华东理工大学2011年高等数学下试卷
高等数学(文科)期末试卷(A、B卷)及评分标准

( A− I )B = A2 − I = ( A− I )( A + I ) (6 分) B = A + I = ⎡⎢⎢⎢⎢⎣012
0 4 0
402⎤⎥⎥⎥⎥⎦ (8 分)
x1 y1 s1 − 2t1
x1 y1 s1
x1 y1 t1
三、 D = (−3) ⋅ x2 y2 s2 − 2t2 (4 分) = (−3) ⋅ x2 y2 s2 + 6 x2 y2 t2 (6 分)
⎪ ⎨
(λ + 3)x1 + x2 + 2x3 λ x1 + (λ − 1)x2 + x3
=λ = 2λ 无解?给
⎪⎩3(λ + 1)x1 + λ x2 + (λ + 3)x3 = 3
出你的理由。
八、(本题满分 10 分)已知随机变量 X 的密度函数为:ϕ ( x) = 2 − 2x ( 0< x < 1) 。
02⎤⎥⎥⎦ ,求矩阵 X 。
x+ y 三、(本题满分 8 分)求行列式 D = y + z
z+x
y+z z+x x+ y
z+x x+ y 。 y+z
四、(本题满分 8 分)一射手对同一目标独立地进行四次射击,若至少命中一次的概率为 80 / 81 ,
试求:(1)该射手进行一次射击的命中率;(2)该射手前两次射击全部命中的概率。
3、下列关于事件 A、B 的结论,正确的是:
【】
A、若 A、B 对立,则 P( AB) = 0 B、若 P( AB) = 0 ,则 P( A) = 0 或 P(B) = 0
C、若 A、B 互斥,则 P( A) = 1 − P(B) D、若 A、B 互斥,则 P( A + B) = 1
华东理工大学2010高数(上)期末试卷及答案

华东理工大学2010–2011学年第一学期《高等数学(上) (A)》期末考试试卷参考解答 2011.1一、(每小题4分,共20分)填空题1、曲线2ln2x xy =的拐点坐标为 。
2、曲线)2)(1(1arctan212+-++=x x x x e y x 的铅直渐近线为 。
3、将x s i n 在2π=x 处展开成带拉格朗日型余项的一阶泰勒公式为=x sin ,其中ξ在2π和x 之间。
4、由32sin 5x y x y +-=确定的隐函数的微分dy = dx 。
5、极限⎥⎦⎤⎢⎣⎡--+∞→1)11(lim 12xx x x x = 。
二、(每小题4分,共20分)选择题1、设α与β为同阶无穷小,则下列说法必定正确的是 ( ) (A ) βα~; (B) )(αβαo =-;(C )βα+与β为同阶无穷小; (D )对一切正整数n ,nα与n β为同阶无穷小。
2、函数||ln )4(22x x x y -+=的第二类间断点有几个?( )(A) 4个; (B) 3个; (C) 2个; (D) 1个。
3、设函数)(x f 为可导函数,且12)()(lim-=--→xx a f a f x ,则曲线)(x f y =在))(,(a f a 处的切线的斜率为 ( )(A) 2; (B) 1-; (C) 1; (D) 2-。
4、(8学分)设sin xx为()f x 的一个原函数,0a ≠,则()f ax dx a=⎰ ( )(A )3sin axCa x+;(B)2sin axCa x+; (C)sin axCa x+; (D)sin axCx+。
4、(9,11学分)广义积分=+⎰∞+-0xxee dx( )(A) 4π; (B) 2π; (C) π; (D) 发散。
5、设)(x f 连续,且1)(4102-=⎰-x dt t f x ,则=)8(f ( )(A) 108; (B) 48; (C) 18; (D) 8。
华理高数答案(下)

第 9 章(之 1) (总第 44 次)
教学内容:§9.1 微分方程基本概念 *1. 微分方程 2( y ) 9 y y 5xy 的阶数是
3 7
( (D)7.
0.
解: 方程变形为
y
2 1 1 y 2 ,是一阶线性非齐次方程,其通解为 x x x
ye
2 2 1 1 x dx x dx c ( ) e dx 2 x x
1 x2
c 1 1 1 1 1 1 c ( 2 ) x 2 dx 2 c x 2 x 2 2 x x x 2 x x
y C cos 2 x 1 C sin 2 x ,实质上只有一个任意常数;
(D)中的函数确实有两个独立的任意常数,而且经验算它也确实是方程的解. *3.在曲线族 y c1e c2 e 中,求出与直线 y x 相切于坐标原点的曲线.
x x
2
解
根据题意条件可归结出条件 y(0) 0, y (0) 1,
2
解:分离变量 2 ye y dy xe 2 x dx ,两边积分就得到了通解
ey
2
1 1 1 ( xe 2 x e 2 x dx) ( xe 2 x e 2 x ) c . 2 2 2
(3) (2 x 1)e y y 2e y 4 0 .
ey d y dx 解: , y 2x 1 2e 4
2
为 y y (2 x yy ) .
2
2011高等数学下试卷及答案

华南农业大学期末考试试卷(A 卷)2010--2011学年第2学期 考试科目: 高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、单项选择题(本大题共5小题,每小题3分,共15分)1.与三坐标轴夹角均相等的单位向量为 ( )A.(1,1,1) B.111(,,)333 C. D.111(,,)333--- 2.设lnxz y=,则11x y dz ===( )A.dy dx - B.dx dy - C.dx dy + D.03.下列级数中收敛的是 ( )A.1n ∞= B.1n ∞= C.113n n ∞=∑ D.113n n∞=∑4.当||1x <时,级数11(1)n n n x ∞-=-∑是 ( )A.绝对收敛 B.条件收敛 C.发散 D.敛散性不确定 5.设函数()p x ,()q x ,()f x 都连续,()f x 不恒为零,1y ,2y ,3y 都是()()()y p x y q x y f x '''++=的解,则它必定有解是( )(今年不作要求)A.123y y y ++ B.123y y y +- C.123y y y -- D.123y y y ---二、填空题(本大题共5小题,每小题3分,共15分)1.微分方程''6'90y y y -+=的通解为_____.(今年不作要求) 2.设有向量(4,3,1)a →=,(1,2,2)b →=-,则2a b →→-=_________. 3.过点(1,1,0)-且与平面32130x y z +--=垂直的直线方程是______. 4.设2cos()z xy =,则zy∂∂=_______. 5.设L 为曲线2y x =上从点(0,0)到点(1,1)的一线段,则32(2)Lx y dx +⎰___.三、计算题(本大题共7小题,每小题6分,共42分) 1.求微分方程2(12)(1)0x y dx x dy +++=的通解.2.设22()xyz x y =+,求z x ∂∂及2z x y∂∂∂.3.判断级数23112123!10101010nn ⋅⋅⋅+++++的敛散性.4.设一矩形的周长为2,现让它绕其一边旋转,求所得圆柱体体积为最大时矩形的面积及圆柱体的体积.5.将函数2()x f x xe -=展开成x 的幂级数,并确定其收敛域. 6.设(,)z z x y =是由方程2z x y z e +-=确定的隐函数,求全微分dz. 7.计算二重积分cos Dydxdy y⎰⎰,其中D 是由y y x =围成的区域.四、解答题(本大题共4小题,每小题7分,共28分) 1.计算曲线积分22(2)()Lxy x dx x y dy -++⎰,其中L 是由曲线2y x =和2y x =所围成的区域的正向边界曲线. 2.计算二重积分Dσ⎰⎰,其中区域D 由221x y +≤,0x ≥及0y ≥所确定.3.设()u f xyz =,(0)0f =,(1)1f '=,且3222()ux y z f xyz x y z ∂'''=∂∂∂,试求u 的表达式.(今年不作要求)4.计算曲面积分)I xdydz ydzdx zdxdy ∑=++,其中∑为上半球面z =(今年不作要求)参考答案一、选择题(本大题共5小题,每小题3分,共15分) 1.C 2.B 3.C 4.A 5.B 二、填空题(本大题共5小题,每小题3分,共15分) 1.312()x y C C x e =+ 2.(7,8,0) 3.11321x y z+-==- 4.22sin()xy xy - 5.710三、计算题(本大题共7小题,每小题6分,共42分) 1.求微分方程2(12)(1)0x y dx x dy +++=的通解. 解:21112x dx dy x y =-++⎰⎰..........(1分) 221111(1)(12)21212d x d y x y+=-+++⎰⎰.........(5分) 2ln(1)ln |12|ln x y C +=-++,即2(1)(12)x y C ++=......(6分) 2.设22()xyz x y =+,求z x ∂∂及2zx y∂∂∂.解:设v z u =,22u x y =+,v xy =..........(1分)22222222()(ln())xy z z u z v x y x y y x y x u x v x x y∂∂∂∂∂=+=+++∂∂∂∂∂+..........(3分)243342222222222(2)()[(21ln())ln()]()xy z x x y y x y xy xy x y x y x y x y ∂++=++++++∂∂+.(6分) 3.判断级数23112123!10101010n n ⋅⋅⋅+++++的敛散性.解:11(1)!10lim lim !10n n n n n nu n u n ρ++→∞→∞+==..........(3分) 1lim10n n →∞+==∞...........(5分)所以级数发散........(6分)4.设一矩形的周长为2,现让它绕其一边旋转,求所得圆柱体体积为最大时矩形的面积及圆柱体的体积.解:设矩形两边长分别为,x y .则1x y +=,假设绕长度为y 的一边旋转,则圆柱体体积为2V x y π=............(2分)作拉氏函数2(,,)(1)F x y x y x y λπλ=++-........(3分) 解方程组22001xy x x y πλπλ+=⎧⎪+=⎨⎪+=⎩................(4分) 得可能的极值点21(,)33..............(5分)由题意知道其一定是所求的最值点,所以最大体积为427π,对应面积为29..........(6分) 5.将函数2()x f x xe -=展开成x 的幂级数,并确定其收敛域.解:因为212!!n xx x e x n =+++++ .......(1分)所以2221(1)222!2!xnnn x x x en -=-+++-+⋅⋅ ..........(3分)23112211()(1)(1)222!2!2(1)!x n nnn n n n x x x x f x xex n n +∞---===-+++-+=-⋅⋅⋅-∑(5分)收敛域为(,)-∞+∞..................(6分)6.设(,)z z x y =是由方程2z x y z e +-=确定的隐函数,求全微分dz . 解:2(,,)z F x y z x y z e =+--........(1分) 1,2,1z x y z F F y F e ===--...........(3分) 所以12,11y x z z z z F F z z y x F e y F e ∂∂=-==-=∂+∂+.........(5分) 故1(2)1zz z dz dx dy dx ydy x y e ∂∂=+=+∂∂+..........(6分) 7.计算二重积分cos Dydxdy y ⎰⎰,其中D 是由y =及y x =围成的区域. 解:积分区域为:2{(,)|01,}D x y y y x y =≤≤≤≤........(1分)210cos cos y y Dyy dxdy dy dx y y =⎰⎰⎰⎰..........(3分) 1(1)cos y ydy =-⎰............(5分) 1cos1=-.........(6分)四、解答题(本大题共4小题,每小题7分,共28分) 1.计算曲线积分22(2)()Lxy x dx x y dy -++⎰,其中L 是由曲线2y x =和2y x =所围成的区域的正向边界曲线. 解:22(2)()(12)LDxy x dx x y dy x d σ-++=-⎰⎰⎰......(2分) 212)xdx x dy =-⎰........(4分) 1312322(22)x x x x dx =--+⎰........(6分)130=......(7分) 2.计算二重积分Dσ⎰⎰,其中区域D 由221x y +≤,0x ≥及0y ≥所确定. 解:'DD σθ=..........(2分)120d πθ=⎰⎰............(4分) 224d ππθ-=⎰......(6分)=(2)8ππ-=.........(7分)3.设()u f xyz =,(0)0f =,'(1)1f =,且3222()ux y z f xyz x y z ∂'''=∂∂∂,试求u 的表达式.解:22(),()()u u yzf xyz zf xyz xyz f xyz x x y∂∂''''==+∂∂∂3222()3()()uf xyz xyzf xyz x y z f xyz x y z∂''''''=++∂∂∂........(2分) 因为3222()u x y z f xyz x y z∂'''=∂∂∂,所以()3()0f xyz xyzf xyz '''+=令xyz t =,得3()()0tf t f t '''+=......(4分)解之得113311(),(1)1,1,()由得所以f t C t f C f t t --'''====.....(5分)解得22332233(),(0)0,0,()22由得所以f t t C f C f t t =+===.....(6分)即233()()2u f xyz xyz ==.......(7分)4.计算曲面积分)I xdydz ydzdx zdxdy ∑=++,其中∑为上半球面z = 解:因为在曲面∑a ,所以()I a xdydz ydzdx zdxdy ∑=++⎰⎰..........(1分)补曲面2221{(,,)|0,}x y z z x y a ∑==+≤,1∑取下侧..........(2分) 由高斯公式得1()I a xdydz ydzdx zdxdy ∑+∑=++⎰⎰=342(111)323a dv a a a ππΩ++=⨯=⎰⎰⎰..(4分) 而111()00a xdydz ydzdx zdxdy azdxdy dxdy ∑∑∑++===⎰⎰⎰⎰⎰⎰.....(6分)故)I xdydz ydzdx zdxdy ∑=++=114()()2a xdydz ydzdx zdxdy a π∑+∑∑-++=⎰⎰⎰⎰.......(7分)。
华东理工大学级(下)高等数学期中考试试卷(学分)解答

华东理工大学级(下)高等数学期中考试试卷(学分)解答————————————————————————————————作者:————————————————————————————————日期:华东理工大学2013–2014学年第二学期《高等数学(下)11学分》课程期中考试试卷 2014.4开课学院:理学院, 专业:大面积, 考试形式:闭卷,所需时间 120 分钟考生姓名: 学号: 班级 任课教师题序 一二三四五六总分得分 阅卷人注 意:试 卷 共 两 页 六 大 题一.填空题(本大题共11小题,每小题4分,共44分):1、微分方程222'y x e yx y -=的通解为 。
答:C e xe e xx y +-=22412122、微分方程0''9)4(=+y y 的通解为 。
答:x C x C x C C y 3sin 3cos 4321+++=3、函数 zxy u )(= 对变量x 的偏导数 =x u 。
答:12)(--=z x xy x yz u 4、设 ))arctan(,,(xyz e y xze f u zy+=,其中f 关于所有变量有一阶连续偏导数, 则=∂∂yu。
答:3222211f zy x xz f f xze y u y +++=∂∂ 5、设函数z z x y =(,)由方程 ),(yzxz f z = 所确定,其中f 关于所有变量有一阶连续偏导数,则∂∂zy= 。
答:21222yf f xy y zf ---6、设1)(-=⋅⨯c b a ρρρ,则=+⨯+⋅)]()[(c b b a b ρρρρϖ 。
答: 17、函数)ln(22z y x u ++=在点)1,0,1(处最大的方向导数等于 。
答:228、微分方程 0'2''=+y xy 的通解=y 。
答: 21C xC y +-= 9、设平面π过直线⎩⎨⎧=+-=++04,05:z x z y x L 则原点到平面π距离d 的范围是 。
2011年高等数学(高数)学位考试答案与平分标准

| | | | | | | |装| | | | |订| | | | | |线| | | | | | | | |2011年《高等数学》学位考试试卷 (答题时间150分钟)一、单项选择题(在每个小题四个备选答案中选出一个正确答案,15分,共计5小题,每小题3分)1. 若0x x →时,)(),(x x βα都是无穷小量,则当0x x →时,下列表达式中哪一个不一定是无穷小量 D ;A.)()(x x βα+B.22()()x x αβ+ C.[]ln 1()()x x αβ+⋅ D.2()()x x αβ 2. 曲面xy yz zx ++=11在点(,,)123处的切平面方程为 BA.334251-=-=-z y x B.0)3(3)2(4)1(5=-+-+-z y x C.x y z -+-+-=1524330 D.53423140()()()x yz -+-+-+= 3. 若区域D 为x 2+y 2≤2x ,则二重积分化成累次积分为 DA.2cos 202(cos sin d πθπθθθ-+⎰⎰B.2cos 30(cos sin )d r dr πθθθθ+⎰⎰C.2cos 3202(cos sin )d r dr πθθθθ+⎰⎰D.2cos 322(cos sin )d r dr πθπθθθ-+⎰⎰4. 222arctan (),ln(1)x t d yy y x dx y t =⎧==⎨=+⎩设确定了则 C A.2 B.221t + C.22(1)t + D.212t- 5. 设2222()()0()0m ax by dx bx ay dy x y x y ab ⎛⎫++++≠ ⎪+≠⎝⎭是某二元函数的全微分,则m = A A.0 B.1 C.2 D.3二、填空题(将正确答案填在横线上。
本大题共15分,共计5小3分) 6. xx exx 21lim 30--→= 17. 设u x y x y =+-44224,则∂∂22u x =22812yx - 8. 设幂级数∑∞=0n nnx a的收敛半径是4,则幂级数∑∞=+012n n n x a 的收敛半径是 29. 设)(x f 连续,则⎰=+bady y x f dx d )()()(x a f x b f +-+ ,其中a ,b 为常数,且b a <。
华南理工大学2011高数下期中考试及答案

华南理工大学2011-2012学年第二学期《高等数学》期中考试试卷评分标准一. 解答下列各题 (每小题5分,共20分) 1.求极限22()lim (e x y x y x y -+→+∞→+∞+).解:lim e 0k t t t -→+∞= 2'22()2()lim (e lim (e 20x y x y x yx x y y x y x y xe ye -+-+--→+∞→+∞→+∞→+∞⎡⎤+=+-=⎣⎦)) 3'2.求由方程组222222320z x yx y z ⎧=+⎪⎨++=⎪⎩所确定的()y x 及()z x 的导数d d y x 及d d z x . 解:()()226023220xdx z dz xdx ydy z xdx ydy -++=⎧⎪⎨+++=⎪⎩ 3' 6,1326dz x dy x xydx z dx y yz+==-++ 2'3.设,u f 可微,证明: ()()grad grad f u f u u '= 证明:()()()()()()(){}()()(){},,,,x y z xyzf u f u f u f u f u u f u u f u u '''''''''==⋅⋅⋅grad 3'(){}(),,x y z f u u u u f u u '''''==grad 2'4.求曲线23x ty t z t =⎧⎪=-⎨⎪=⎩的切线,使它与平面21z y z ++=平行.解:设切点为()23000,,M t t t -,则切向量为{}2001,2,3T t t =- . 1'_____________ ________学号学院 专业 座位号( 密 封 线 内 不 答 题 ) ……………………密………………………………………………封………………………………………线……………………………………{}{}2200001,2,31,2,11430T n t t t t ⋅=-⋅=-+=解得01t =或013t =,相应切点为()1,1,1-或111,,3927⎛⎫- ⎪⎝⎭, 2' 因此,所求切线为1111:123x y z L -+-==-, 21113927:321x y z L -+-==- 2'二. 解答下列各题 (每小题10分,共30分)5.设()()()()()22,,0,0,0,,0,0x y xy x y x y f x y x y -⎧≠⎪+=⎨⎪=⎩,试研究该函数在()0,0点的可微性. 解:()()()()0,00,00,0lim0,0,000x y x f x f f f x →-===- 4'又()()()()2222022(,)()limlim0(()())x x y y f x y x y x y x y x y x y ∆→∆→∆→∆→∆∆∆∆∆-∆=≠∆+∆∆+∆∆+∆ 5'函数(),f x y 在点()0,0处是不可微的 1'6.设函数(),f x y 具有二阶连续偏导数,满足等式2220x yy x y xy y xx f f f f f f f -+=,且0y f ≠,(,)y y x z =是由方程(,)z f x y =确定的函数.求 22yx∂∂.解:x yf yx f ∂=-∂ 4' 220yx ∂=∂ 6'7.在经过点12,1,3⎛⎫ ⎪⎝⎭的所有平面中求一个,使这个平面在第一卦限内与三个坐标平面所围成的四面体的体积最小.解:设该平面为1x y za b c++=, 1' 四面体的体积为16V abc =. 1'问题化为求16V abc =在约束条件21110,0,0,03a b c a b c++-=>>>下的最小值点.构造拉格朗日函数()1211,,,163f a b c abc a b c λλ⎛⎫=+++- ⎪⎝⎭3' 由22222110,0,0,1066633a b c bc ac ab f f f f a b c a b cλλλλ=-==-==-==++-= 3' 得唯一一组解6,3,1a b c ===,该实际问题的最小值一定存在,从而该点一定是要求的最小值点了.因此所要求的平面为163x yz ++= 2'三. 解答下列各题 (每小题8分,共32分) 8.计算11301ydy x dx +⎰⎰.解:21113330111x yDdy x dx x d dx x dy σ+=+=+⎰⎰⎰⎰⎰⎰4'()112333011113x x dx x d x =+=++⎰⎰ 3' ()22219=- 1' 9.计算22y Dx edxdy -⎰⎰,其中区域D 是由直线0,1,x y y x ===所围成的区域.解:22y Dx e dxdy -⎰⎰21200yy dy x e dx -=⎰⎰ 4’ 213013y y e dy -=⎰ 2’ 1163e =- 2’10.计算2()x y dV Ω+⎰⎰⎰.其中Ω是曲线22,0y z x ⎧=⎨=⎩绕z 轴旋转一周而成的曲面与两平面2,8z z ==所围成的区域.解:求出旋转面方程为222x y z += 1'2()x y dV Ω+⎰⎰⎰=()22x y dV Ω+⎰⎰⎰ 1' =()8222Dzdz x y dxdy +⎰⎰⎰ 3'82283220022336z dz d r dr z dz πθππ⎛⎫=== ⎪⎝⎭⎰⎰⎰⎰ 3' 11.计算三重积分2y dV Ω⎰⎰⎰,其中(){}222,,2x y z xy z z Ω=++≤.解:2y dV Ω⎰⎰⎰22cos 2342sin sin d d dr ππϕθθϕϕρ=⎰⎰⎰5'415π=3'四. 解答下列各题 (每小题9分,共18分)12.求由两圆周()22224x y a a +-=和()222(0)x y a aa +-=>所围的均匀薄片的质心.解:0x = 2'4sin 2202sin 11sin 3a a D Dy ydxdy d r dr S a πθθθθπ==⎰⎰⎰⎰5'=73a 2'13. 计算由曲面22x y az +=和222(0)z a x y a =-+>所围立体的表面积.解:22222224412x y a x y S dxdy a a+≤=+++⎰⎰6'2(2)3a a π=+ 3'。
2011年普通专升本高等数学真题汇总

2011年普通专升本高等数学真题一一. 选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分)1.函数()()x x x f cos 12+=是( ).()A 奇函数 ()B 偶函数 ()C 有界函数 ()D 周期函数2.设函数()x x f =,则函数在0=x 处是( ).()A 可导但不连续 ()B 不连续且不可导()C 连续且可导 ()D 连续但不可导3.设函数()x f 在[]1,0上,022>dxfd ,则成立( ). ()A ()()0101f f dxdf dxdf x x ->>== ()B ()()0110==>->x x dx df f f dxdf()C ()()0101==>->x x dxdf f f dxdf()D ()()101==>>-x x dxdf dxdf f f4.方程22y x z +=表示的二次曲面是( ).()A 椭球面 ()B 柱面()C 圆锥面 ()D 抛物面5.设()x f 在[]b a ,上连续,在()b a ,内可导,()()b f a f =, 则在()b a ,内,曲线()x f y =上平行于x 轴的切线( ).()A 至少有一条 ()B 仅有一条().C 不一定存在 ().D 不存在二.填空题:(只须在横线上直接写出答案,不必写出计算过程,每小题4分,共40分)考学校:______________________报考专业:______________________姓名: 准考证号: ----------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------2.设函数()x f 在1=x 可导, 且()10==x dx x df ,则()().__________121lim=-+→xf x f x .3.设函数(),ln 2x x f =则().________________________=dxx df4.曲线x x x y --=233的拐点坐标._____________________5.设x arctan 为()x f 的一个原函数,则()=x f ._____________________6.()._________________________2=⎰xdt t f dx d7.定积分().________________________2=+⎰-ππdx x x8.设函数()22cos y x z +=,则._________________________=∂∂x z9. 交换二次积分次序().__________________________,010=⎰⎰xdy y x f dx10. 设平面∏过点()1,0,1-且与平面0824=-+-z y x 平行,则平面∏的方程为._____________________三.计算题:(每小题6分,共60分)1.计算xe x x 1lim 0-→.2.设函数()()x x g e x f xcos ,==,且⎪⎭⎫⎝⎛=dx dg f y ,求dx dy .3.计算不定积分()⎰+.1x x dx4.计算广义积分⎰+∞-0dx xe x .5.设函数()⎩⎨⎧<≥=0,0,cos 4x x x x x f ,求()⎰-12dx x f . 6. 设()x f 在[]1,0上连续,且满足()()⎰+=12dt t f e x f x,求()x f .7.求微分方程xe dx dy dxy d =+22的通解. 8.将函数()()x x x f +=1ln 2展开成x 的幂级数.9.设函数()yx yx y x f +-=,,求函数()y x f ,在2,0==y x 的全微分. 10.计算二重积分,()⎰⎰+Ddxdy y x22,其中1:22≤+y x D .四.综合题:(本题共30分,其中第1题12分,第2题12分,第3题6分) 1.设平面图形由曲线xe y =及直线0,==x e y 所 围成,()1求此平面图形的面积;()2求上述平面图形绕x 轴旋转一周而得到的旋转体的体积.2.求函数1323--=x x y 的单调区间、极值及曲线的凹凸区间.3.求证:当0>x 时,e x x<⎪⎭⎫⎝⎛+11.__报考专业:______________________姓名: 准考证号------------------------------密封线---------------------------------------------------------------------------------------------------2011年普通专升本高等数学真题二一. 选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分)1.当0→x 时,1sec -x 是22x 的( )..A 高阶无穷小 .B 低阶无穷小 .C 同阶但不是等阶无穷小 D .等阶无穷小2.下列四个命题中成立的是( )..A 可积函数必是连续函数 .B 单调函数必是连续函数 .C 可导函数必是连续函数 D .连续函数必是可导函数 3.设()x f 为连续函数,则()⎰dx x f dx d等于( ). .A ()C x f + .B ()x f.C ()dx x dfD .()C dxx df + 4.函数()x x x f sin 3=是( )..A 偶函数 .B 奇函数.C 周期函数 D .有界函数5.设()x f 在[]b a ,上连续,在()b a ,内可导,()()b f a f =, 则在()b a ,内,曲线()x f y =上平行于x 轴的切线( ).()A 不存在 ()B 仅有一条 ().C 不一定存在 ().D 至少有一条二.填空题:(只须在横线上直接写出答案,不必写出计算过程,每小题4分,共40分)__________=a .2.()()().___________________311sin lim221=+--→x x x x3..___________________________1lim 2=++--∞→xx x x x 4.设函数()x f 在点1=x 处可导,且()11==x dx x df ,则()()._______121lim=-+→xf x f x5设函数()x x f ln 2=,则().____________________=dxx df6.设xe 为()xf 的一个原函数,则().___________________=x f 7.()._________________________2=⎰x dt t f dxd 8.._________________________0=⎰∞+-dx e x9.().________________________2=+⎰-ππdx x x10.幂级数()∑∞=-022n nnx 的收敛半径为.________________三.计算题:(每小题6分,共60分) 1.求极限()()()()()x b x a x b x a x ---+++∞→lim.2.求极限()nnnn n n 75732lim+-++∞→.3.设()b ax ey +=sin ,求dy .4.设函数xxe y =,求22=x dx yd .5.设y 是由方程()11sin =--xy xy 所确定的函数,求(1).0=x y ; (2).=x dx dy .6.计算不定积分⎰+dx x x132.7.设函数()⎩⎨⎧≤<≤≤=21,210,2x x x x x f ,求定积分()⎰20dx x f .8.计算()xdte ex t tx cos 12lim--+⎰-→.9.求微分方程022=+dxdydx y d 的通解. 10.将函数()()x x x f +=1ln 2展开成x 的幂级数.四.综合题:(每小题10分,共30分)1. 设平面图形由曲线xe y =及直线0,==x e y 所围成, (1)求此平面图形的面积;(2)求上述平面图形绕x 轴旋转一周而得到的旋转体的体积. 2.求过曲线xxey -=上极大值点和拐点的中点并垂直于0=x 的直线方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.设 y1 , y 2 是一阶线性非齐次微分方程 y P ( x ) y Q ( x ) 的两个特解,若常数 , 使
y1 y 2 是该方程的解,且 y1 y 2 是该方程对应齐次方程的解,则 (
1 1 , ; 2 2 1 2 (C) , ; 3 3
du
P
_____________________________。
12.函数 f ( x ) 可导,且满足 f ( x ) cos x 2
x 0
f (t ) sin tdt x 1 ,则 f ( x) __________。
4
角的平面方程。 3
二. (本题 7 分)函数 y y ( x ), z z ( x ) 由方程组
x y ez 1 x y z 1
2
所确定,求
d y dz , 。 dx dx
1
三. (本题 7 分)以 u
y 为新的未知函数,变换方程 x2 x 2 y ( x 2 4 x) y (2 x 2 2 x 6) y 0 ,
1.若
f x
0,
( x0 , y 0 )
f y
0 ,则 f ( x, y ) 在点 ( x 0 , y 0 ) 是
( x0 , y 0 )
(
)
(A)连续且可微; (B)连续但不一定可微; (C)可微但不一定连续; (D)不一定可微也不一定连续。 2.若 z f ( x , y ) 在 ( x 0 , y 0 ) 处沿 x 轴反方向的方向导数 A ,则 f ( x , y ) 在该点对 x 的偏导数 ( ) (A)为 A (B)为 A (C)不一定存在 (D)一定不存在。
并求原方程的通解。
四. (本题 7 分)容器内有 100 m 的盐水,含 10kg 的盐,现在以每分钟 3 m 的均匀速度从 A 管放进净水冲淡盐水,又以每分钟 2 m 的均匀速度将混合均匀后的盐水从 B 管抽出,问 100 分钟后容器内还剩多少盐?33 Nhomakorabea3
2
五.选择题(每小题 4 分,共 24 分) 请将选择题的答案写入下面表格的指定位置 1 2 3 4 5 6
z ___________________。 x
。
7.函数 y ln 2 x 的麦克劳林展开式为
_____
8.已知 | a | 2 , | b | 4 , ( a , b )
,且 ( a 2 b ) (3 a b ) ,则 _______。 3
9.以函数 y ln(1 Cx ) 作为通解的微分方程是______________。
10.
d3 y y 0 的通解是 y ___________________________。 dx 3
2 3 3 yz
11.求 u y sin( xz ) x e 在点 P ( 2,1,0) 处的全微分
)
1 . P( x) y Q( x)
( )
6.微分方程 y
2
2x y 经过 (1,1) 点的积分曲线是 x 2y
2
(A) x xy y 3 ; (C) x xy y 1 ;
2 2
(B) x xy y 1 ; (D) x xy y 1 .
华东理工大学 2010–2011 学年第二学期
《高等数学(下)》 (11 学分)期中考试试卷
开课学院:_理学院_ ,考试形式:_闭卷_,所需时间: 120 考生姓名: 学号: 班级: 分钟 任课老师:
2011.4
题序 得分 阅卷
一
二
三
四
五
六
总分
注意:试卷共 2 大张,6 大题 一. (本题 7 分)求过点 M ( 0,0,1) 和 N ( 3,0,0) ,且与 xoy 平面成
(A) 4.微分方程 y 5 y 6 y xe (A) Axe
2 x 2 x
)
(B)
1 1 , ; 2 2 2 2 ( D) , 。 3 3
(
2 x
的一个特解得形式是 (B) ( Ax B ) e
)
(C) ( Ax Bx C ) e
2
2 x
(D) x ( Ax B ) e
2 x
5.若以 x 为未知函数, y 为自变量,则下列方程中必定可视为线性方程的是 ( ( A) P ( y ) y x Q ( y ) ; ( C) y P ( y ) x Q ( y ) ; (B) [ x P ( y )] y Q ( y ) ; ( D) y
3
2 2
2
2
六.填空题(每小题 4 分,共 48 分) 1.点 P ( 2, 0, 4) 关于平面 : 2 x y 2 z 5 的对称点为________________。 2.已知点 A(1,1,1) , B ( 2, 3, 3) 和 C (3, 1, 2) ,则 BAC 的角平分线方程为 ________________________。 3 . 设 l {1,2,2} , 则 u 3 x y 5 z 在 点 P (1,0,2) 处 沿 l 方 向 的 方 向 导 数 _____________________________。 4.求极限 lim
2
y
u 为 l P
3 y 3 2 yx 2 x 2 xy y 2
2 2
x 0 y 0
_______________。 x ,则 f x ( 2,1) __________。 y
y x
5.设 f ( x , y ) x ( y 1) tan
6.设 f (u , v ) 是二元可微函数, z f ( x , y ) ,则