华东理工大学高等数学第9章答案

合集下载

华南理工大学高数答案第9章

华南理工大学高数答案第9章

第九章 曲线积分与曲面积分作业13 对弧长的曲线积分1.计算d Lx s ⎰,其中L 为直线y x =及抛物线2y x =所围成的区域的整个边界.解:L 可以分解为[]1:,1,0,1L y x y x '==∈及[]22:,2,0,1L y x y x x '==∈1211d d d LL L x s x s x s x x x x =+=+⎰⎰⎰⎰⎰()()113222001121d 1414883212x x x x =++=+⋅+=+2.4433d L x y s ⎛⎫+ ⎪⎝⎭⎰,其中L 为星形线33cos ,sin x a t y a t = =在第一象限内的弧π02t ⎛⎫≤≤ ⎪⎝⎭.解:L 为33cos ,sin ,0,,2x a t y a t t π⎡⎤= =∈⎢⎥⎣⎦223cos sin ,3sin cos ,3sin cos dx dya t t a t t ds a t tdt dt dt=-== 原式()4722442233031cossin 3sin cos 1sin 2sin 222a t t a t tdt a t tdt ππ⎛⎫=+⋅=- ⎪⎝⎭⎰⎰()7772223333003311cos 2cos 2cos 2cos 2883a t d t a t t a ππ⎛⎫=-+=-+= ⎪⎝⎭⎰ 3.计算d xyz s Γ⎰,其中Γ折线ABC ,这里A ,B ,C 依次为点)3,4,1(),3,2,1(),0,0,0(.解:[]:,,2,3,0,1,123x y zAB x t y t z t t ds =====∈= []:1,3,,2,4,BC x z y t t ds dt ===∈=[]:,,4,3,0,1,143x y zCA x t y t z t t ds =====∈=142d d d 231318ABBCxyz s xyz s xyz s t t t t dt Γ=+=⋅⋅+⋅⋅=⎰⎰⎰⎰⎰4.()22d xy z s Γ+⎰,其中Γ为螺线cos ,sin ,x t t y t t z t = ==上相应于t 从0变到1的一段弧.解:Γ为[]cos ,sin ,,0,1,x t t y t t z t t ds = ==∈=()()112222201d (222x y z s t t t t Γ+=⋅=+-+⎰⎰⎰ ()()1532222122222253t t ⎡⎤=+-⋅+==⎢⎥⎣⎦5.计算22d Lx y s +⎰,其中L :0,22>=+a ax y x .解:将L 参数化,22cos ,sin cos ,cos ,cos ,x r t y r t r ar t r a t x a t ==⇒===cos sin ,,,sin 2,cos 2,22y a t t t dx a tdt dy a tdt ds adt ππ⎡⎤=∈-=-==⎢⎥⎣⎦222222222d 2cos 2sin 2Lx y s a tdt a ta ππππ-+====⎰⎰⎰6.计算22ed x y Ls +⎰,其中L 为圆周222a y x =+,直线x y =及x 轴在第一象限内所围成的扇形的整个边界.解:边界曲线需要分段表达,从而需要分段积分[]12:0,0,,;:sin,cos ,0,,;4L y x a ds dx L x a t y a t t ds adt π⎡⎤=∈===∈=⎢⎥⎣⎦2123:,,;L y xx ds L L LL ⎡=∈==++⎢⎣⎦从而22400ed 4aax yxax aLa s e dx e adt e e ππ+=+⋅+=++⎰⎰⎰112244a a a a aa a e e e e e ππ=-++-=+-作业14 对坐标的曲线积分1.计算下列第二型曲线积分:(1) ()()d d L x y x x y y ++-⎰,其中L 为按逆时针方向绕椭圆22221x y a b+=一周;解:L 为cos ,sin ,:02x a t y b t t π==→原式()()20sin cos sin cos cos sin a t a t b t b t a t b t dt π=-++-⎡⎤⎣⎦⎰ 22222200sin 2cos 2sin 2cos 20224a b ab t a b ab t t dt t ππ⎛⎫⎛⎫++=-=+= ⎪ ⎪⎝⎭⎝⎭⎰(2)()d d 1d x x y y x y z Γ+++-⎰,其中Γ是从点()1,1,1到点()2,3,4的一段直线;解:Γ是111,1,12,13,:01213141x y z x t y t z t t ---===+=+=+→--- 原式()()()1121231121t t t t dt =+++++++-⎡⎤⎣⎦⎰()()1126146713t dt t t=+=+=⎰(3)d d d y x x y z Γ-+⎰,其中Γ是圆柱螺线2cos ,2sin , 3 x t y t z t ===从0t =到2πt =的一段弧;解:Γ是2cos ,2sin , 3 ,:02x t y t z t t π===→原式()()202sin 2sin 2cos 2cos 3t t t t dt π=--+⎡⎤⎣⎦⎰ ()()2200432dt t πππ=-+=-=-⎰(4) 计算曲线积分(12e )d (cos e )d y y Lxy x y x y +--⎰,其中L 为由点A (-1, 1)沿抛物线2y x =到点O (0, 0), 再沿x 轴到点B (2, 0)的弧段.解:由于积分曲线是分段表达的,需要分段积分2:,:10AO y x x =-→;:0,:02OB y x =→原式222221(12e )d (cos e )2dx (e )d x x xx x x x x x -=+--+⎰⎰2223221(12e 2cos 2e )d d x x x x x x x x -=+-++⎰⎰()222004211113sin e d de 21sin1sin11xx x x xx x xee ----=-+++=-++=+-⎰⎰2. 设力F 的大小等于作用点的横坐标的平方,而方向依y 轴的负方向,求质量为m 的质点沿抛物线21x y -=从点()1,0移动到点()0,1时,力F 所作的功.解:{}{}{}2220,10,,,,:1,:01F x x ds dx dy L x y y =-=-==-→()()11352240028123515L L y y W Fds x dy y y dy y ⎛⎫==-=--+=--+=- ⎪⎝⎭⎰⎰⎰3.把对坐标的曲线积分()(),d ,d LP x y x Q x y y +⎰化成对弧长的曲线积分,其中L为:(1) 在xOy 平面内沿直线从点()0,0到点()1,1; (2) 沿抛物线2y x =从点()0,0到点()1,1.解:(1):,:01,0;L y x x dx ds =→>==()()()(),,,d ,d ,,d L L P x x Q x x P x y x Q x y y P x x Q x x x +⎡⎤+=+=⎡⎤⎣⎦⎰⎰⎰(2)2:,:01,0;L y x x dx ds =→>=()()()()22,2,,d ,d ,2,d L L P x x xQ x x P x y x Q x y y P x x xQ x x x +⎡⎤⎡⎤+=+=⎣⎦⎰⎰⎰作业15 格林公式及其应用1.填空题(1) 设L 是三顶点(0, 0), (3, 0), (3, 2)的三角形正向边界,(24)d (536)d Lx y x y x y -+++-=⎰12 .(2) 设曲线L 是以)1,0(),0,1(),1,0(),0,1(--D C B A 为顶点的正方形边界,d d L x yx y ++⎰不能直接用格林公式的理由是_所围区域内部有不可导的点_.(3)相应于曲线积分(,,)d (,,)d (,,)d LP x y z x Q x y z y R x y z z++⎰的第一型的曲线积分是⎰. 其中L 为从点(1, 1 ,1)到点(1, 2, 3)的直线段. 2.计算33(e sin )d (ecos )d x xLI y y x y x y =-++⎰,其中L 是沿半圆周x =从点),0(a A -到点),0(a B 的弧.解:L 加上:0,:BA x x a a =→-构成区域边界的负向()3322(e sin )d (e cos )d 3cos axxLDaI y y x y x y x y d ydy σ-=-++=-+-⎰⎰⎰⎰34230233cos 2sin 4a aaa d r dr ydy a πππθ-=-+=-+⎰⎰⎰v3.计算e 31d e 33d xy xy Ly x y x x x y y ⎡⎤⎡⎤+-+++-+⎣⎦⎣⎦⎰,其中L 为椭圆 22221x y a b+=正向一周. 解:原式()()e 33e 31xy xyD x x y y x y dxdy x y ⎡⎤∂∂=+-+-+-+⎢⎥∂∂⎣⎦⎰⎰ 44Ddxdy ab π==⎰⎰4.计算曲线积分[]()sin d ()cos πd ,LI f x y x f x y x y '=+-⎰其中)(x f '为连续函数,L 是沿圆周222(1)(π)1πx y -+-=+按逆时针方向由点(2,2π)A 到点)0,0(O 的一段弧.解:令1:,:02L y x x π=→ 则,原式()[]111π()sin d ()cos πd L L L L DI dxdy f x y x f x y x y +'=-=--+-⎰⎰⎰⎰⎰()222π1()sin ()cos ππd 2f x x f x x x x ππππ'⎡⎤=-⋅+-+-⎣⎦⎰ ()()222422223π1()sin ππ1222222x f x x ππππππππ⎡⎤=-⋅+--=-⋅++=-⎢⎥⎣⎦5.计算22d d L x y y xx y -+⎰,其中L 为(1)圆周()()22111x y -+-=(按反时针方向);解:()()222222222222222x x y x x y x y x x y y x y x y x y ⎛⎫⎛⎫∂+-⋅-∂-=== ⎪ ⎪∂+∂+⎝⎭⎝⎭++,而且原点不在该圆域内部,从而由格林公式,原式0= (2)闭曲线1x y +=(按反时针方向).解:()()222222222222222x x y x x y x y x x y y x y x y x y ⎛⎫⎛⎫∂+-⋅-∂-=== ⎪ ⎪∂+∂+⎝⎭⎝⎭++,但所围区域内部的原点且仅有该点不满足格林公式条件,从而可作一很小的圆周220.01x y +=(1L 也按反时针方向),在圆环域上用格林公式得, 原式()1122d d d d 1001120.01L L Dx y y xx y y xdxdy x y π--===+=+⎰⎰⎰⎰ 6.证明下列曲线积分在xOy 平面内与路径无关,并计算积分值: (1)()()(),0,0e cos d sin d a b x y x y y -⎰;解:由于()()e sin e sin e cos x xx y y y x y∂∂-=-=∂∂在全平面连续,从而该曲线积分在xOy 平面内与路径无关,沿折线()()()0,00,,b a b →→积分即可, 原式()()0sin e cos d cos 11cos cos 1bax a ay dy b x b e b e b =-+=-+-=-⎰⎰ (2)()()()()2,14231,023d 4d xy yx x xy y -++-⎰;解:由于()()233442423x xy x y xy y x y∂∂-=-=-+∂∂在全平面连续,从而该曲线积分在xOy 平面内与路径无关,沿直线10,1,:122110x y y x x --==-→--积分也可, 原式=()()()24321211341d x x x x x x x ⎡⎤---++--⎣⎦⎰()()243213235141d x x x x x ⎡⎤=-+----⎣⎦⎰()()2543213115x x x x x ⎡⎤=-+----=⎣⎦ (3)()()()()π,20,0ecos d e sin d yy x m x x my y -+-⎰.解:由于()()e sin e cos e cos y y y x my x x m x y∂∂-==-∂∂在全平面连续,从而该曲线积分在xOy 平面内与路径无关,沿折线()()()0,0,0,2ππ→→积分即可,原式()()20cos e sin d y ex m dx my y ππ=-+-⎰⎰()2200sin 2my x mx π⎛⎫=-+- ⎪⎝⎭2m m π=--7.设()f x 在(),-∞+∞上具有连续导数,计算()()2221d 1d L y f xy x x y f xy y y y +⎡⎤+-⎣⎦⎰, 其中L 为从点23,3⎛⎫ ⎪⎝⎭到点()1,2的直线段.解:由于()()()()2222111y f xy x y f xy f xy xyf xy x y y y y ⎡⎤+⎧⎫∂∂'⎡⎤-=+-=⎨⎬⎢⎥⎣⎦∂∂⎩⎭⎣⎦在右半平面连续,从而该曲线积分右半平面内与路径无关,沿曲线12:2,,:31L xy y x x==→积分即可,原式()()()()2122232421122d d 22x f f x x x x x x x⎡⎤-+⎢⎥-⎣⎦+⎰13xdx =⎰1232x ⎛⎫= ⎪⎝⎭1942-==- 8.验证下列()(),d ,d P x y x Q x y y +在整个xOy 平面内是某一函数的全微分,并求出它的一个原函数:(1)()()e e d e 1e d x y x yx y x x y ⎡⎤⎡⎤+-+-+⎣⎦⎣⎦;解:由于()()e 1e e e x y x yx y x e e x y x y∂∂⎡⎤⎡⎤-+=-=+-⎣⎦⎣⎦∂∂在全平面连续,从而该曲线积分在xOy 平面内是某一函数的全微分,设这个函数为(),u x y , 则()(),e 1e ,e e x y x y u u u u du dx dy x x y x y y x∂∂∂∂=+=-+=+-∂∂∂∂ 从而()()()e 1e e 1e x y x yu x dy y x g x ⎡⎤=-+=-++⎣⎦⎰()()()e e e e =e x y x y x ux y y g x g x x x∂''=+-=-+⇒∂ ()=e x x x x x g x xd xe e dx xe e c =-=-+⎰⎰,()()1e 1e x y u x y x c =+--++(2)()()223238d 812e d yx y xy x x x y y y ++++;解:由于()()32222812e 31638y x x y y x xy x y xy x y∂∂++=+=+∂∂在全平面连续,从而该曲线积分在xOy 平面内是某一函数的全微分,设这个函数为(),u x y , 则原式3223224d 412e d yydx y x x dy x dy y y =++++()3322224d 412de yydx x dy y x x dy d y =++++⎰()()()32241212e d yyd yx d x y d ye y =++-⎰()32241212e y y d yxx y ye =++-可取32241212e yyu yx x y ye =++-(3)()()222cos cos d 2sin sin d x y y x x y x x y y ++-解:可取折线()()()0,0,0,x x y →→作曲线积分()()22202d 2sin sin d sin cos yx u x x y x x y y y x x y =+-=+⎰⎰9.设有一变力在坐标轴上的投影为2,28X x y Y xy =+=-,这变力确定了一个力场,证明质点在此场内移动时,场力所作的功与路径无关.证:{}2,28F x y xy =+-,质点在此场内任意曲线L 移动时,场力所作的功为()()228Lw x y dx xy dy =++-⎰由于()2282xy y x y x y∂∂⎡⎤-==+⎣⎦∂∂在全平面连续,从而质点在此场内移动时,场力所作的功与路径无关.作业16 对面积的曲面积分1.计算下列对面积的曲面积分: (1)()d xy yz zx S ∑++⎰⎰,其中∑为锥面z =被柱面222x y ax +=所截得的有限部分; 解:∑为x y z z z ===dS ==,:02cos ,22D r a ππθθ≤≤-≤≤原式2cos 2302d d cos a Dzx S x y d r dr πθπθθ∑-==⎰⎰⎰⎰⎰⎰()()42242422cos cos 12sin sin sin 4a d d πππθθθθθθ--+=⎰⎰ (2)()222d xy z S ∑++⎰⎰,其中∑为球面2222x y z ax ++=.解:∑为两块y y x a x x =±==dS ==,:0,02D r a θπ≤≤≤≤原式12222d 2d Da a ax S ax S ∑∑+=+=⎰⎰⎰⎰22Da a +2334aDaad πθ=⎰223340=888a d a r aa a πππ--=-=2.计算d y S ∑⎰⎰,∑是平面4=++z y x 被圆柱面122=+y x截出的有限部分.解:∑为两块4,1,1x y z x y z z =--=-=-,dS =,:01,02D r θπ≤≤≤≤原式D=13220sin 03ar d r dr ππθθθ==⋅=⎰ (或由()(),,,,x y z x y z ∈∑⇒-∈∑,而积分微元反号推出)3.求球面2222a z y x =++含在圆柱面ax y x =+22内部的那部分面积. 解:∑为两块x y z z z ===dS ==,:0,02D r a θπ≤≤≤≤原式12d 2DS dS ∑∑=+=⎰⎰⎰⎰cos 22=2a ad πθπθ-⎰⎰()()cos 222202=2sin 41242a ad a a a d a a ππθππθθθπ-⎛⎫-=-=- ⎪⎝⎭⎰⎰⎰4.设圆锥面z =()a h 为圆锥面的底面半径,为高,其质量均匀分布,求它的重心位置.解:设密度为单位1,由对称性可设重点坐标为()00,0,zDDzdS ∑==⎰⎰200ad r dr πθ==⎰⎰DDdS dxdy ∑==⎰⎰ad rdr πθπ==⎰⎰023h z ==,故重点坐标为20,0,3h ⎛⎫ ⎪⎝⎭5.求抛物面壳()2212z x y =+()01z ≤≤的质量,此壳的密度按规律z ρ=而变更. 解:(2212Dm dS x y ρ∑==+=⎰⎰⎰⎰2012d r π=⎰()()22532200222(1112253515t t t πππ⎛⎫⎡⎤=+-=+-+=- ⎪⎢⎥ ⎪⎣⎦⎝⎭⎰作业17 对坐标的曲面积分1.d d d d d d z x y x y z y z x ∑++⎰⎰,其中∑是柱面221x y +=被平面0z =及3z =所截得的在第一卦限内的部分前侧.解::01,03,cos 0,0yz y z x D y z x x α=≤≤≤≤>==原式=d d d d d d 0d d yzzxD D z x y x y z y z x y z z x ∑∑∑++=++⎰⎰⎰⎰⎰⎰⎰⎰13100032d 262yz D y z dy π====⎰2.计算曲面积分2()d d d d z x y z z x y ∑+-⎰⎰,其中∑为旋转抛物面221()2z x y =+下侧介于平面0z =及2z =之间的部分. 解:22221(),,,:4;2x y xy z x y z x z y D x y =+==+≤:02,yz x D z y =≤≤≤原式=1122()d d ()d d d d zx y z z x y z z x y ∑∑∑+++-⎰⎰⎰⎰⎰⎰((22221d d d d ()d d 2yz yz zxD D D z y z z y z x y z x =-++⎰⎰⎰⎰⎰⎰22222300112d ()d d 222yzzx D D y z x y z x dz d r dr πθ=++=+⎰⎰⎰⎰⎰224232000222824z dz r dr z πππππ=+=+⋅=⎰⎰3.计算d d d d d d xy y z yz z x xz x y ∑++⎰⎰其中∑是平面1,0,0,0=++===z y x z y x 所围成的空间区域的整个边界曲面的外侧.解:分片积分。

《高等数学 II》第9章 综合测试解答

《高等数学 II》第9章 综合测试解答

华东政法大学2009-2010学年第二学期 刑事司法学院09年级计算机科学与技术专业《高等数学 II 》第九章综合测试解答学院:________ 班级:_____学号:_________姓名:________任课教师:_____一、填空题(本大题共4小题,每小题4分,共16分)请在每小题的空格中填上正确答案。

错填、不填均不得分。

1、函数221)ln(),(yx x x y y x f --+-=的定义域为 .解: f (x, y ) 的定义域为}1,0,0|),{(22<+≥>-y x x x y y x 2、设),ln(22y xy x z ++= 则=∂∂+∂∂yz y x z x. 解: 2222222=+++⋅++++⋅=∂∂+∂∂yxy x y x y y xy x y x x y zy x z x3、设,),(,),(2222y x y x y x y x f -=+=ϕ 则=)],(),,([y x y x f f ϕ .解: ).(2)()()],([)],([)],(),,([4422222222y x y x y x y x y x f y x y x f f +=-++=+=ϕϕ4、若函数y xy ax x y x f 22),(22+++=在点(1, -1)处取得极值, 则常数a = .解: 因,4),(2y a x y x f x ++= 所以),(y x f 在点(1, -1)处取得极值应有50)1(4,0)1,1(2-==-++=-a a f x 故即二、单项选择题(本大题共4小题,每小题5分,共20分)在每小题列出的四个备选项中只有一个是最符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均不得分。

1、函数z y x xy z y x u 62332222--++++=在原点沿=OA {1, 2, 1}方向的方向导数等于 .(A) 47-(B) 41 (C) 61 (D) 67- 解: 66,24,32-=-+=++=z U x y U y x U z y x 故 ,6,2,3)0,0,0()0,0,0()0,0,0(-=-==zyxU U U而方向余弦为 ,66,36,66⎪⎪⎭⎫⎝⎛故所求方向导数 = 67666664663-=-⋅-⋅.故选(D). 2、设),(y x u φ=, 而φ,xe y =具有连续二阶偏导数, 则22dxud 等于 .(A) x x x e e e 22221112φφφφ+++ (B) 22212112φφφφ+++x e (C) x x x e e e 22222112φφφφ+++ (D) x x x e e e 222212112φφφφ+++ 解: 因为2121Φ+Φ=Φ+Φ=x e dxdy dx du而 Φ1, Φ2仍按原来的复合关系, 故 .2)(22221211222221121122221121122x x x x x x x x x e e e e e e e e e dxdydx dy dx u d Φ+Φ+Φ+Φ=Φ+Φ+Φ+Φ+Φ=Φ+Φ+Φ+Φ+Φ=故选(D)3、设,)(z y x u -= 而,22y x z += 则y x u u +等于 .(A) )]ln())(()([21y x y x y x y x z z z --++-- (B) z y x z )(2- (C) )ln()()(2y x y x y x z-+- (D) )ln()(21y x y x z --+ 解: 因为),ln()(ln 22y x y x u -+= 两端对x 求偏导:yx y x y x x u u x -++-=1)()ln(222 两端对y 求偏导, 得yx y x y x y uu y --++-=1)()ln(222故 ).ln()()(2)]ln()(2[)(y x y x y x y x y x y x u u z z y x -+-=-+-=+ 选(C).4、函数⎪⎩⎪⎨⎧=+≠+++=0,20,)(2sin ),(22222222y x y x y x y x y x f 在点(0, 0)处 .(A) 无定义 (B) 无极限 (C) 有极限但不连续 (D) 连续解: 因为 )0,0(2)(2sin lim ),(lim 22220000f y x y x y x f y x y x ==++=→→→→, 故 ),(y x f 在(0, 0)连续. 选(D).三、计算题(本大题共7小题,每小题7分,共49分)1、求221)ln(limyx e x y y x ++→→解: .2ln )ln()ln(lim122221=++=++==→→y x y y y x yx e x yx e x2、设),(t x f y =,而t 是由方程0),,(=t y x F 所确定的y x ,的函数,试求dxdy . 解:由),(t x f y =及0),,(=t y x F 确定出t y ,为x 的函数)(),(x t t x y y ==,将给定的两个方程的两边对x 求导,便有⎪⎪⎩⎪⎪⎨⎧='+'+'∂∂+'=0dx dt F dx dy F F dxdt t f f dx dy t y x x解之, 得=dx dy t y t x t t x f F F F f F f ''+'''-'' 3、设),,(x v u f z =, ),(y x u ϕ=,)(y v ψ=,求复合函数)),(),,((x y y x f z ψϕ=的偏导数xz∂∂与yz ∂∂. 解: 由复合函数求导法,得321f x f x f x z '+∂∂'+∂∂'=∂∂ψϕ,31f xf '+∂∂'=ϕ=∂∂yz dy d f y f ψϕ21'+∂∂')(21y f y f ψϕ''+∂∂'=.4、求由方程2222=+++z y x xyz 所确定的函数),(y x z z =在点)1,0,1(-处的全微分.dz[解法一] 对方程两边求全微分可得+++xydz xzdy yzdx 0222=++++zy x zdz ydy xdx将1,0,1-===z y x 代入上式可得0)(21=-+-dz dx dy由此得到dy dx dz 2-= [解法二] 设=),,(z y x F 2222-+++z y x xyzx F '=222zy x x yz +++; y F '=222zy x y xz +++;z F '=222zy x z xy +++222222z y x xy z z y x yz x F F x z z x ++++++-=''-=∂∂;222222z y x xy z z y x xz y F F y z z y ++++++-=''-=∂∂=dz dx zy x xy z z y x yz x 222222++++++-dy zy x xy z z y x xz y 222222++++++-将1,0,1-===z y x 代入上式可得dy dx dz 2-=5、设函数)(x f y =由方程1)cos(2-=-+e xy e yx 所确定,求曲线)(x f y =在点)1,0(处的法线方程。

微积分课后题答案第九章习题详解

微积分课后题答案第九章习题详解

第9章习题9-11. 判定下列级数的收敛性:(1) 115n n a ∞=⋅∑(a >0); (2) ∑∞=-+1)1(n n n ;(3) ∑∞=+131n n ; (4) ∑∞=-+12)1(2n nn ; (5) ∑∞=+11ln n n n ; (6) ∑∞=-12)1(n n;(7) ∑∞=+11n nn ; (8) 0(1)21n n n n ∞=-⋅+∑.解:(1)该级数为等比级数,公比为1a ,且0a >,故当1||1a<,即1a >时,级数收敛,当1||1a≥即01a <≤时,级数发散. (2)Q n S =+++L1=lim n n S →∞=∞∴1n ∞=∑发散.(3)113n n ∞=+∑是调和级数11n n ∞=∑去掉前3项得到的级数,而调和级数11n n ∞=∑发散,故原级数113n n ∞=+∑发散. (4)Q 1112(1)1(1)222n n nn n n n ∞∞-==⎛⎫+--=+ ⎪⎝⎭∑∑ 而1112n n ∞-=∑,1(1)2m nn ∞=-∑是公比分别为12的收敛的等比级数,所以由数项级数的基本性质知111(1)22n n n n ∞-=⎛⎫-+ ⎪⎝⎭∑收敛,即原级数收敛. (5)Q lnln ln(1)1nn n n =-++ 于是(ln1ln 2)(ln 2ln 3)[ln ln(1)]n S n n =-+-+-+L ln1ln(1)ln(1)n n =-+=-+ 故lim n n S →∞=-∞,所以级数1ln1n nn ∞=+∑发散. (6)Q 2210,2n n S S +==-∴ lim n n S →∞不存在,从而级数1(1)2nn ∞=-∑发散.(7)Q 1lim lim10n n n n U n→∞→∞+==≠∴ 级数11n n n ∞=+∑发散. (8)Q (1)(1)1, lim 21212n n n n n n U n n →∞--==++∴ lim 0n x U →∞≠,故级数1(1)21n n nn ∞=-+∑发散.2. 判别下列级数的收敛性,若收敛则求其和:(1) ∑∞=⎪⎭⎫ ⎝⎛+13121n n n ; (2) ※∑∞=++1)2)(1(1n n n n ;(3) ∑∞=⋅12sin n n n π; (4) 0πcos 2n n ∞=∑.解:Q (1)1111, 23n n n n ∞∞==∑∑都收敛,且其和分别为1和12,则11123n n n ∞=⎛⎫+ ⎪⎝⎭∑收敛,且其和为1+12=32. (2)Q11121(1)(2)212n n n n n n ⎛⎫=-+ ⎪++++⎝⎭∴121112111211121122322342345212n S n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-++-++-+++-+ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭L 11112212n n ⎛⎫=-+ ⎪++⎝⎭1lim 4n n S →∞=故级数收敛,且其和为14. (3)πsin 2n U n n =,而πsinππ2lim lim 0π222n n n U n→∞→∞=⋅=≠,故级数1πsin2n n n ∞=⋅∑发散. (4)πcos 2n n U =,而4lim limcos2π1k k k U k →∞→∞==,42lim limcos(21)π1k k k U k +→∞→∞=+=-故lim n n U →∞不存在,所以级数πcos2n n ∞=∑发散. 3※. 设1nn U∞=∑ (U n >0)加括号后收敛,证明1nn U∞=∑亦收敛.证:设1(0)nn n UU ∞=>∑加括号后级数1n n A ∞=∑收敛,其和为S .考虑原级数1n n U ∞=∑的部分和1n k k S U ∞==∑,并注意到0(1,2,)k U k >=L ,故存在0n ,使11n n k t k t S U A s ∞===<<∑∑又显然1n n S S +<对一切n 成立,于是,{}n S 是单调递增且有上界的数列,因此,极限lim nn S →∞存在,即原级数1nn U∞=∑亦收敛.习题9-21. 判定下列正项级数的收敛性:(1) ∑∞=++1n n n )2)(1(1; (2) ∑∞=+1n n n1;(3) ∑∞=++1n n n n )2(2; (4) ∑∞=+1n n n )5(12;(5) 111nn a ∞=+∑ (a >0); (6) ∑∞=+1n n ba 1(a , b >0); (7)()∑∞=--+1n a n a n22(a >0); (8) ∑∞=-+1n n n 1214; (9) ∑∞=⋅1n nn n 23; (10) ※∑∞=1n n n n !; (11) ∑∞=+⋅⋅⋅⋅+⋅⋅⋅⋅1n n n )13(1074)12(753ΛΛ; (12) ∑∞=1n n n3;(13) ※∑∞=1n n n 22)!(2; (14) ∑∞=⎪⎭⎫⎝⎛+1n nn n 12;(15)∑∞=1πn nn3sin2; (16) ∑∞=1πn n n n 2cos 32.解:(1)因为211(1)(2)n n n <++而211n n ∞=∑收敛,由比较判别法知级数11(1)(2)n n n ∞=++∑收敛.(2)因为lim lim10n n n U →∞→∞==≠,故原级数发散. (3)因为21(1)(1)1n n n n n n n +>=+++,而111n n ∞=+∑发散,由比较判别法知,级数12(1)n n n n ∞=++∑发散. (4)321n<=,而1n ∞=是收敛的p -级数3(1)2p =>,由比较判别法知,级数1n ∞=收敛.(5)因为111lim lim lim(1)111n n n nn n n na a a a a →∞→∞→∞+==-++11112001a a a >⎧⎪⎪==⎨⎪<<⎪⎩而当1a >时,11n n a ∞=∑收敛,故111nn a ∞=+∑收敛; 当1a =时,11n n a ∞=∑= 11n ∞=∑发散,故111nn a∞=+∑发散; 当01a <<时1lim101n n a →∞=≠+,故1lim1nn a →∞+发散; 综上所述,当01a <≤时,级数1lim 1n n a →∞+发散,当1a >时,1lim 1nn a →∞+收敛. (6)因为1lim lim lim(1)1n n n n n n n n b a a b a b a b b→∞→∞→∞+==-++ 1111101b b a b >⎧⎪⎪==⎨+⎪<<⎪⎩ 而当1b >时, 11n n b ∞=∑收敛,故11nn a b ∞=+∑收敛; 当1b =时,1111n n n b ∞∞===∑∑发散,故而由0a >, 101a <<+∞+,故11nn a b ∞=+∑也发散; 当01b <<时,11lim 0n n a b a →∞=≠+故11n n a b ∞=+∑发散; 综上所述知,当01b <≤时,级数11n n a b ∞=+∑发散;当b >1时,级数11nn a b∞=+∑收敛. (7)因为n n n→∞=0n a ==>而11n n ∞=∑发散,故级数10)n a ∞=>∑发散. (8)因为434431121lim lim 1212n n n n n n n n →∞→∞++-==-而311n n ∞=∑收敛,故级数21121n n n ∞=+-∑收敛.(9)因为1113233lim lim lim 1(1)232(1)2n n n n n n n n nU n n U n n +++→∞→∞→∞⋅⋅==>+⋅+由达朗贝尔比值判别法知,级数132nnn n ∞=⋅∑发散. (10)因为11(1)!1lim lim lim(1)1(1)!n n n n n n n nU n n e U n n n ++→∞→∞→∞+=⋅=+=>+,由达朗贝尔比值判别法知,级数1!nn n n ∞=∑发散.(11)因为1357(21)(23)4710(31)limlim 4710(31)(34)357(21)n n n nU n n n U n n n +→∞→∞⋅⋅⋅⋅+⋅+⋅⋅⋅⋅+=⋅⋅⋅⋅⋅+⋅+⋅⋅⋅⋅+L L L L232lim1343n n n →∞+==<+,由达朗贝尔比值判别法知原级数收敛.(12)因为111311lim lim lim 1333n n n n n n nU n n U n n ++→∞→∞→∞++=⋅==<,由达朗贝尔比值判别法知,级数13n n n∞=∑收敛. (13)因为22221221(1)[(1)!]2(1)lim lim lim (!)22n n n n n n n nU n n U n +++→∞→∞→∞++=⋅= 由2212121(1)2(1)1lim lim lim 222ln 22ln 2x x x x x x x x x +++→∞→+∞→+∞+++==⋅⋅2121lim 022(ln 2)x x +→+∞==⋅知2121(1)lim lim 012n n n n n U n U ++→∞→∞+==<由达朗贝尔比值判别法知,级数221(!)2n n n ∞=∑收敛.(14)因为1lim 1212n n n n →∞==<+,由柯西根值判别法知级数121nn n n ∞=⎛⎫ ⎪+⎝⎭∑收敛.(15)因为ππ2sinsin 33lim lim 1π2π33n n nn n n n n→∞→∞==⋅而112233nn n n n ∞∞==⎛⎫= ⎪⎝⎭∑∑是收敛的等比级数,它的每项乘以常数π后新得级数12π3n n n ∞=⋅∑仍收敛,由比较判别法的极限形式知,级数1π2sin3n n n ∞=∑收敛. (16)因为2πcos 322n nn n n ≤而与(12)题类似地可证级数12n n n ∞=∑收敛,由比较判别法知级数1πcos 32nn n n ∞=∑收敛.2. 试在(0,+∞)内讨论x 在什么区间取值时,下列级数收敛:(1) ∑∞=1n n n x ; (2) nn x n ∑∞=⎪⎭⎫⎝⎛123.解:(1)因为11lim lim lim 11n n n n n n nU x n nxx U n x n ++→∞→∞→∞=⋅==++由达朗贝尔比值判别法知,当1x >时,原级数发散; 当01x <<时,原级数收敛; 而当1x =时,原级数变为调11n n ∞=∑,它是发散的. 综上所述,当01x <<时,级数1nn x n ∞=∑收敛.(2)因为1313(1)2limlim 22n n n n n nx n U xU x n ++→∞→∞⎛⎫+⋅ ⎪⎝⎭==⎛⎫⋅ ⎪⎝⎭,由达朗贝尔比值判别法知,当12x >即2x >时,原级数发散;当012x<<即02x <<时,原级收敛. 而当12x =即 2x =时,原级数变为31n n ∞=∑,而由3lim n n →∞=+∞知31n n ∞=∑发散,综上所述,当02x <<时,级数31()2nn x n ∞=∑收敛.习题9-31. 判定下列级数是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛:(1) ∑∞=--1121)1(n nn ; (2) 11(1)2(1)2n n nn ∞-=-+-⋅∑; (3) ∑∞=12sin n n nx ; (4) 111π(1)sin πn n n n ∞+=-∑; (5) ∑∞=-⎪⎭⎫ ⎝⎛-11210121n n n ; (6) ∑∞=+-1)1(n n x n ;(7) ∑∞=⋅1!)2sin(n n n x .解:(1)这是一个交错级数121n U n =-, 1lim lim 021n n n U n →∞→∞==-, 1112121n n U U n n +=>=-+ 由莱布尼茨判别法知11(1)21nn n ∞=--∑. 又1111(1)2121n n n n n ∞∞==-=--∑∑,由1121lim 12n n n→∞-=,及11n n ∞=∑发散,知级数1121n n ∞=-∑发散,所以级数11(1)21nn n ∞=--∑条件收敛.(2)因为2111(1)211(1)22(1)2n n n n n ----+-=+-⋅-⋅,故11111(1)21111(1)22(1)22(1)2n n n n n n n n n ------+--=+≤+-⋅-⋅-⋅ 1113222n n n-=+=而112n n ∞=∑收敛,故132n n ∞=∑亦收敛,由比较判别法知11(1)2(1)2n n nn ∞-=-+-⋅∑收敛,所以级数11(1)2(1)2n n nn ∞-=-+-⋅∑绝对收敛. (3)因为22sin 1,nx n n ≤而级数211n n∞=∑收敛,由比较判别法知21sin n nxn ∞=∑收敛,因此,级数21sin n nxn ∞=∑绝对收敛. (4)因为121ππ|(1)sin |sin πlimlim 11πn n n n n n n n+→∞→∞-==而211n n∞=∑收敛,由比较判别法的极限形式知,级数111π|(1)sin |πn n n n ∞+=-∑收敛,从而级数11π(1)sin πn n n+-绝对收敛. (5)因为212121111111210210210n n n n n n ----≤+=+,而级数112nn ∞=∑收敛的等比级数1()2q =;由比值判别法,易知级数211110n n ∞-=∑收敛,因而21111210n n n ∞-=⎛⎫+ ⎪⎝⎭∑收敛,由比较判别法知级数21111210n n n ∞-=-∑收敛,所以原级数21111210n n n ∞-=-∑绝对收敛. (6)当x 为负整数时,级数显然无意义;当x 不为负整数时,此交错级数满足莱布尼茨判别法的条件,故它是收敛的,但因11n x n ∞=+∑发散,故原级数当x 不为负整数时仅为条件收敛.(7)因为sin(2)1!!n x n n ⋅≤由比值判别法知11!n n ∞=∑收敛(Q 1(1)!lim 01!n n n →∞+=),从而由比较判别法知1sin(2)!n n x n ∞=⋅∑收敛,所以级数1sin(2)!n n x n ∞=⋅∑,绝对收敛.2. 讨论级数∑∞=--111)1(n pn n 的收敛性(p >0). 解:当1p >时,由于11111(1)n p p n n n n ∞∞-==-=∑∑收敛,故级数111(1)n p n n ∞-=-∑绝对收敛. 当01p <≤时,由于111,(1)n n p pu u n n +=>=+ lim 0n n u →∞=,由莱布尼茨判别法知交错级数111(1)n p n n ∞-=-∑收敛,然而,当01p <≤时,11111(1)n p p n n n n ∞∞-==-=∑∑发散,故此时,级数111(1)n p n n∞-=-∑条件收敛. 综上所述,当01p <≤时,原级数条件收敛;当p >1时,原级数绝对收敛.3※. 设级数∑∞=12n na及∑∞=12n nb都收敛,证明级数∑∞=1n nn ba 及()∑∞=+12n n nb a也都收敛.证:因为2222||||110||222n n n n n n a b a b a b +≤≤=+ 而由已知1nn a ∞=∑及21n n b ∞=∑都收敛,故221111,22n n n n a b ∞∞==∑∑收敛,从而2211122n n n a b ∞=⎛⎫+ ⎪⎝⎭∑收敛,由正项级数的比较判别法知1n nn a b∞=∑也收敛,从而级数1n nn a b∞=∑绝对收敛.又由222()2,n n n n n n a b a a b b +=++及2211,n n n n a b ∞∞==∑∑,以及1n n n a b ∞=∑收敛,利用数项级数的基本性质知,221(2)nn n n n aa b b ∞=++∑收剑,亦即21()n n n a b ∞=+∑收敛.习题9-41. 指出下列幂级数的收敛区间:(1) ∑∞=0!n n n x (0!=1); (2) ∑∞=0!n nn x nn ;(3) ∑∞=⋅022n n n n x ; (4) ∑∞=++-01212)1(n n n n x .(5) ∑∞=⋅+02)2(n n n n x ; (6) ∑∞=-0)1(2n n nx n. 解:(1)因为111(1)!limlim lim 011!n n n n na n p a n n +→∞→∞→∞+====+,所以收敛半径r =+∞,幂级数1!nn x n ∞=∑的收敛区间为(,)-∞+∞. (2)因为-111lim lim lim 1e 11n nn n n n n a n p a n n +→∞→∞→∞⎛⎫===-= ⎪++⎝⎭,所以收敛半径1e r p==. 当x =e 时,级数01!!e n n n n n n n n x n n ∞∞===∑∑,此时11(1)n n n u e u n+=+,因为1(1)nn +是单调递增数列,且1(1)nn+<e 所以1n nu u +>1,从而lim 0n n u →∞≠,于是级数当x =e 时,原级数发散.类似地,可证当x =-e 时,原级数也发散(可证lim ||0n n u →∞≠),综上所述,级数0!nnn n x n∞=∑的收敛区间为(-e,e).(3)因为2111limlim ()212n n n n a n p a n +→∞→∞===+,所以收敛半径为r =2. 当2x =时,级数221012n n n n x n n∞∞===⋅∑∑是收敛的p 一级数(p =2>1);当x =-2时,级数22011(1)2n nn n n x n n ∞∞===-⋅⋅∑∑是交错级数,它满足莱布尼茨判别法的条件,故它收敛.综上所述,级数202nn n x n∞=⋅∑的收敛区间为[-2,2].(4)此级数缺少偶次幂的项,不能直接运用定理2求收敛半径,改用达朗贝尔比值判别法求收敛区间.令21(1)21n nn x u n +=-+,则22121lim lim 23n n n nu n x x u n +→∞→∞+=⋅=+.当21x <时,即||1x <时,原级数绝对收敛.当21x >时,即||1x >时,级数0||n n u ∞=∑发散,从而210(1)21n nn x n +∞=-+∑发散,当1x =时,级数变为01(1)21nn n ∞=-+∑;当1x =-时,级数变为11(1)21n n n ∞+=-+∑;它们都是交错级数,且满足莱布尼茨判别法的条件,故它们都收敛.综上所述,级数21(1)21n nn x n +∞=-+∑的收敛区间为[-1,1].(5)此级数为(x +2)的幂级数. 因为11limlim 2(1)2n n n n a n p a n +→∞→∞===+. 所以收敛半径12r p==,即|2|2x +<时,也即40x -<<时级数绝对收敛.当|2|2x +>即4x <-或0x >时,原级数发散.当4x =-时,级数变为1(1)nn n ∞=-∑是收敛的交错级数, 当x =0时,级数变为调和级数11n n ∞=∑,它是发散的.综上所述,原级数的收敛区间为[-4,0).(6)此级数(x -1)的幂级数12limlim 21n n n n a np a n +→∞→∞===+ 故收敛半径12r =. 于是当1|1|2x -<即1322x <<时,原级数绝对收敛.当1|1|2x ->即12x <或32x >时,原级数发散.当32x =时,原级数变为01n n ∞=∑是调和级数,发散.当12x =时,原级数变为11(1)n n n ∞=-∑,是收敛的交错级数.综上所述,原级数的收敛区间为13,22⎡⎫⎪⎢⎣⎭. 2. 求下列幂级数的和函数:(1) ∑∞=-1)1(n n nn x ; (2) ∑∞=-1122n n nx ;(3) nn x n n ∑∞=+1)1(1; (4) ∑∞=+0)12(n n x n . 解:(1)可求得所给幂级数的收敛半径r =1.设1()(1)n nn x S x n ∞==-∑,则1111()(1)(1)1n n n n n n x S x x n x ∞∞-=='⎡⎤'=-=-=-⎢⎥+⎣⎦∑∑ ∴001()()d d ln(1) (||1)1x x S x S x x x x x x-'===-+<+⎰⎰又当x =1时,原级数收敛,且()S x 在x =1处连续.∴1(1)ln(1) (11)nnn x x x n ∞=-=-+-<≤∑ (2)所给级数的收敛半经r =1,设211()2n n S x nx∞-==∑,当||1x <时,有2121011()d 2d 2d xx xn n n n S x x nxx nx x ∞∞--====∑∑⎰⎰⎰22211nn x xx∞===-∑ 于是22222()1(1)x xs x x x '⎛⎫== ⎪--⎝⎭ 又当1x =±时,原级数发散. 故2122122 (||1)(1)n n xnx x x ∞-==<-∑(3)可求所给级数的收敛半径为1.令1111()(0)(1)(1)n n n n x x s x x n n x n n +∞∞====≠++∑∑ 令11()(1)n n x g x n n +∞==+∑,则111()1n n g x x x ∞-=''==-∑01()d ()(0)d 1xxg x x g x g x x''''=-=-⎰⎰(0)0,()ln(1)g g x x ''==--()d ()(0)ln(1)d ,(0)0xxg x x g x g x x g '=-=--=⎰⎰所以0()ln(1)d ln(1)ln(1)xg x x x x x x x =--=+---⎰;所以1()11ln(1),||1,S x x x x ⎛⎫=+--<⎪⎝⎭且0x ≠. 当1x ±时,级数为11(1)n n n ∞=+∑和11(1)(1)nn n n ∞=-+∑,它们都收敛.且显然有(0)0S =.故111ln(1)(1,0)(0,1)()00,1x x S x x x x ⎧⎛⎫+--∈-⋃⎪ ⎪=⎝⎭⎨⎪=±⎩. (4)可求得所给级数的收敛半径为r =1且1x ±时,级数发散,设1()n n S x nx∞-==∑,则1()d .1xn n s x x x x∞===-∑⎰于是211()()1(1)S x x x '==--,即1211(1)n n nx x ∞-==-∑. 所以111(21)2nn n n n n n xx nxx ∞∞∞-===+=+∑∑∑221112(1)1(1)xx x x x +=⋅+=--- (||1)x <3. 求下列级数的和:(1) ∑∞=125n n n ; (2) ∑∞=-12)12(1n nn ; (3) ∑∞=--112212n n n ; (4) 1(1)2nn n n ∞=+∑. 解:(1)考察幂级数21nn n x∞=∑,可求得其收敛半径1r = ,且当1x ±时,级数的通项2nn u n x =,2lim ||lim n n n u n →∞→∞==+∞,因而lim 0n n u →∞≠,故当1x ±时,级数21n n n x ∞=∑发散,故幂级数21nn n x∞=∑的收敛区间为(-1,1).设21() (||1)nn S x n xx ∞==<∑,则211()n n S x x n x ∞-==∑令2111()n n S x n x∞-==∑,则11011()d xnn n n S x x nx x nx ∞∞-====∑∑⎰.再令121()n n S x nx∞-==∑,则201()d 1xn n xS x x x x∞===-∑⎰. 故221()(||1)1(1)x S x x x x '⎛⎫==< ⎪--⎝⎭,从而有120()d (1)x x S x x x =-⎰. 1231() (||1)(1)(1)x xS x x x x '⎛⎫+==< ⎪--⎝⎭于是 213()() (||1)(1)x x S x xS x x x +==<- 取15x =,则223111()11555()5532115n n n S ∞=+===⎛⎫- ⎪⎝⎭∑. (2)考察幂级数21121n n x n ∞=-∑,可求得收敛半径r =1,设 2211111() (||1)2121nn n n S x x x x x n n ∞∞-====<--∑∑令21111()21n n S x x n ∞-==-∑,则221211()1n n S x x x ∞-='==-∑. 1200d 11()d ln1-21xxx xS x x x x+'==-⎰⎰即 1111()(0)ln (,(0)0)21xS x S s x+-==-. 于是 111()ln ,(||<1)21xS x x x+=-,从而11()()ln (||1)21x xS x xS x x x+==<-取x =则11(21)21n n S n ∞===-∑=(3)考察幂级数211(21)n n n x∞-=-∑,可求得其级数半经为r =1,因为212121111(21)2n n n n n n n xnxx ∞∞∞---===-=-∑∑∑令2111()2n n S x nx∞-==∑,则22121()d 1xnn x S x x xx ∞===-∑⎰.所以212222() (||1)1(1)x xS x x x x '⎛⎫==< ⎪--⎝⎭,于是212121111(21)2n n n n n n n xnxx ∞∞∞---===-=-∑∑∑3222222 (||1)(1)1(1)x x x x x x x x +=-=<--- 取12x =,得 3212111()121102212291()2n n n S ∞-=+-⎛⎫=== ⎪⎛⎫⎝⎭-⎪⎝⎭∑.(4)考察幂级数1(1)nn n n x∞=+∑,可求得其收敛半径r =1.设1()(1) (||1)nn S x n n xx ∞==+<∑则12111()d xn n n n S x x nxxnx∞∞+-====∑∑⎰.又设111()n n S x nx∞-==∑则101()d 1xn n x S x x x x∞===-∑⎰. 从而121()1(1)x S x x x '⎛⎫== ⎪--⎝⎭, 2212()d ()(1)xx S x x x S x x ==-⎰2232() ||1(1)(1)x x S x x x x '⎛⎫==< ⎪--⎝⎭ 取12x =,则 31121(1)2822112nn n n S ∞=⨯+⎛⎫=== ⎪⎝⎭⎛⎫- ⎪⎝⎭∑习题9-51. 将下列函数展开成x 的幂级数: (1) 2cos2x ; (2) 2sin x ; (3) 2x x -e ; (4) 211x -; (5)πcos()4x -. 解:(1)2201cos 11cos (1)2222(2)!nn n x x x n ∞=+==+-∑ 211(1)(-)2(2)!nnn x x n ∞==+-∞<<+∞∑ (2)2101sin (1) ()2(21)!2n n n x x x n +∞=⎛⎫=--∞<<+∞ ⎪+⎝⎭∑(3)22210011e()(1) ()!!x nn n n n x x x x x n n ∞∞-+===-=--∞<+∞∑∑(4)211111211x x x ⎡⎤=+⎢⎥--+⎣⎦0002011(1)221[(1)]2 ||1n n nn n n n nn n n x x x x x x ∞∞==∞=∞==+-=+-=<∑∑∑∑(5)πππcos cos cos sin sin 444x x x ⎛⎫-=+ ⎪⎝⎭2210(cos sin )2(1) ()2(2)!(21)!n n n n x x x xx n n +∞==+⎡⎤=-+-∞<<+∞⎢⎥+⎣⎦∑ 2. 将下列函数在指定点处展开成幂级数,并求其收敛区间:(1)x -31,在x 0=1; (2) cos x,在x 0=3π; (3) 3412++x x ,在x 0=1; (4) 21x, 在x 0=3.解:(1)因为11113212x x =⋅---,而0111 (||112212nn x x x ∞=--⎛⎫=< ⎪-⎝⎭-∑即13x -<<). 所以100111(1) (13)3222nnn n n x x x x ∞∞+==--⎛⎫=⋅=-<< ⎪-⎝⎭∑∑.收敛区间为:(-1,3). (2)πππ2π2cos cos ()cos cos()sin sin()333333x x x x ⎡⎤=+-=---⎢⎥⎣⎦22100()()133(1)(1)2(2)!(21)!n n n n n n x x n n ππ+∞∞==--=-+-+∑221011(1)())2(2)!33nn n n x x n ππ∞+=⎡⎤=--+-⎢⎥⎣⎦∑ ()x -∞<<+∞ 收敛区间为(,)-∞+∞. (3)211111111()1143213481124x x x x x x =-=⋅-⋅--++++++ 001111(1)(1)4284n nn n n n x x ∞∞==--⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭∑∑223011(1)(1)22n n n n n x ∞++=⎛⎫=--- ⎪⎝⎭∑由112x -<且114x -<得13x -<<,故收敛区间为(-1,3) (4)因为011113(1)()333313n nn x x x ∞=-=⋅=-⋅-+∑ 1(3)(1)3nnn n x ∞+=-=-∑ 而21011(3)(1)3n n n n x x x ∞+=''⎡⎤-⎛⎫=-=-- ⎪⎢⎥⎝⎭⎣⎦∑111(1)(3)3n n n n n x ∞-+=-=-⋅-∑1111(1)(3)3n n n n n x +∞-+=-=-∑ 2(1)(1)(3)3n nn n n x ∞+=-+=-∑ 由313x -<得06x <<. 故收敛区间为(0,6).。

数学分析第09章答案

数学分析第09章答案

第九章 再论实数系§1 实数连续性的等价描述1.求数列}{n x 的上、下确界(若}{n x 无上(下)确界,则称)(-∞∞+是}{n x 的上(下)确界):(1)nx n 11-=; (2)])2(2[n n n x -+=;(3))3,2,1(11,122 =+==+k k x k x k k ; (4)nn x n n 1])1(1[+-+=;(5)nn n nx )1(21-+=;(6)32cos 11πn n n x n +-=. 解(1)0}inf{,1}sup{==n n x x ; (2)-∞=+∞=}inf{,}sup{n n x x ; (3)1}inf{,}sup{=+∞=n n x x ; (4)0}inf{,3}sup{==n n x x ; (5)1}inf{,5}sup{==n n x x ; (6)21}inf {,1}sup{-==n n x x . 2.设)(x f 在D 上定义,求证: (1) )}({inf )}({sup x f x f Dx Dx ∈∈-=-;(2) )}({sup )}({inf x f x f Dx Dx ∈∈-=-.证明 (1)设a x f =)}(inf{,则D x ∈∀,都有a x f ≥)(,因而a x f -≤-)(,又由于0>∀ε,都D x ∈∃ε,使得εε+<a x f )(,因而εε-->-a x f )(,因此)}({inf )}({sup x f x f Dx Dx ∈∈-=-.(2) 设b x f Dx =∈)}({sup ,则D x ∈∀有b x f ≤)(,从而b x f -≥-)(,又由于,0>∀ε都D x ∈∃ε,使得εε->b x f )(,从而εε+-<-b x f )(,因此)}({sup )}({inf x f x f Dx Dx ∈∈-=-.3.设E sup =β,且E ∉β,试证自E 中可选取数列}{n x 且n x 互不相同,使β=∞→n n x lim ;又若E ∈β,则情形如何?证明 由已知条件知E sup =β且E ∉β,因而(1) E x ∈∀,有β<x ;(2) 0>∀ε,都存在E x ∈ε,使得εβε->x . 由(1)、(2)知:对1=ε,存在E x ∈1,使得ββ<<-11x ;对},21min{1x -=βε,E x ∈∃2,使得ββ<<-221x 并且112)(x x x =-->ββ;对},31min{2x -=βε,E x ∈∃3,使得ββ<<-231x 并且223)(x x x =-->ββ;…如此继续下去,得数列}{n x 且n x 互不相同,并且β=∞→n n x lim .若E ∈β,则结论不真,如⎭⎬⎫⎩⎨⎧=n E 1,则1s u p =E ,但没有n x 互不相同的数列}{n x ,使1lim =∞→n n x .4. 试证收敛数列必有上确界和下确界,趋于∞+的数列必有下确界,趋于∞-的数列必有上确界.证明 (1) 由于收敛数列是非空有界数列,且既有上界又有下界,因而有确界定理知其必有上确界和下确界;(2) 设+∞=∞→n n x lim ,则N ∃,当N n >时0>n x ,因而}0,,,,min{21N x x x 是数列}{n x 的下界,由确界原理知数列}{n x 存在下确界;(3) 设-∞=∞→n n x lim ,则N ∃,当N n >时0<n x ,因而}0,,,,max{21N x x x 是数列}{n x 的上界,由确界定理知数列}{n x 存在上确界.5.试分别举出满足下列条件的数列:(1)有上确界无下确界的数列;(2)含有上确界但不含有下确界的数列; (3)既含有上确界又含有下确界的数列;(4)既不含有上确界又不含有下确界的数列,其中上、下确界都有限.解(1)有上确界无下确界的数列,如}{}{n x n -=有上确界1}sup{-=n x ,但无下确界;(2)含有上确界但不含有下确界的数列,如取⎭⎬⎫⎩⎨⎧=n x n 1}{,则该数列含有它的上确界1}sup{=n x ,但下确界0}inf{=n x ,该数列不含有0;(3)既含有上确界又含有下确界的数列,如⎭⎬⎫⎩⎨⎧-+=n x n n )1(1}{,既含有上确界1,又含有下确界0;(4)既不含有上确界又不含有下确界的数列,其中上、下确界都有限,如⎪⎪⎩⎪⎪⎨⎧∈=-∈+==++.,213;,121Z k k n nZ k k n n x n则数列}{n x 有上确界3和下确界0,该数列}{n x 上含其上、下确界3和0.§2 实数闭区间的紧致性1.利用有限覆盖定理9.2证明紧致性定理9.4.证明 设数列}{n x 有界,即存在R b a ∈,,使得对N n ∈∀,都有b x a n ≤≤.下证}{n x 有收敛子列.(1)若}{n x 存在子列}{k n x 是常数列,则}{k n x 是}{n x 的收敛子列.(2)若}{n x 不存在是常数列的子列,下证}{n x 有收敛子列,为此设}|{N n x X n ∈=,则X 是无限点集.反设}{n x 没有收敛的子数列,则],[b a x ∈∀都不是}{n x 的任一子数列的极限,因此对],[b a x ∈∀,都存在开区间),(x x x v u I =,使得x I x ∈且X I x 是有限集(否则对包含x的任一开区间),(x x v u 都有X 的无穷项,则x 是}{n x 的某一子列的极限),因此所有开区间x I 构成闭区间],[b a 的一个开覆盖Ω,由有限覆盖定理知存在有限数m ,使i x mi I b a 1],[=⊂ ,因而有)()()()()(],[3211X I X I X I X I X I X b a m i x x x x x mi =⊂=,注意到上式右端每一项都是有限集,故X b a ],[为有限集,矛盾!综合(1)(2)知}{n x 必有一收敛的子数列. 2.利用紧致性定理证明单调有界数列必有极限.证明 设数列}{n x 单调递增且有上界,则}{n x 是有界数列,由紧致性定理知数列}{n x 必有收敛子数列}{k n x ,设c x k n k =∞→lim ,则由}{n x 单调递增知c 必为数列}{n x 的上界,且根据数列极限的定义知,,0K ∃>∀ε当K k >时,有ε<-c x k n ,即εε+<<-c x c k n ,特别地 ε->+c x K n 1,取1+=k n N ,则当1+=>k n N n 时,由数列}{n x 单调递增且c 为它的上界知εε+<≤≤<-+c c x x c n n K 1,即ε<-c x n ,从而c x n n =∞→lim ,即单调递增有上界数列必有极限.同理可证}{n x 单调递减有下界时必有极限,因而单调有界原理成立.3.用区间套定理证明单调有界数列必有极限.证明 不妨假设数列}{n x 单调递增有上界(}{n x 单调递减有下界可同理证明),即存在R b ∈,使得b x x x a n ≤≤≤≤≤= 21,下证数列}{n x 有极限.若b a =,则}{n x 为常驻列,故}{n x 收敛,因而以下假设b a <. 取b b a a ==11,,二等分区间],[11b a ,分点为211b a +,若211b a +仍为}{n x 的上界,则令2,11212b a b a a +==;若211b a +不是}{n x 的上界,即存在m ,使211b a x m +>,则令12112,2b b b a a =+=. 二等分区间],[22b a ,分点为222b a +,若222b a +为}{n x 的上界,则令2,22323b a b a a +==;若222b a +不是}{n x 的上界,则令 .,223223b b b a a =+=依此类推得一闭区间套{}],[n n b a ,每一个区间的右端点都是}{n x 的上界,由闭区间套定理知存在唯一的R c ∈,使得c 属于所有闭区间,下证数列}{n x 的极限为c .由于02lim)(lim 1=-=--∞→∞→n n n n n ab a b ,故根据数列极限的定义,0>∀ε,存在N ,当N n >时,都有2ε<-n n a b ,而],[n n b a c ∈,故),(],[εε+-⊂c c b a n n . (*)另一方面,由闭区间套的构造知K ∃,使得n K n b x a ≤≤,故对K n >∀,由于K n x x >,故n n K n b x x a ≤≤≤. 而由(*)知εε+<<-c x c n ,即ε<-c x n ,从而c x n n =∞→lim ,因而单调有界数列必有极限.4.试分析区间套定理的条件:若将闭区间列改为开区间列,结果怎样?若将条件⊃⊃],[],[2211b a b a 去掉或将条件0→-n n a b 去掉,结果怎样?试举例说明.分析(1)若将闭区间列改为开区间列,结果不真.如开区间列⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛n 1,0满足001lim =⎪⎭⎫ ⎝⎛-∞→n n 且 ⊃⎥⎦⎤⎢⎣⎡⊃⊃⎥⎦⎤⎢⎣⎡⊃⎥⎦⎤⎢⎣⎡⊃⎥⎦⎤⎢⎣⎡n 1,031,021,011,0,但不存在r ,使r 属于所有区间.(2)若将定理其它条件不变,去掉条件 ⊃⊃],[],[2211b a b a ,则定理仍不成立,如⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+n n n 1,是闭区间列,且0→-n n a b ,但显然不存在r ,使r 属于所有区间. (3)若去掉定理条件0→-n n a b ,则定理仍不成立,如闭区间序列⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+-n n 13,11满足 ⊃⊃],[],[2211b a b a ,此时区间]3,1[内任意一点都属于闭区间序列的任何区间,与唯一性矛盾.5.若}{n x 无界,且非无穷大量,则必存在两个子列∞→k n x ,a x k m →(a 为有限数). 证明 由于}{n x 无界,故N k ∈∀,都存在k n x ,使得k x k n >,因而∞=∞→k n k x lim .又由于}{n x 不是无穷大量,根据无穷大量否定的正面陈述知0M ∃,对0>∀K ,存在K m k >,使得0||M x k m <. 从而对于0>∀K ,数列}{k m x 为有界数列,从而必有收敛子列}{k m x .故结论成立.6.有界数列}{n x 若不收敛,则必存在两个子列b x a x k k m n →→,)(b a ≠. 证明 由于}{n x 为有界数列,由紧致性定理知数列}{n x 必有收敛的子列}{k n x ,不妨设)(∞→→k a x k n ,又因为数列}{n x 不收敛于a ,故从}{n x 中去掉}{k n x 后所得的项还有无穷多项(否则数列}{n x 就收敛于a ).记其为数列}{k n x ,又因为}{k n x 为有界数列,故有收敛子列,设此子列的极限为b ,则b a ≠,而此子列也是}{n x 的子列,故设其为}{k m x ,因而)(lim b a b x k m k ≠=∞→.7.求证:数列}{n a 有界的充要条件是,}{n a 的任何子数列}{k n a 都有收敛的子数列. 证明 必要性:由紧致性定理知结论成立.充分性:反设数列}{n a 无界.若}{n a 是无穷大量,则}{n a 的任何子列都不存在收敛的子列,矛盾;若}{n a 不是无穷大量,则由第5题知}{n a 有一子列}{k n a 是无穷大量,从而}{k n a 没有收敛的子数列,也矛盾.因而数列}{n a 有界.8.设)(x f 在],[b a 上定义,且在每一点处函数的极限存在,求证:)(x f 在],[b a 上有界.证明 对],[b a t ∈∀,由于)(x f 在t 处的极限存在,故设A x f tx =→)(lim ,则对01>=ε,存在0>t δ,x ∀,当t t x δ<-<||0时,有1)(=<-εA x f ,从而1||)(+<A x f ,取{}1||),(max +=A t f M ,则),(t t t t x δδ--∈∀,都有M x f <)(,即)(x f 在区间),(t t t t δδ--上有界.对所有],[b a t ∈,在1=ε下所取的t δ为半径的开区间{}],[|),(b a t t t t t ∈+-δδ构成闭区间],[b a 上的一个开覆盖,由有限覆盖定理知,存在],[,,,21b a t t t n ∈ ,使得),(],[1i i t i t i ni t t b a δδ+-⊂= ,而)(x f 在每个区间),(i i t i t i t t δδ+-),,2,1(n i =上有界,又由于区间个数有限,故)(x f在],[b a 上有界.9.设)(x f 在],[b a 无界,求证:存在],[b a c ∈,对任意0>δ,函数)(x f 在],[),(b a c c δδ+-上无界.证明 反设结论不真,即],[b a c ∈∀,0>∃c δ,函数)(x f 在],[),(b a c c c c δδ+-上有界,则对所有的c ,{}],[|),(b a c c c c c ∈+-δδ构成区间],[b a 的一个开覆盖,由有限覆盖定理知其有有限子覆盖,即],[,,,21b a c c c n ∈∃ ,使),(],[1i i c i c i ni c c b a δδ+-⊂= ,由于函数在每一个],[),(b a c c i i c i c i δδ+-有界,而n 是有限数,故)(x f 在],[b a 有界,矛盾.因此结论成立.10.设)(x f 是),(b a 上的凸函数,且有上界,求证:)(lim ),(lim x f x f bx ax -+→→存在. 证明 由于)(x f 在),(b a 上有上界,故0>∃M ,对M x f b a x ≤∈∀)(),,(.先证明)(lim x f bx -→存在. 在区间),(b a 中任取一点0x ,并令 00)()()(x x x f x f x g --=,则由)(x f 是),(b a 上的凸函数知)(x g 在),(0b x 上递增,在),(0b x 中任取一点1x ,考察区间),(1b x ,),(1b x x ∈∀,由于1000)()()()(x x x f M x x x f x f x g --≤--=,即)(x g 在),(1b x 上有上界,从而)(x g 在),(1b x 上单调递增且有上界,由定理3.12知)(lim x g b x -→存在,不妨令A x g bx =-→)(lim ,则 )()()()()()(lim )(lim 000000x f x b A x f x x x f x f x x x f b x b x +-=⎥⎦⎤⎢⎣⎡+--⋅-=--→→, 即)(lim x f bx -→存在. 再证明)(lim x f ax +→存在. 由于)(x f 是),(b a 上的凸函数,从而)(x g 在),(0x a 上递增,在),(0x a 中任取一点2x ,考察区间),(2x a ,),(2x a x ∈∀,由于ax Mx f x x x f x f x x x f x f x g --≥--=--=000000)()()()()()(, 即)(x g 在),(2x a 上有下界,从而)(x g 在),(2x a 上单调递增且有下界,由定理3.12的推论知)(lim x g ax +→存在,设B x g ax =+→)(lim ,则 )()()()()()(lim )(lim 000000x f B x a x f x x x f x f x x x f a x a x +-=⎥⎦⎤⎢⎣⎡+--⋅-=++→→, 即)(lim x f ax +→也存在. 11.设)(x f 在],[b a 上只有第一类间断点,定义)0()0()(--+=x f x f x ω.求证:任意εωε≥>)(,0x 的点x 只有有限多个.证明 反证法,使用区间套定理. 根据结论,反设存在00>ε,在],[b a 上使0)(εω≥x 的点有无限多个.记],[],[11b a b a =,二等分区间],[11b a ,则在⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+111111,2,2,b b a b a a 中至少有一个区间含有无限多个x 使0)(εω≥x ,记此区间为],[22b a ,再二等分区间],[22b a ,在⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+222222,2,2,b b a b a a 中至少有一个区间含有无限多个x 使0)(εω≥x ,记此区间为 ],,[33b a ,如此继续下去,得闭区间套],[n n b a ,且每个区间],[n n b a 中含有无限多个x 使0)(εω≥x .由区间套定理可知存在唯一 ,2,1],,[=∈n b a r n n由于)(x f 在],[b a 上只有第一类间断点,而],[b a r ∈,故)0(+r f 和)0(-r f 存在,设B r f A r f =-=+)0(,)0(,则对上述00>ε,存在),(,011δδ+∈∀>r r x 时,有2)(0ε<-A x f ,即2)(2εε+<<-A x f A ,从而由极限不等式知,当),(1δ+∈r r x 时,0)(εω<x ;同理存在),(,022r r x δδ-∈∀>时,0)(εω<x .取{}21,min δδδ=,则在),(δδ+-r r 上满足0)(εω≥x 的点至多只能有r 一个点.而根据区间套性质知,N n N >∀∃,时,都有),(],[δδ+-⊂r r b a n n ,从而在],[n n b a 中最多只能有一个点,使得0)(εω≥x ,这与区间套的构造矛盾.故原结论成立.12.设)(x f 在],0[+∞上连续且有界,对),(+∞-∞∈∀a ,a x f =)(在),0[+∞上只有有限个根或无根,求证:)(lim x f x +∞→存在.证明 由)(x f 在],0[+∞上有界知)(x f 在],0[+∞上既有上界又有下界,不妨设上界为v ,下界为u ,若v u =,则v u x f x ==+∞→)(lim ,结论必然成立,故以下假定v u <. 令],[],[11v u v u =,二等分区间],[11v u ,分点为211v u +,由于2)(11v u x f +=在),0[+∞上只有有限个根或无根,而且)(x f 连续,因而11,0X x X >∀>∃时,有2)(11v u x f +>或2)(11v u x f +<.若2)(11v u x f +>,令⎥⎦⎤⎢⎣⎡+=11122,2],[v v u v u ,若2)(11v u x f +<,则令⎥⎦⎤⎢⎣⎡+=2,],[11122v u u v u ,因此1X x >∀时,],[)(22v u x f ∈,即22)(v x f u ≤≤.二等分区间],[22v u ,分点为222v u +,由于2)(22v u x f +=在),0[+∞上只有有限个根或无根且)(x f 连续,故212,X x X X >∀>∃时,有2)(22v u x f +>或2)(22v u x f +<.若2)(22v u x f +>,令⎥⎦⎤⎢⎣⎡+=22233,2],[v v u v u ,反之令⎥⎦⎤⎢⎣⎡+=2,],[22233v u u v u ,因此2X x >∀时,],[)(33v u x f ∈,即33)(v x f u ≤≤. 依此类推,得一区间套]},{[n n v u ,而且由区间套的构造知,n n n X x X X >∀>∃-,1时,n n v x f u ≤≤)(.由区间套定理知存在唯一的 ,2,1],,[=∈n v u r n n ,下证r x f x =+∞→)(lim .事实上,对0>∀ε,由闭区间套]},{[n n v u 的构造知,存在N ,N n >∀时,有),(],[εε+-⊂r r v u n n ,特别地取1+=N n ,则),(],[11εε+-⊂++r r v u N N ,按区间套的构造知11,++>∀∃N N X x X 时,),(],[)(11εε+-⊂∈++r r v u x f N N ,即εε+<<-r x f r )(,从而ε<-r x f )(,即r x f x =+∞→)(lim ,也就是说)(lim x f x +∞→存在.§3 实数的完备性1.设)(x f 在),(b a 连续,求证:)(x f 在),(b a 一致连续的充要条件是)(lim x f ax +→与)(lim x f b x -→都存在.证明 )⇒必要性由)(x f 在),(b a 一致连续知,0,0>∃>∀δε,),(,b a x x ∈'''∀且δ<''-'||x x 时,都有ε<''-')()(x f x f .特别地,当),(,δ+∈'''a a x x 时,δ<''-'x x ,故ε<''-')()(x f x f ,由Cauchy 收敛原理知)(lim x f a x +→存在.同理可知)(lim x f b x -→也存在.)⇐充分性证法1 0>∀ε,由)(lim x f a x +→存在知1δ∃,),(,1δ+∈'''∀a a x x 时,ε<''-')()(x f x f ,又由于)(lim x f b x -→也存在,故2δ∃,),(,2b b x x δ-∈'''∀时,ε<''-')()(x f x f .取⎭⎬⎫⎩⎨⎧-=4,2,2min 21a b δδδ,则由以上两条知)(x f 在),[],,(b b a a δδ-+上一致连续,而又因为)(x f 在],[δδ-+b a 上连续,因而一致连续,因此)(x f 在],(δ+a a 、],[δδ-+b a 、),[b b δ-上均一致连续,因此)(x f 在),(b a 一致连续.证法2 由已知)(lim x f ax +→与)(lim x f bx -→ 都存在,设B x f A x f bx ax ==-+→→)(lim ,)(lim ,令⎪⎩⎪⎨⎧=∈==.);,()(;)(b x B b a x x f a x Ax F则)(x F 在],[b a 连续,因而一致连续,从而)(x F 在),(b a 一致连续,而)(x F 在),(b a 上就是)(x f ,因而)(x f 在),(b a 上一致连续.2.求证数列nx n 1211+++= ,当∞→n 时的极限不存在.证明 利用Cauchy 收敛原理的否定形式证明. 取0,0210>∀>=N ε,任取N n >,则N n >2,从而 nn n x x n n 2121112+++++=-021212121212111ε==+++>+++++>n n n n n n , 由Cauchy 收敛原理的否定知数列nx n 1211+++= 当∞→n 时的极限不存在.3.利用Cauchy 收敛原理讨论下列数列的收敛性. (1))||,1||(2210M a q q a q a q a a x k n n n ≤<++++= ;(2)n n n x 2sin 22sin 21sin 12++++= ; (3)nx n n 1)1(312111+-+-+-= . 解(1)0>∀ε,由1||<q 知0lim 1=+∞→n n q,从而N ∃,N n >∀时,有εMq qn ||1||1-<+,对上述N m n N >∀,,时(不妨n m >),有m n n m n n m n x x x x x x x x +++≤+++=-++++ 2121++=++++≤++++++221121||||||||n n n n m n n q a q a x x x ()εε=-⋅-<-=++≤+++Mq q M q q M q q M n n n ||1||1||1||||||121.由Cauchy 收敛原理知数列}{n x 收敛.(2)这是(1)中21,sin ,10===q k a a k 的特殊情形,由于21||,1<≤q a k ,故数列}{n x 收敛.(3)证法1 利用Cauchy 收敛原理.0>∀ε,由01lim=∞→n n 知,N ∃,N n >∀时ε<n1,对上述N m n N >∀,,时(不妨n m >),有 mn n x x m n n m n 1)1(21)1(11)1(132+++-+++-++-=- mn n n m 1)1(21111---+++-+=. 由于01)1(21111>-+++-+--mn n n m ,故 mn n x x n m m n 1)1(21111---+++-+=- .若n m -为偶数,则mn n x x n m m n 1)1(21111---+++-+=- m m m n n n 11121312111-⎪⎭⎫ ⎝⎛-----⎪⎭⎫ ⎝⎛+-+-+= ε<+≤11n . 若n m -为奇数,则mn n x x n m m n 1)1(21111---+++-+=- ⎪⎭⎫ ⎝⎛----⎪⎭⎫ ⎝⎛+-+-+=m m n n n 111312111 ε<+≤11n . 因而由Cauchy 收敛原理知数列}{n x 收敛.证法2 先考虑数列}{n x 的偶子列}{2n x ,由于22131211221)1(3121132)1(2+--+-=+-+-+-=++n n x n n ⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=221121211214131211n n n nn x n n 2211214131211=⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-> ,故偶子列}{2n x 是单调递增的数列,又由于1211213121121)1(31211122<⎪⎭⎫ ⎝⎛----⎪⎭⎫ ⎝⎛--=-+-+-=+n n n x n n , 因而偶子列}{2n x 是单调上升且有上界的数列,由单调有界原理知}{2n x 必有极限存在,设a x n n =∞→2lim . 又由于121212++=+n x x n n 且0121lim =+∞→n n ,从而 a n x x n n n n n =++=∞→∞→+∞→121lim lim lim 212. 于是我们证得数列}{n x 的奇、偶子列均收敛而且极限相同,故数列}{n x 收敛.4.证明:极限)(lim 0x f x x →存在的充要条件是:对任意给定0>ε,存在0>δ,当δ<-'<00x x ,δ<-''<00x x 时,恒有ε<''-')()(x f x f .证明 )⇒必要性设A x f x x =→)(lim 0,则δδε<-<∀>∃>∀00,,0,0x x x ,就有2)(ε<-A x f ,因此由δ<-'<00x x ,δ<-''<00x x 知ε<-''+-'<-''--'=''-'A x f A x f A x f A x f x f x f )()())(())(()()(,因而必要性成立.)⇐充分性设}{n x 是任意满足0lim x x n n =∞→且0x x n ≠的数列,由已知0,0>∃>∀δε,只要δ<-'<00x x ,δ<-''<00x x 时,有ε<''-')()(x f x f .对上述0>δ,由于0lim x x n n =∞→,且0x x n ≠,故N n N >∀∃,时,有δ<-<||00x x n ;N m >∀时,有δ<-<||00x x m ,于是ε<-)()(m n x f x f ,即)}({n x f 是基本列,由实数列的Cauchy 收敛准则知)(lim n n x f ∞→存在.由}{n x 的取法知任意趋向于0x 而不等于0x 的实数列}{n x 都有极限)(lim n n x f ∞→存在.下证它们的极限都相等.反设)(lim ),(lim 0000x x x x x x x x n nn n n n ≠'='≠=∞→∞→,但)(lim )(lim n n n n x f x f '≠∞→∞→,则定义一个新的数列},,,,{}{2211 x x x x y n ''=, 由}{n y 的构造知)(lim 00x y x y n n n ≠=∞→,但)(lim n n y f ∞→有两个子序列极限不相等,故极限)(lim n n y f ∞→不存在,矛盾.从而任意趋向于0x 而不等于0x 的实数列}{n x 构成的数列)(n x f 都有极限存在.而且它们的极限都相等.由Heine 归结原则知)(lim 0x f x x →存在.5.证明)(x f 在0x 点连续的充要条件是:任给0>ε,存在0>ε,当δ<-'0x x ,δ<-''0x x 时,恒有ε<''-')()(x f x f .证明 )⇒必要性由)(x f 在0x 点连续知)()(lim 00x f x f x x =→,故δδε<-∀>∃>∀0,,0,0x x x ,就有2)()(0ε<-x f x f ,因此由δ<-'0x x ,δ<-''0x x 知))()(())()(()()(00x f x f x f x f x f x f -''--'=''-'ε<-''+-'≤)()()()(00x f x f x f x f .因而必要性成立. )⇐充分性设}{n x 是任意满足0lim x x n n =∞→的数列,由已知0,0>∃>∀δε,只要δ<-'0x x ,δ<-''0x x 时,就有ε<''-')()(x f x f .对上述0>δ,由于0lim x x n n =∞→,故N n N >∀∃,时,有δ<-||0x x n ,N m >∀时,有δ<-||0x x m ,于是ε<-)()(m n x f x f ,即)}({n x f 是基本列,由实数列的Cauchy 收敛准则知)(lim n n x f ∞→存在.由}{n x 的取法知任意趋向于0x 的实数列}{n x ,)(lim n n x f ∞→存在.下证它们的极限都相等.反设)(lim ),(lim 0000x x x x x x x x n nn n n n ≠'='≠=∞→∞→,但)(lim )(lim n n n n x f x f '≠∞→∞→,则定义一个新的数列},,,,{}{2211 x x x x y n ''=, 由}{n y 的构造知0lim x y n n =∞→,但)(lim n n y f ∞→有两个子序列极限不相等,故极限)(lim n n y f ∞→不存在,矛盾.从而,任意趋向于0x 的实数列}{n x 构成的数列)(n x f 都有极限存在,而且极限都相等,由Heine 归结原则知)(lim 0x f x x →存在.特别地,取}{n x 为恒为0x 的常数列,则可得)()(lim 0x f x f n n =∞→,即)()(lim 00x f x f x x =→,从而)(x f 在0x 点连续.6.证明下列极限不存在: (1)32cos11πn n n x n +-=; (2)nn n nx )1(21-+=;(3))sin(2n n x n +=π;(4)n x n cos =; (5)n x n tan =.解(1)取}{n x 的两个子序列,当k n 3=时,131336cos 13133+-=+-=k k k k k x k π,从而可以得到1lim 3=∞→k k x .而当13+=k n 时,233213)13(2cos 23313+⋅-=++=+k k k k k x k π,从而21lim 13-=+∞→k k x .}{n x 的两个子序列极限不等,故}{n x 的极限不存在. (2)对}{n x 的奇子列,由于121212211+++⎪⎭⎫⎝⎛+=k k k x ,而且12lim 12=+∞→k k ,故1lim 12=+∞→k k x ;对}{n x 的偶子列,由于k k k x 22221+=,而222212222→⋅≤+≤k k k ,故2lim 2=∞→k k x .原数列的奇子列与偶子列极限不同,故}{n x 的极限不存在.(3)由于()21lim2=-+∞→n n nn ,故取41=ε,则存在00,N n N >∀时 41212=<--+εn n n , 从而 4121412<--+<-n n n , 即 43412+<+<+n n n n ,从而 ()πππππ43412+<+<+n n n n .当n 为偶数时,由于ααπsin )sin(=+n ,从而由上式知()1sin 222≤+=≤n n x n π;当n 为奇数时,由于ααπsin )sin(-=+n ,从而()22sin 12-≤+=≤-n n x n π. 因此取220=ε,对N ∀,任取},max{0N N n >,则},max{10N N n >+,而且n x 和1+n x 一个在⎥⎦⎤⎢⎣⎡1,22内,另一个在⎥⎦⎤⎢⎣⎡--22,1内,从而0122ε=>-+n n x x ,由Cauchy 收敛原理的否定形式知数列}{n x 极限不存在.(4)取1sin 20=ε,对N ∀,由阿基米德公理知,存在+∈N k ,使得142+>+N k ππ,在⎪⎭⎫⎝⎛++432,42ππππk k 区间上,由于区间长度12>π,从而存在N n >,使得 ⎪⎭⎫ ⎝⎛++∈+432,421ππππk k n ,对于n 和2+n ,有1sin )1sin(222sin 22sin2cos )2cos(+=-+++=-+n nn n n n n 01sin 21sin 222ε==⋅≥, 由Cauchy 收敛原理的否定形式知数列}{cos }{n x n =极限不存在.(5)取0330>=ε,对N ∀,由阿基米德公理知,存在+∈N k ,使得N k >π,由于⎪⎭⎫⎝⎛++2,6ππππk k 的区间长度13>π,从而在⎪⎭⎫ ⎝⎛++2,6ππππk k 中有一个或两个大于N 的正整数点.若在⎪⎭⎫⎝⎛++2,6ππππk k 中只有一个正整数点n ,则 ⎪⎭⎫⎝⎛+-+=⎪⎭⎫ ⎝⎛+++∈+ππππππππ)1(,2)1(22,21k k k k n ,从而0336tantan )1tan(tan tan )1tan(επ==>>+-=-+n n n n n ; 若在⎪⎭⎫⎝⎛++2,6ππππk k 中有两个大于N 的正整数点,则取较大的正整数为n ,同样,⎪⎭⎫⎝⎛+-+∈+πππ)1(,2)1(1k k n ,从而0336tantan )1tan(tan tan )1tan(επ==>>+-=-+n n n n n . 由Cauchy 收敛原理的否定形式知数列}{tan }{n x n =极限不存在.7.设)(x f 在),(+∞a 上可导,|)(|x f '单调下降,且)(lim x f x +∞→存在,求证:0)(lim ='+∞→x f x x .证明 由于)(lim x f x +∞→存在,由Cauchy 收敛原理,0,0>∃>∀X ε,当X x>2时,也有X x >,从而22)(ε<⎪⎭⎫ ⎝⎛-x f x f .又因为)(x f 在),(+∞a 可导,故)(x f 在⎪⎭⎫⎝⎛x x ,2上满足Lagrange 中值定理条件,因而⎪⎭⎫⎝⎛∈∃x x ,2ξ,使得2)(2)(x f x f x f ξ'=⎪⎭⎫⎝⎛-,从而)(2)(2ξf x x f x f '=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-,又根据)(x f '单调下降得εεξξ=⋅<⎪⎭⎫⎝⎛-='='≤'='222)(2)()()()(x f x f f x f x x f x x f x ,因此0)(lim ='+∞→x f x x .8.设)(x f 在),(+∞-∞可导,且1)(<≤'k x f ,任给0x ,令),2,1,0()(1 ==+n x f x n n ,求证:(1) n n x +∞→lim 存在;(2) 上述极限为)(x f x =的根,且是唯一的.证明(1)0>∀ε,取k x x k N ln )1(ln1--=ε,N m n >∀,,不妨m n <,下证ε<-||n m x x .由已知)(x f 在),(+∞-∞可导,故由Lagrange 中值定理得1111))(()()(---+-≤-'=-=-n n n n n n n n x x k x x f x f x f x x ξ,同理 ,211----≤-n n n n x x k x x ,依此类推得011x x k x x nn n -≤-+,因此n n m m n n m m m n m x x x x x x x x x x x -++-≤-+-+-=-+-+--11111011101011)(x x k k k x x k x x k n n m n m -+++=-++-≤+--010111)(x x kk x x kk nn n--=-++<+ .由于k x x k N n ln )1(ln1--=>ε,而1<k ,从而01)1(lnln x x k k n --<ε,故ε<--=-011x x kk x x nn m ,因此由Cauchy 收敛原理知n n x +∞→lim 存在.(2)由于)(x f 在),(+∞-∞可导,因而连续,在)(1n n x f x =+两边同时对∞→n 取极限,则)lim (lim n n n n x f x +∞→+∞→=,即n n x +∞→lim 是)(x f x =的根,下证唯一性.反设有)(,b a b a ≠,且)(a f a =,)(b f b =,则b a b a k b a f b f a f b a -<-≤-⋅'=-=-)()()(ξ,矛盾,故根是唯一的.9.设)(x f 在],[b a 满足条件:(1)10],,[,,)()(<<∈∀-≤-k b a y x y x k y f x f ; (2))(x f 的值域包含在],[b a 内.则对任意],[0b a x ∈,令),2,1,0()(1 ==+n x f x n n ,有(1)n n x +∞→lim 存在;(2)方程)(x f x =的解在],[b a 上是唯一的,这个解就是上述极限值. 证明(1)0>∀ε,取k x x k N ln ||)1(ln01--=ε,N m n >∀,,不妨m n <,下证ε<-n m x x .由已知)(1n n x f x =+,而],[0b a x ∈且)(x f 的值域包含在],[b a 内,因而对n ∀,都有],[b a x n ∈,从而01111)()(x x k x x k x f x f x x n n n n n n n -≤-≤-=---+,因此n n m m n n m m m n m x x x x x x x x x x x -++-≤-+-+-=-+-+--11111011101011)(x x k k k x x k x x k n n m n m -+++=-++-≤+--ε<--=-++<+010111)(x x kk x x kk nn n.因此由Cauchy 收敛原理知n n x +∞→lim 存在.(2)设方程)(x f x =在],[b a 上有两个不同的解d c ,,则d c d c k d f c f d c -<-<-=-)()(,矛盾,故根是唯一的.§4 再论闭区间上连续函数的性质1.设)(x f 在],[b a 上连续,并且最大值点0x 是唯一的,又设],[b a x n ∈,使)()(lim 0x f x f n n =+∞→,求证0lim x x n n =+∞→.证明 不妨设),(0b a x ∈,当a x =0或b x =0时同理可证.对任意},min{000x b a x --<<ε,由于)(x f 在],[b a 上连续,故)(x f 在],[0ε-x a 、],[00εε+-x x 、],[0b x ε+上连续,由闭区间连续函数的最值定理,)(x f 在],[0ε-x a 、],[00εε+-x x 、],[0b x ε+上均有最大值,显然)(x f 在],[00εε+-x x 上的最大值为)(0x f ,设)(x f 在],[0ε-x a 和],[0b x ε+上的最大值为M ,由最大值点的唯一性可知M x f >)(0.取02)(0>-Mx f ,由)()(lim 0x f x f n n =+∞→知N n N >∀∃,时,2)()()(00Mx f x f x f n -<-,即 M Mx f M x f x f x f n >+=-->2)(2)()()(000,而)(x f 在],[0ε-x a 和],[0b x ε+上的最大值为M ,故),(00εε+-∈x x x n ,即ε<-||0x x n ,从而0lim x x n n =+∞→.2.设)(x f 在],[b a 上连续,可微;又设 (1) )(max )(min x f p x f bx a bx a ≤≤≤≤<<;(2) 如果p x f =)(,则有0)(≠'x f , 求证:p x f =)(的根只有有限多个.证明 利用区间套定理.反设p x f =)(在],[b a 上有无穷多个根,设],[],[11b a b a =,二等分区间],[11b a ,则在两个子区间中必有一个区间含有p x f =)(的无穷多个根,设此区间为],[22b a ,再二等分区间],[22b a ,则在两个子区间中必有一个区间含有p x f =)(的无穷多个根,设此区间为 ],,[33b a .依此类推得一区间套]},{[n n b a ,由区间套的构造知p x f =)(在任意],[n n b a 有无穷多个根.由区间套定理知],[b a r ∈∃,使得对于任意],[,n n b a r N n ∈∈+.若p r f ≠)(,则令p x f x g -=)()(,)(x g 也在],[b a 连续,且0)()(≠-=p r f r g ,从而由保号性知),(,δδδ+-∈∀∃r r x 时,都有0)(≠x g ,即p x f ≠)(,而由区间套知N n N >∀∃,时),(],[δδ+-⊂r r b a n n ,即p x f =)(在],[n n b a 无根,这与区间套的构造矛盾.若p r f =)(,则0)(≠'r f ,即0)()(l i m ≠--→rx r f x f rx ,从而x ∀'∃,δ,当δ'<-<||0r x 时,有0)()(≠--rx r f x f ,即p x f ≠)(,从而在),(δδ'+'-r r 上)(x f 只有一个根r ,而由区间套知N n N >∀∃,时),(],[δδ+-⊂r r b a n n ,即p x f =)(在],[n n b a 只有一个根,这与区间套的构造矛盾.因此p x f =)(在],[b a 上只有有限多个根.3.设)(x f 在],[b a 上连续,0)(,0)(><b f a f ,求证:存在),(b a ∈ξ,使0)(=ξf 且)(0)(b x x f ≤<>ξ.证明 令],[|{b a x x E ∈=且}0)(=x f ,由于0)(,0)(><b f a f ,且)(x f 在],[b a 上连续,由介值性定理知φ≠E ,从而E 为非空有界数集,由确界原理知E 有上确界,设E sup =ξ,下证0)(=ξf .事实上,由于E sup =ξ,由本章第一节习题3知可以在E 中选取数列}{n x ,使ξ=∞→n n x lim ,又由)(x f 连续知0)(lim )lim ()(===∞→∞→n n n n x f x f f ξ,又对于],(b x ξ∈∀,由于E x ∉,从而0)(≠x f ,又根据0)(>b f 知0)(>x f ,因而结论成立.4.设)(x f 是],[b a 上的连续函数,其最大值和最小值分别为M 和)(M m m <,求证:必存在区间],[βα,满足条件:(1) m f M f ==)(,)(βα或M f m f ==)(,)(βα; (2) M x f m <<)(,当),(βα∈x .证明 由于)(x f 是],[b a 上的连续函数,且有最大值M 和最小值m ,故由最值定理知],[b a c ∈∃,使得M c f =)(;],[b a d ∈∃,使得m d f =)(,由于M m <,故d c ≠,令},min{d c =α,},max{d c =β,则在区间],[βα上满足:(1)m f M f ==)(,)(βα或M f m f ==)(,)(βα;(2)对),(βα∈∀x ,由于m f M f ==)(,)(βα或M f m f ==)(,)(βα,而m M ,分别为],[b a 上的最大值和最小值,故M x f m <<)(.5.设)(x f 在]2,0[a 上连续,且)2()0(a f f =,求证:存在],0[a x ∈,使)()(a x f x f +=.证明 考虑辅助函数)()()(a x f x f x g +-=,],0[a x ∈.若)()0(a f f =,根据已知条件)2()0(a f f =可知,取0=x 或a x =时,均有)()(a x f x f +=,命题已证.若)()0(a f f ≠,则)()0()0(a f f g -=,)0()()2()()(f a f a f a f a g -=-=,从而)0(g 与)(a g 符号相反,由零点定理知],0[a x ∈∃,使0)(=x g ,即)()(a x f x f +=.6.设)(x f 在],[b a 上连续,且取值为整数,求证≡)(x f 常数.证明 反设)(x f 不恒为常数,则],[,21b a x x ∈∃,使得)()(21x f x f ≠,又由于)(x f 取值为整数,故)(),(21x f x f 均为整数,在)(),(21x f x f 之间任取一非整数c ,则由介值性定理知],[b a ∈∃ξ,使得c f =)(ξ,这与)(x f 取值为整数矛盾.7.设)(x f 在),(b a 一致连续,±∞≠b a ,,证明:)(x f 在],[b a 上有界.证明 由于)(x f 在],[b a 上一致连续,故取01>=ε,则0>∃δ,当δ<-21x x 时,有1)()(21<-x f x f . 取定11,b a ,其中δ+<<a a a 1,b b b <<-1δ,则],(1a a x ∈∀, 有δ<-1a x ,故1)()(1<-a f x f ,因而1)()(1+<a f x f ;同理),[1b b x ∈∀,有δ<-1b x , 故1)()(1<-b f x f ,因而1)()(1+<b f x f ,因此)(x f 在区间],(1a a 和区间),[1b b 均有界. 另一方面,由于)(x f 在],[11b a 上一致连续,根据闭区间上连续函数的性质可知存在01>M ,使得111)(],,[M x f b a x <∈∀.取0}1)(,1)(,max{111>++=b f a f M M ,则),(b a x ∈∀,均有M x f <)(,因而)(x f 在),(b a 上有界.8. 若函数)(x f 在),(b a 上满足利普希茨(Lipschitz )条件,即存在常数K ,使得x x K x f x f ''-'≤''-')()(,),(,b a x x ∈'''.证明:)(x f 在),(b a 上一致连续.证明 ,0>∀ε 取,21εδK=则对δ<''-'∈'''∀x x b a x x ),,(,,由Lipschitz 条件知εε<⋅<''-'≤''-'KK x x K x f x f 21)()(,因而依定义知)(x f 在),(b a 上一致连续.9.试用一致连续的定义证明:若函数)(x f 在],[c a 和],[b c 上都一致连续,则)(x f 在],[b a 上也一致连续.证明 对0>∀ε,由函数)(x f 在],[c a 一致连续知01>∃δ,对],[,21c a x x ∈∀而且121δ<-x x ,就有2)()(21ε<-x f x f ;又根据函数)(x f 在],[b c 上一致连续知02>∃δ,],[,21b c x x ∈∀且221δ<-x x 时,就有2)()(21ε<-x f x f .取},min{21δδδ=,则],[,21b a x x ∈∀且δ<-21x x 时,若21,x x 同属于],[c a ,有εε<<-2)()(21x f x f ;若21,x x 同属于],[b c ,也有εε<<-2)()(21x f x f ;若21,x x 一个属于],[c a ,另一个属于],[b c ,则由δ<-21x x 知δδ<-<-c x c x 21,,从而εεε=+<-+-≤-22)()()()()()(2121x f c f c f x f x f x f .因而],[,21b a x x ∈∀且δ<-21x x 时,ε<-)()(21x f x f . 因此由一致连续的定义可知)(x f 在],[b a 上一致连续.10.设函数)(x f 在),(+∞-∞上连续,且极限)(lim x f x -∞→与)(lim x f x +∞→存在. 证明:)(x f 在),(+∞-∞上一致连续.证明 对0>∀ε,由于)(lim x f x -∞→存在,根据Cauchy 收敛原理知,存在01>X ,任意121,X x x -<时,就有ε<-)()(21x f x f ;又由于)(lim x f x +∞→存在,故存在02>X ,任意221,X x x >,就有ε<-)()(21x f x f .由于)(x f 在),(+∞-∞上连续,故)(x f 在区间]1,1[21+--X X 上连续,因而在]1,1[21+--X X 上一致连续,由一致连续的定义知,对上述0>ε,存在01>δ,任意]1),1([,2121++-∈X X x x ,只要112δ<-x x ,就有ε<-)()(21x f x f .取0}1,min{1>=δδ,则),(,21+∞-∞∈∀x x ,只要δ<-21x x ,则21,x x 同属于区间),(1X --∞、]1),1([21++-X X 或),(2+∞X ,由上述讨论知,不管在哪种情况下,都有ε<-)()(21x f x f ,因而)(x f 在),(+∞-∞上一致连续.11.若)(x f 在区间X (有穷或无穷)中具有有界的导数,即M x f ≤')(,X x ∈,则)(x f 在X 中一致连续.证明 对0>∀ε,取Mεδ=,则对任意X x x ∈21,,只要δ<-||21x x ,根据Lagrange中值定理,存在ξ在21,x x 之间,且εδξ=<-≤-'=-M x x M x x f x f x f 212121|))((|)()(,从而)(x f 在X 中一致连续.12.求证:x x x f ln )(=在),0(+∞上一致连续.证明 由于x x x f ln )(=,故xx x xxx f 2ln 2ln 211)(+=+=',xx x x f 4ln )(-='',令0)(=''x f 得1=x ,故1=x 是)(x f '的稳定点,当0)(),1,0(>''∈x f x ,从而)(x f '单调递增;而当0)(),,1(<''+∞∈x f x ,故)(x f '单调递减,因此1=x 是)(x f '的极大值点,也是最大值点,而1)1(='f ,从而对),0(+∞∈∀x ,1)(≤'x f .再令0)(='x f 得2-=e x ,在区间),[2+∞-e 上,由于0)(≥'x f ,因而在),[2+∞-e 上1)(0≤'≤x f ,即1)(≤'x f ,由上题结论知)(x f 在),[2+∞-e 上一致连续.此外,由于0ln lim )(lim 00==++→→x x x f x x ,若令 ⎩⎨⎧=>=.00,0ln )(x x xx x g则)(x g 在]2,0[连续,因而一致连续,从而)(x g 在]2,0(上一致连续,即)(x f 在]2,0(一致连续.对0>∀ε,由)(x f 在),[2+∞-e 上一致连续知,01>∃δ,对任意),[,221+∞∈-e x x 且121δ<-x x ,都有ε<-)()(21x f x f ;又由)(x f 在]2,0(上一致连续知,02>∃δ,对任意]2,0(,21∈x x 且221δ<-x x ,也有ε<-)()(21x f x f .取0}1,,min{21>=δδδ,则当),0(,21+∞∈x x 且δ<-21x x 时,要么],2,0(,21∈x x 要么),[,221+∞∈-e x x ,从而ε<-)()(21x f x f .因此x x x f ln )(=在),0(+∞上一致连续.13.设)(x f 在),(+∞a 上可导,且+∞='+∞→)(lim x f x ,求证:)(x f 在),(+∞a 上不一致连续.证明 取10=ε,对0>∀δ,由于+∞='+∞→)(lim x f x ,故0>∃X ,当X x >时,有δ2)(>'x f ,任取X x >1,X x x >+=212δ,虽然有δδ<=-221x x ,但根据lagrange中值定理知,存在)2,(11δξ+∈x x ,使得02121122)()()(εδδξ==⋅>-⋅'=-x x f x f x f . 根据一致连续的否定定义知)(x f 在),(+∞a 上不一致连续.14.求证:x x x f ln )(=在),0(+∞上不一致连续.证明 由于+∞=+='+∞→+∞→)1(ln lim )(lim x x f x x ,由上题结论知结论成立.§5 可积性1. 判断下列函数在区间]1,0[上的可积性: (1))(x f 在]1,0[上有界,不连续点为),2,1(1==n nx ; (2)⎪⎩⎪⎨⎧=∈⎪⎭⎫⎝⎛=;0,0],1,0(,sin sgn )(x x x x f π (3)⎪⎩⎪⎨⎧=∈⎥⎦⎤⎢⎣⎡-=;0,0],1,0(,11)(x x x x x f(4)[]⎪⎩⎪⎨⎧=∈=.0,0],1,0(,1)(1x x x f x解(1)由于)(x f 在]1,0[上有界,故存在0>M ,对]1,0[∈∀x ,都有M x f ≤)(,故在区间]1,0[的任何子区间上,)(x f 的振幅M 2≤ω.对任给0>ε,由于04lim=∞→n M n ,故N n N >∀∃,时,都有24ε<n M ,特别地取10+=N n 时,也有240ε<n M . 由于)(x f 在⎥⎦⎤⎢⎣⎡1,10n 上只有有限个间断点,因而是可积的,即01>∃δ,使得对区间⎥⎦⎤⎢⎣⎡1,10n 的任何1)max(δλ<∆='i x 的分法,都有∑<∆'''2i i i x εω.取⎭⎬⎫⎩⎨⎧=011,min n δδ,对]1,0[的任意δλ<∆=)max(i x 的分法,下证εω<∆∑=n i i i x 1.由于)1,0(10∈n ,故对上述任意分法,都存在分点00,1i i x x -,使得00011i i x n x <≤-,因而∑∑∑∑∑+=-=+==-=∆++∆≤∆+∆+∆=∆ni i iii i i ni i iii i n i i i iiiixM x M xx xx o 11111110000022ωδωωωωεεεε=+<++≤222121200n M n M, 这里最后一项210εω<∆∑+=ni i i i x 是由于[]⎥⎦⎤⎢⎣⎡⊂+1,11,010n x i ,而)(x f 在⎥⎦⎤⎢⎣⎡1,10n 可积,故函数在区间[]1,10+i x 可积,因而210εω<∆∑+=n i i iix .因此0lim 1=∆∑=→ni iix ωλ,即)(x f 在]1,0[上可积.(2)由于)(x f 在]1,0[上有界,且不连续点为),2,1(1==n nx 和0=x ,根据(1)的证法知)(x f 在]1,0[上可积.(3)由于)(x f 在]1,0[上有1)(≤x f ,故)(x f 有界,而且)(x f 的不连续点为0=x 和),2,1(1==n nx ,由(2)的证法知,)(x f 在]1,0[可积. (4)由于)(x f 在]1,0[上有1)(0≤≤x f ,故)(x f 有界,而且)(x f 的不连续点只有。

华理有机6-9章答案

华理有机6-9章答案
-1 -1 -1 * *
答案: (a) C3H7NO 答案:
(b)
C2H3OCl
习题 6-2 试说明 2 己烯质谱中 m/z=41,55 和 84 的离子峰是怎样形成的。
b
CH3CH=CH CH2
a
CH2CH3 m/z=84
a -CH2CH3
CH3CH CHCH2 m/z=55
b - CH2CH2CH3
第6章
有机化合物的结构解析 思考题答案
思考题6-1 分别写出CH3Br,CH2Br2这二种化合物的同位素峰的类型及相应的峰强度的比值。 答案:CH3Br M:M+2 = 1:1 CH2Br2 M:M+2:M+4 = 1:2:1 思考题6-2 比较甲苯、顺丁二烯、环己烷和乙醇分子离子的稳定性。 答案:甲苯 >顺丁二烯 >环己烷 >乙醇 思考题6-3 当体系的共轭双键增多时,紫外光谱会发生什么变化,解释其原因。 答案:随着共轭双键的增长,分子的 π -π 共轭增强,减低了π →π 跃迁所需的能量,发色团吸收波 长向长波长方向移动,产生红移现象。 思考题6-4 CH3CN的最低能量跃迁是什么跃迁,请判断CH3CN是否有发色团。 答案:CH3CN分子内最低的能量跃迁是n→π ,CN基团是发色团。 思考题6-5 判断2,3-二甲基-2-丁烯是否有双键的红外吸收,解释其原因。 答案: 2,3-二甲基-2-丁烯是一个对称性很高的分子, 没有偶极距的变化, 因此没有双键的红外吸收。 思考题6-6 比较乙酸乙酯,乙酰氯,乙酰胺三个化合物的羰基伸缩振动峰的大小? 答案:乙酰氯(1800cm )> 乙酸乙酯(1735cm )> 乙酰胺(1690cm ) 习题答案 习题 6-1 化合物 A,B 的质谱数据列于表中,试确定其分子式。

华南理工大学高数下答案(第九章曲线积分与曲面积分)

华南理工大学高数下答案(第九章曲线积分与曲面积分)

对弧长的曲线积分1、计算C,其中曲线C是y =02x a ≤≤的一段弧()0a >。

解:C 的参数方程为22cos 022cos sin x a y a θπθθθ⎧=≤≤⎨=⎩原式222202cos 4cos 4a a d a ππθθ===⎰⎰2、计算4433L x y ds ⎛⎫+ ⎪⎝⎭⎰,其中L 星形线33cos ,sin x a t y a t ==在第一象限的弧02t π⎛⎫≤≤ ⎪⎝⎭。

解:原式()47766244333200sin cos cos sin 3cos sin 36t ta t t a t tdt a a ππ⎡⎤-=+==⎢⎥⎣⎦⎰ 3、计算xyzds Γ⎰,其中Γ为折线ABC ,这里,,A B C 依次为点()()()0,0,0,1,2,3,1,4,3。

解:AB 段参数方程2013x t y t t z t=⎧⎪=≤≤⎨⎪=⎩,BC 段参数方程122013x y t t z =⎧⎪=+≤≤⎨⎪=⎩原式()11301212ABBCxyzds xyzds dt t dt =+=++⎰⎰⎰⎰11420012618t t ⎤⎡⎤=++=⎣⎦⎥⎦ 4、计算()22xy ds Γ+⎰,其中Γ为螺旋线cos ,sin ,x t t y t t z t ===上相应于t 从0到1的弧。

解:方法一 原式11t t ==⎰⎰)(()2111222000111222222t dt t t t dt ⎫'⎡=+=+-+⎣⎰⎰100t =-⎰⎰原式(100111ln 222t ⎡⎤=-=-+⎢⎥⎣⎦⎰122=- 方法二、原式11tt ==⎰⎰)001112222t dt ===⎰⎰⎰2101112u +-=⎰(1101111222u ⎡=+--⎢⎣⎰⎰(10011ln 122u ⎡⎤=-+⎢⎥⎣⎦⎰(011ln 222=-+⎰原式(1ln 24= 方法三、原式11t t ==⎰⎰因为422234t t '==(22'==(()ln 1t '⎛⎫+=+=所以(11ln 42t t '⎫+=⎪⎭原式((11111ln ln 14222t ⎤==-++⎥⎦5、计算22Lx y ds +⎰,其中22:0L x y ax a +=>解:22cos x y ax r a θ+=⇒=,曲线L 的参数方程为2cos 22sin cos x a y a θππθθθ⎧=-≤≤⎨=⎩原式222202cos 2cos 2a ad a πππθθθ-===⎰⎰6、计算22x y Leds +⎰,其中L 为圆周222x y a +=,直线,0y x y ==在第一象限内所围成的扇形的边界。

工科类本科《高等数学》第7-9章自测题参考答案

工科类本科《高等数学》第7-9章自测题参考答案

工科类本科《高等数学》第7,8,9章自测题参考答案一、填空题:1.极限00x y →→12- ;20tan()lim x y xy y →→= 2;0x y →→= -2 .解:利用等价无穷小量替换或根式有理化及重要极限求待定型的极限:00000111lim sin()2x x x y y y xy xy xy →→→→→→-+==-=-或 0000112lim 2x x y y xy xy →→→→-==-;222000tan()limlim lim 2x x x y y y xy xy x y y →→→→→→===;)()))00000111limlim lim 2121xyxyx x x x y y y y xyxyxye xye →→→→→→→→====-----或()000002limlim2112x x x x xy y y y y xy xyxy e →→→→→→→→====---.2.若22(,)22f x y x xy ax y =+++在点)1,1(-处取得极值,则a = -2 . 解:依题意,有(1,1)0,(1,1)0x y f f ''-=-=.而(,)42x f x y x xy a '=++, 于是,有(1,1)420x f a '-=-+=,解得 2.a =-3.函数2sin()z x xy =的全微分dz = 22222sin()cos()2cos()xy xy xy dx x y xy dy ⎡⎤++⎣⎦. 解:z zdz dx dy x y∂∂=+∂∂,而222222sin()cos()sin()cos(),z xy x xy y xy xy xy x ∂=+⋅=+∂222cos()22cos()z x xy xy x y xy y∂=⋅=∂.故22222sin()cos()2cos()dz xy xy xy dx x y xy dy ⎡⎤=++⎣⎦. 4. 设函数44224z x y x y =+-,则此函数在点(1,1)处的全微分(1,1)dz = ()4dx dy -+ .解:(1,1)(1,1)(1,1)x y dz z dx z dy ''=+,而()3211(1,1)484x x y z x xy=='=-=-,()3211(1,1)484y x y z y x y =='=-=-,故()(1,1)4dz dx dy =-+.5.设22()z f x y =+,且()f u 可导,则z x ∂=∂()222xf x y '+,22z x∂=∂()()2222224f x y x f x y '''+++.解:()()222222zf x y x xf x y x∂''=+⋅=+∂, ()()()()2222222222222224zf x y xf x y x f x y x f x y x∂''''''=+++⋅=+++∂. 6. 设方程1xy xz yz ++=确定隐函数(,)z f x y =, 则z x ∂=∂ y z x y +-+ , z y ∂=∂ x zx y+-+ . 解:令(,,)1F x y z xy xz yz =++-,则(,,)(,,),(,,)(,,)y x z z F x y z F x y z z y z z x zx F x y z x y y F x y z x y''∂+∂+=-=-=-=-''∂+∂+. 二、单项选择题:1.设有直线⎩⎨⎧=+--=+++031020133:z y x z y x L 和平面0224:=-+-∏z y x ,则L 与∏( D )A. 垂直B. 平行C.L 在 ∏ 上D. 斜交解:直线L 有方向向量()()33210133271672110i j ks i j k i j k i j k =++⨯--==-+---,平面∏有法向量()4,2,1n =-,因为0,(s n n ks k ⋅≠≠为非零常数), 所以s n 与既不垂直也不平行,故L 与∏斜交.2.已知k j i b k j i a+-=++=2,32,那么a 与b ( A )A. 垂直B. 平行C. 夹角为030D. 夹角为060 解:因为()1122310a b ⋅=⨯+⨯-+⨯=,所以a b ⊥. 3. 已知函数22f x+y,x -y =x -y (),则(,)(,)f x y f x y x y∂∂+=∂∂( C ). (A )22x y - (B) 22x y + (C) x y + (D) x y -解:因为()()22f x+y,x -y =x -y x+y x -y =(),所以(,)f x y xy =, 故(,)(,).f x y f x y y x x y∂∂+=+∂∂ 4. 设yz x =, 则dz =( A ).(注意分清对幂函数还是指数函数求导) (A)1ln y y yxdx x xdy -+ (B)11y y yx dx yx dy --+(C)1ln y y x xdx yxdy -+ (D)ln ln y y x xdx x xdy +5.曲线 t a x cos =,t a y sin =,amt z =,在 4π=t 处的切向量是 ( D ).A .)2,1,1( B.)2,1,1(- C.)2,1,1(m D.)2,1,1(m -解:曲线在4π=t 处有切向量()())44,,sin ,cos ,t t t t t s x y z a t a t am a a am ππ==⎛⎫'''==-=-=- ⎪ ⎪⎝⎭. 6. 函数(,,)f x y z xy z =+在点(1,1,1)-处沿方向(2,1,2)l =-的方向导数为( C ) A. 1; B.23; C. 13; D. 0. 解:所求的方向导数(1,1,1)(1,1,1)cos (1,1,1)cos (1,1,1)cos x y z l f f f f αβγ''''-=-+-+-. 而11(1,1,1)1,(1,1,1)1,(1,1,1) 1.x y z y x f y f x f =='''-==-==-= 又2213l =+=,从而212cos ,cos ,cos 333αβγ===-.故2121(1,1,1)1113333l f ⎛⎫'-=⨯+⨯+⨯-= ⎪⎝⎭.7.二元函数ln()z xy =的全微分为( A ).A.dx dy x y +; B. dx dy xy +; C. dx dy y x+; D. dxdyxy . 解:全微分z z dz dx dy x y ∂∂=+∂∂,而1111,z z y x x xy x y xy y ∂∂=⋅==⋅=∂∂.故dx dydz x y=+ 三、证明题:1.设()F u z xy x =+,y u x =,()F u 为可导函数. 求证:z zx y z xy x y∂∂+=+∂∂. 证 因为2()()()()z y y y F u xF u y F u F u x x x ∂⎛⎫''=++⋅-=+- ⎪∂⎝⎭;1()()z x xF u x F u y x ∂''=+⋅=+∂. 所以 ()()()()()z z y xy x y F u F u y x F u xy xF u xy z xy x y x ∂∂⎛⎫''+=+-++=++=+ ⎪∂∂⎝⎭. 2. 设22()y f x y z -=, ()f u 为可导函数. 求证:211z z zx x y y y ∂∂+=∂∂. 证 因为2222222222222222()()2()()()()x z y y xyf x y f x y xf x y x f x y f x y f x y '∂-''⎡⎤=-⋅-=-⋅-=-⎣⎦∂---, ()222222222222222()()2()2()()()f x y y f x y y z f x y y f x y y f x y f x y '--⋅-⋅-'∂-+-==∂--.故22222222222222221112()1()2()1()()()z z xyf x y f x y y f x y z x x y y x f x y y f x y yf x y y ''∂∂--+-+=-⋅+⋅==∂∂---. 四、计算题:1.设2(,)x z f x y y =,其中f 具有连续的二阶偏导数,求222,,,z z z z x y x x y∂∂∂∂∂∂∂∂∂. 解:22121211(,)(,)22,z x x f x y f x y xy f xyf x y y y y∂''''=⋅+⋅=+∂2222121222(,)(,),z x x x xf x y f x y x f x f y y y y y ⎛⎫∂''''=⋅-+⋅=-+ ⎪∂⎝⎭212122211222f f z z f xyf yf xy x x x x y y xx ''⎛⎫∂∂∂∂∂∂⎛⎫'''==+=++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭ 221112221221112222211112222442f xyf yf xy f xyf f xf x y f yf y y y y⎛⎫⎛⎫''''''''''''''''=++++=+++ ⎪ ⎪⎝⎭⎝⎭, 21212122111222f f z z f xyf f xf xy x y y x y y y y y y ''⎛⎫∂∂∂∂∂∂⎛⎫''''==+=-+++ ⎪ ⎪∂∂∂∂∂∂∂⎝⎭⎝⎭2211112221222221122x x f f x f xf xy f x f y y y y ⎛⎫⎛⎫''''''''''=-+-+++-+ ⎪ ⎪⎝⎭⎝⎭231211122223122x xf xf f f x yf y y y''''''''=-+--+.注:因为f 具有连续的二阶偏导数,所以1221f f ''''=.2.设22220x y z z ++-=,求22,z zx y∂∂∂∂.解:令222(,,)2F x y z x y z z =++-,则(,,)2(,,)221x z F x y z z x xx F x y z z z '∂=-=-='∂--,(,,)2(,,)221y z F x y z z y y yF x y z z z '∂=-=-='∂--, 2222223(1)(1)(1)11(1)(1)(1)z y z y z y y z z y z y z y y y y z z z z ⎛⎫∂--⋅- ⎪-+⋅∂⎛⎫∂∂∂∂-+⎛⎫⎝⎭-===== ⎪ ⎪∂∂∂∂----⎝⎭⎝⎭. 注意:z 是关于,x y 的二元函数.3.设方程组22222x y uv xy u v ⎧++=⎪⎨--=⎪⎩确定隐函数组(,),(,)u u x y v v x y ==,求 u x ∂∂,v x ∂∂.解法一:分别对两方程两边分别对x 求偏导,得20220u v x v u x x u v y u v x x ∂∂⎧++=⎪⎪∂∂⎨∂∂⎪--=⎪∂∂⎩ 即 222uv v u x x x u v u v yxx ∂∂⎧+=-⎪⎪∂∂⎨∂∂⎪+=⎪∂∂⎩当222()022v uJ u v u v==--≠时,有222114(4)22()x u u xv yuxv yu y v x J J u v -∂+==--=∂- , 222114(4)22()v x v xu yvyv xu u y x J J u v -∂+==+=-∂- . 解法二:令2222(,,,)0(,,,)20F x y u v x y uvG x y u v xy u v ⎧=-+=⎪⎨=---=⎪⎩,则22(,)2()22(,)uv v u F G J u v u v u v ∂===---∂2(,)42(,)xv x u F G J xv yu y v x v ∂===---∂ , 2(,)42(,)ux v x F G J yv xu u yu x ∂===+-∂ 故2242()xv uv J u xv yu x J u v ∂+=-=∂- ,2242()ux uv J v xu yvx J u v ∂+=-=-∂-. 4.求函数3322(,)339f x y x y x y y =+-+-的极值.解:解方程组223603690f x x xf y y y∂⎧=-=⎪∂⎪⎨∂⎪=+-=∂⎪⎩,得四个驻点1234(0,3),(0,1),(2,3),(2,1)P P P P --. 又66,0,66xx xy yy f x f f y ''''''=-==+.记(),(),()(1,2,3,4)xx i xy i yy i A f P B f PC f P i ''''''====对21(0,3),6(12)00,P AC B --=-⨯-->且60A =-<,则1(0,3)P-是函数的极大值点,极大值(0,3)27f -=;对22(0,1),61200P AC B -=-⨯-<,则2(0,1)P 不是极值点; 对()23(2,3),61200P AC B --=⨯--<,则3(2,3)P -不是极值点;对24(2,1),61200P AC B -=⨯->,且60A =>,则4(2,1)P 是函数的极小值点,极小值(2,1)9f =-. 5.求曲面222327xy z +-=在点(3,1,1)P 处的切平面方程和法线方程.解:令 222(,,)327F x y z x y z =+--,则曲面在点(3,1,1)P 处的法向量为()(3,1,1)(3,1,1)(,,)(6,2,2)(18,2,2)29,1,1x y z n F F F x y z '''==-=-=-于是,所求的切平面方程为 9(3)(1)(1)0x y z -+---=,即 9180x y z +--=.法线方程为311911x y z ---==-. 6.求曲面z=在点(3,4,5)P 处的切平面方程和法线方程.解:曲面在点(3,4,5)P 处的法向量为()(3,4,5)(3,4,5)341(,,1)1),,13,4,5555x y n z z ⎛⎫''=-=-=-=- ⎪⎝⎭. 于是,所求的切平面方程为 3(3)4(4)5(5)0x y z -+---=,即 3450x y z +-=.法线方程为345345x y z ---==-. 7.求函数23(,,)f x y z xy yz =+在点0(1,1,2)P 处沿从0(1,1,2)P 到(3,1,3)P -方向的方向导数0P fl∂∂.解:记()02,2,1l P P ==-,(223l =+=,从而221cos ,cos ,cos 333αβγ==-=.又()23211(1,1,2)2(1,1,2)1,(1,1,2)210,(1,1,2)312.y x y z y z f yf xy z f yz ==='''===+===故所求的方向导数P f l∂∂(1,1,2)cos (1,1,2)cos (1,1,2)cos x y z f f f αβγ'''=++221110122333⎛⎫=⨯+⨯-+⨯=- ⎪⎝⎭.。

高等数学 下册 (殷锡铭 许树声 著) 华东理工出版社 课后答案 第9章 khdaw

高等数学 下册 (殷锡铭 许树声 著) 华东理工出版社 课后答案 第9章 khdaw

1第9章(之6)(总第49次)教学内容:§9.4.3二阶线性常系数微分方程的解法(A )**1.求下列方程的通解(1);08=+′′y y 解:,,082=+λi 222,1±=λ。

x c x c y 22sin 22cos 21+=(2)'6"+y y 解:62+λλ所以通解为(1)'8''−y y 解:∵82−λ通解为:)1('=c y 得到:1c (2)'4"+y y 解:42+λλ通解为:。

)5sin 5cos (212x c x c e y x +=−代入初始条件有:,πππe c c e y =⇒=+=−221)0()2(,)5cos 55sin 5()5sin 5cos (22('212212x c x c e x c x c e y x x +−++−=−−π得:。

特解为:。

πe c −=1)5sin 5cos (2x x e y x+−=−π2(3);10)0(',6)0(,03'4"===++y y y y y 解:,,0342=++λλ0)3)(1(=++λλ所以通解为。

x x e c e c y 321−−+=代入初始条件有:,6)0(21=+=c c y ,1033)0('21321=−−=−−=−−c c e c e c y x x 特解为:。

x x e e y 3814−−−=**3.求解初值问题1)0(1d 20≥⎪⎩⎪⎨⎧==++′∫x y x y y y x 解:将原方程对求导得x ′′+′+=y y y 201()且有′=−=−y y ()()01201微分方程(1)的通解为:,y e C x C x =+−()12代入初始条件,得,1)0(,1)0(−=′=y y 1,021==C C 故所求问题的解为:。

x e y −=***4.设函数二阶连续可微,且满足方程,求函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
由 y c1e x c2 e x , y c1e x c2 e x ,可得 c1 c2 0, c1 c2 1, 故 c1
1 1 1 , c 2 ,这样就得到所求曲线为 y (e x e x ) ,即 y sinh x . 2 2 2
y 4 y 0








) (B) y C cos 2 x(1 sin 2 x) ; (D) y C cos(2 x ) .
(A) y 3C cos 2 x (12 29C ) sin 2 x ; (C) y kC cos 2 x 1 k 2 C 2 sin 2 x ;
将其中 P( y )
1 1 , Q( y ) 代入一阶线性方程求解公式,得通解 y ln y y

1 1 y ln y dy 1 y ln y dy 1 xe dy e ln(ln y ) c e ln(ln y ) dy c e y y
1 1 , 法线方程为 Y y = ( X x) , y y 1 (0 x) 从而可得所求微分方程为 x yy 0 . y
因为法线过原点,所以 0 y
第 9 章(之 2) (总第 45 次) 教学内容:§9.2 .1 可分离变量的方程; §9.2 .2 一阶线性方程 **1.求下列微分方程的通解: (1) y 解:
x(1 y ) ; 1 x2
dy xdx dy xdx ,两边积分 , 2 1 y 1 x 1 y 1 x2
分离变量
得 ln(1 y)
C 1 . ln(1 x 2 ) ln C ,即 y 1 2 1 x2
(2) y
x 2 x y 2 ; e 2y
2
x
0
解. **6.求以下列函数为通解的微分方程: (1) y 3 Cx 1 ; 解 将 等 式 y 3 Cx 1 改 写 为 y 3 Cx 1 , 再 在 其 两 边 同 时 对 x 求 导 , 得
3 y 2 y C ,代入上式,即可得到所求之微分方程为 3xy 2 y y 3 1.
ye

2 2 1 1 x dx x dx c ( ) e dx x x2


1 x2
c 1 1 1 1 1 1 c ( 2 ) x 2 dx 2 c x 2 x 2 2 x x x 2 x x
1
1
y
代入方程得 y y y 0 ,
1
此外 y(0) 0,y (0) 1,
x 2 3 故y 3e 2 sin x 是初始值问题的解. 3 2
*5.验证 y e x e t d t Ce x (其中 C 为任意常数)是方程 y y e x x 的通解.
**6.设降落伞自塔顶自由下落,已知阻力与速度成正比(比例系数为 k ) ,求降 落伞的下落速度与时间的函数关系. dv 解:根据牛顿运动第二定理有 m mg kv .这是一个可分离变量方程,分离 dt 变量并积分得 1 t ln(mg kv ) C . k m 由初始条件 v(0) 0 ,

dy dx y 1 x2
( y 0 ),

dy y
dx 1 x2

ln y arcsin x C , y Ce arcsin x ,
arcsin 1 2 , C 1 , y e arcsin x . y ( ) e , e Ce 2
x 2 y xy y 0 .
**7.建立共焦抛物线族 y 2 4C ( x C ) (其中 C 为任意常数)所满足的微分方 程[这里的共焦抛物线族是以 x 轴为对称轴,坐标原点为焦点的抛物线] .
2

在方程 y 2 4C ( x C ) 两边对 x 求导有 2 yy 4C ,从这两式中消去常数
第 9 章(之 1) (总第 44 次) 教学内容:§9.1 微分方程基本概念 *1 . 微 分 方 程
2( y ) 3 9 y y 5xy 7




( ) (A)3; (B)4; (C)6; 答案(A) 解 微分方程的阶数是未知函数导数的最高阶的阶数.
(D)7.
*2 . 下列函数中的 C 、 、 及 k 都是任意常数,这些函数中是微分方程
所求方程为 y y (2 x yy ) . **8.求微分方程,使它的积分曲线族中的每一条曲线 y y( x) 上任一点处的法 线都经过坐标原点. 解 任取 y y( x) 上的点 ( x , y) ,曲线在该点处的切线斜率为 y =
dy . dx
所以过点 ( x, y) 的法线斜率为
x2 2
dy ,即 dx
dy dy xy 2 x , 分 离 变 量 得 xd x , 积 分 得 dx y2
y Ce
2,
x 2
在原方程两边以 x 2 代入,可得初试条件 y
2 . 据 此 可 得
C 4e ,所以原方程的解为
1
y 4e
x2 1 2
2.

c o xt dx c o xt dx ye C e c o xse dx e ln sin x (C e cos x e ln sin x dx)
csc x(C e cos x sin xdx) (C e cos x ) csc x ,
由 y ( ) 1 , 可确定 C 2 ,所以 2 (4) x 2 d y (2 xy x 1) d x 0 , y 解: 方程变形为

y (2 e cos x ) csc x .
x 1
0.
y
2 1 1 y 2 ,是一阶线性非齐次方程,其通解为 x x x
2
பைடு நூலகம்
解:分离变量 2 ye y dy xe 2 x dx ,两边积分就得到了通解
ey
2
1 1 1 ( xe 2 x e 2 x dx) ( xe 2 x e 2 x ) c . 2 2 2

(3) (2 x 1)e y y 2e y 4 0 . 解:
ey d y dx , y 2x 1 2e 4
d2 y d y y0 2 3 dx sin x 是初值问题 d x 的解. d y 2 y x 0 0, x 0 1 dx
*4.证明:函数 y
2 3e 3
1 x 2
1
证明
x 3 2 x 3 3 y e s i n xe 2 c o s x, 3 2 2 x 3 2 x 3 3 e sin x e 2 cos x, 3 2 2 1 1

由 y(1) 0 , 得 c
1 1 1 1 , 所以特解为: y 2 . 2 2 x 2x
**4. 求微分方程 y ln y dx ( x ln y)dy 0 的通解 (提示将 x 看作是 y 的函数) . 解:将 x 看作是 y 的函数,原方程可化为
dx 1 1 x ,这是一阶线性方程, dy y ln y y
(2) y C1 x
C2 . x
解 因为给定通解的函数式中有两个独立的任意常数,所以所求方程一定是二 阶方程,在方程等式两边同时对 x 求两次导数,得
y C1 C2 2C , y 32 . 2 x x
从以上三个式子中消去任意常数 C1 和 C 2 ,即可得到所求之微分方程为
1 1 2 x x 2


1 2 x x 2
2 Ce 1 x ,解得○
x2 x
1 x x2 2
2 代入○ 1 即可 C ,○
y 1 Ce 2
*3.求解下列初值问题: (1) y
1 , y ( ) e 6 . 2 2 1 x

y

解: y =
y 1 x2
k t mg 1 得 C ln( mg ) ,即得 v 1 e m . k k
6
6
1
(2) y 2 xy e x , y(0) 1; 解: y 2 xy e x ,
y ( x) e
2 xdx
2
2
p ( x) 2 x , q ( x ) e x ,
2

e x 2 e 2 xdx dx C e x 2 e x 2 e 2 xdx dx C xe x 2 Ce x 2 ,
4
y(0) 1, 1 0 c c 1,
y ( x 1)e x .
2
(3) y y cot x e cos x , y ( ) 1 ; 2 解: y y cot x e cos x ,

x , Q( x) e c o xs . P( x ) c o t
1 1 1 ln(e y 2) ln( 2 x 1) ln C , 2 2 2
3
即 (e y 2)(2 x 1) C .
**2.试用两种不同的解法求微分方程 y 1 x y xy 的通解. 解法一 (可分离变量方程的分离变量法)这是一个一阶可分离变量方程,同 时也是一个一阶线性非齐次方程,这时一般作为可分离变量方程求解较为容易. 分离变量, y (1 x)(1 y) ,
2
2
相关文档
最新文档