列二重积分 **(1)
75
**(2)设 f ( x , y ) 是连续函数,则二次积分

0
1
dx
1 x 2 x 1
f ( x, y )dy
1


(A)

1
0
dy
y 1
1
f ( x, y)dx dy
1 2
2
y 2 1
1
f ( x, y )dx ; (B)
dy
0
y 1
1
f ( x, y)dx ;
D D
x=0,y=0, x y
1 及 x y 1 所围成的区域,则 I1,I2,I3 的大小顺序为 ( 2
(C) I1<I3<I2; (D) I3<I1<I2.
)
(A) I3<I2<I1; 答: (B) .
(B) I1<I2<I3;
(5) 设 D : x y a (a 0), 当 a ________ 时,
(C) 答:(C)

1
0
dy
y 1
1
f ( x, y)dx
1
dy
y 2 1
1
f ( x, y )dx ; (D)

2
0
dy
y 2 1
1
f ( x, y )dx .
**(3)设 f x, y 是连续函数,交换二次积分

e 1
dx
ln x 0
f x, y dy 的积分次序的结果为
2ቤተ መጻሕፍቲ ባይዱ
又 ∵ 当 r 0 时, , 0,0 ,且 f x, y 在 0,0 连续. ∴ lim
1 r 0 r 2
x 2 y 2 r 2
f x, y d f 0,0 .
第 12 章 (之 2) (总第 68 次)
教学内容 : § 12.2.1 二重积分在直角坐标系下的计算方法 1.解下列各题: ** (1) 设 f ( x , y ) 是连续函数, 则
**(3)
D: x y 1 , x y 1, x 0 .
解:原式= dx
0
f ( x, y)dy = dy
x 1 1 0
1
1 x
0
y 1
f ( x, y)dx dy f ( x, y)dx .
0 0
1
1 y
3.计算二次积分: **(1)

4 2

1
0
dx
f ( x , y ) dy dx
1
2
2 x
0
f ( x , y ) dy 可
( )
dy f x, y dx
1 y 0 0
2
1
dy
2 y
0 2 x
f x, y dx ; f x, y dx ;

1
0
dy f x, y dx
0

a 2 0
dy
a2 y2 a 2 2 ay
f x, y dx
a dy
2
a
a2 y2
0
f x, y dy a 0
可交换积分次序得___________________________. 答:原式= dx
0

a
a2 x2
a2 x2 2a
f ( x, y)dy .
(3) 设 I
dxdy 则 I 满足 2 2 x y 1 1 cos x sin y

(
)
(A) (C) 答:(A).
2 I 2 3 1 DI 2
(B)
2I 3
(D) 1 I 0
(4) 设 I 1
ln( x y)d , I
D
2
( x y ) 2 d 及 I 3 ( x y)d 其中 D 是由直线
( )
(A) (C) 答:(D)
dy
1
e 1 0
e
ln x
0
f x, y dx ;
f x, y dx ;
(B) (D)
dy
1
e
ln x
0
f x, y dx ;
dy
ln x
dy f x, y dx .
1 e 0 ey
x2 0
**(4)设 f ( x , y ) 是连续函数,则积分 交换积分次序为 (A) (B) (C) (D)

D
d 2 y
,其中 D x, y x y 2 y ;
2 2


解:原式= 2

2
0
dy
2 y y2
dx 2 y
0

8 2. 3
77
**(2) 计算二重积分
e
D
x2
dxdy ,其中 D 是第一象限中由 y=x 和 y=x3 所围成的区域.
x2
2 1 x 3 e x )dx = e 1 . 2
dy y e x
2
2
2
2 x
dx .
解: D : 2 y 4, 原式
y x 2 , 变换积分次序得 D* : 1 x 2, 2 y 2 x , 2
e
1
2 1
2
x 2 2 x
dx dy e x
2 1
2x
2
2
2 x
2 x 2dx
1 1 . e
ae y be x 2 e y e x dydx , 2 y 1, x 1
1 ae x be y ae y be x I d x d y d y d x x y e y e x 2 y 2 1, x 2 1 x 2 1, y 2 1 e e
第 12 章 (之 1) (总第 67 次)
教学内容: § 12.1 二重积分概念与性质 **1.解下列各题: (1) 若 D 是以 O (0,0), A (1,0), B (0,1) 为顶点的三角形区域,利用二重积分的几何意 义可得到 答:
(1 x y) dxdy =___________.


1 0
1
0
1 y dy
1 y
1 y
x 2 dx

1 1 y dy x 3 3
1 y 1 y
1 1 1 y 1 y 1 y 1 y 1 y dy 3 0 2 1 2 1 2 2 1 y dy 1 y d 1 y 0 0 3 3 2 2 3 1 y 1 0 9 9
x2 y2 D x, y 1 上的最小值和最大值, 16 9
由于区域 D 上的点到坐标原点 O 0,0 的距离为
x2 y2 ,
∴0
x 2 y 2 42 0 4 ,
∴ 1 f x, y 17 , 又因为该区域的面积为 ∴
解:原式= e dx dy = ( xe
0 x3 0

1
x2

x

1
**(3) 计算二重积分
x
D
2
相关文档
最新文档