数值分析复习总结
数值分析 知识点总结

数值分析知识点总结一、数值分析的基本概念1. 数值分析的对象数值分析的对象是现实生活中的数字数据和信息。
这些数据和信息可以来自各个领域,包括自然科学、社会科学、技术工程等。
例如,物理实验中测得的实验数据、经济管理中的统计信息、天气观测中的气象数据等,都是数值分析的对象。
2. 数值分析的目的数值分析的主要目的是通过对数值数据和信息的定量分析,发现其中的规律,提取有用的信息,做出科学的预测和决策。
例如,通过对某种药物的临床试验数据进行数值分析,可以得出这种药物的疗效和毒性情况,为临床医生的治疗决策提供依据。
3. 数值分析的方法数值分析采用数学和计算机科学的方法对数值数据和信息进行处理和分析。
它涉及的具体方法包括数值计算、插值与逼近、数值微分和积分、常微分方程数值解、数值线性代数等。
二、数值分析的基本内容1. 数值计算数值计算是数值分析的基本方法之一,它包括离散化、数值稳定性、误差分析等内容。
离散化是将连续问题转化为离散问题,这是数值计算的基本工作方式。
数值稳定性研究的是数值方法对误差的敏感程度,是评价数值方法好坏的重要指标。
误差分析则研究数值计算中产生的误差的成因和大小。
2. 插值与逼近插值与逼近是数值分析的重要内容之一,它研究如何通过已知的数值数据估计未知函数的值。
插值是通过已知的离散数据点构造一个连续函数,使得这个函数通过这些数据点;逼近则是通过已知的离散数据点构造一个近似函数,使得这个函数与原函数的差尽量小。
3. 数值微分和积分数值微分和积分是数值分析的又一重要内容,它研究如何通过已知的函数值计算函数的导数和定积分值。
数值微分是通过函数值计算函数的导数值;数值积分则是通过函数值计算函数的定积分值。
这两项工作在科学计算中有着广泛的应用。
4. 常微分方程数值解常微分方程数值解也是数值分析的重要内容之一,它研究如何通过数值方法计算常微分方程的近似解。
常微分方程是自然界和技术工程中经常出现的数学模型,因此其数值解的研究有着广泛的应用价值。
数值分析复习资料

数值分析复习资料一、重点公式第一章 非线性方程和方程组的数值解法 1)二分法的基本原理,误差:~12k b ax α+--<2)迭代法收敛阶:1lim0i pi ic εε+→∞=≠,若1p =则要求01c <<3)单点迭代收敛定理:定理一:若当[],x a b ∈时,[](),x a b ϕ∈且'()1x l ϕ≤<,[],x a b ∀∈,则迭代格式收敛于唯一的根;定理二:设()x ϕ满足:①[],x a b ∈时,[](),x a b ϕ∈, ②[]121212,,, ()(),01x x a b x x l x x l ϕϕ∀∈-≤-<<有 则对任意初值[]0,x a b ∈迭代收敛,且:110111i i iii x x x llx x x lαα+-≤---≤-- 定理三:设()x ϕ在α的邻域内具有连续的一阶导数,且'()1ϕα<,则迭代格式具有局部收敛性;定理四:假设()x ϕ在根α的邻域内充分可导,则迭代格式1()i i x x ϕ+=是P 阶收敛的 ()()()0,1,,1,()0j P j P ϕαϕα==-≠ (Taylor 展开证明)4)Newton 迭代法:1'()()i i i i f x x x f x +=-,平方收敛 5)Newton 迭代法收敛定理:设()f x 在有根区间[],a b 上有二阶导数,且满足: ①:()()0f a f b <; ②:[]'()0,,f x x a b ≠∈;③:[]'',,f x a b ∈不变号④:初值[]0,x a b ∈使得''()()0f x f x <;则Newton 迭代法收敛于根α。
6)多点迭代法:1111111()()()()()()()()()i i i i i i i i i i i i i i i f x f x f x x x x x f x f x f x f x f x f x x x -+-----=-=+----收敛阶:P =7)Newton 迭代法求重根(收敛仍为线性收敛),对Newton 法进行修改 ①:已知根的重数r ,1'()()i i i i f x x x rf x +=-(平方收敛) ②:未知根的重数:1''()(),()()()i i i i u x f x x x u x u x f x +=-=,α为()f x 的重根,则α为()u x 的单根。
期末数值分析重点总结

期末数值分析重点总结第一部分:数值逼近(Approximation)数值逼近是数值分析的基础,主要研究如何利用有限的计算资源得到逼近数学问题的有效算法。
数值逼近的主要内容包括多项式逼近、插值和最小二乘等。
1. 多项式逼近多项式逼近是指用一个多项式函数来逼近给定函数的值。
通过选择合适的多项式次数和插值点,可以使得多项式逼近误差最小化。
其中最常用的方法是最小二乘法,它可以通过最小化残差来得到最佳的多项式逼近。
多项式逼近在信号处理、图像处理和计算机图形学等领域中有广泛的应用。
2. 插值插值是指通过已知数据点的函数值来估计在其他点的函数值。
常用的插值方法有拉格朗日插值和牛顿插值。
拉格朗日插值通过构造一个满足插值条件的多项式来逼近给定函数。
牛顿插值则利用差商的概念来构造插值多项式。
插值方法在数值微分和数值积分中有广泛的应用。
3. 最小二乘最小二乘是一种在一组离散数据点上拟合曲线的方法。
通过最小化数据点与拟合曲线之间的欧几里得距离,可以得到最佳拟合曲线。
最小二乘法可以用于曲线拟合、参数估计和数据关联等问题。
第二部分:数值解方程(Numerical Solution of Equations)数值解方程是数值分析的重要内容之一,研究如何通过数值计算来求解非线性方程组和线性方程组。
数值解方程的主要方法有迭代法、常微分方程数值解和偏微分方程数值解等。
1. 迭代法迭代法是求解非线性方程组的常用方法之一。
通过不断迭代逼近方程的根,可以得到方程组的数值解。
常用的迭代法有牛顿迭代法和弦截法。
迭代法在计算机辅助设计、优化和数据分析等领域中有广泛的应用。
2. 常微分方程数值解常微分方程数值解研究如何通过数值计算来求解常微分方程。
常微分方程数值解的主要方法有Euler方法、Runge-Kutta方法和线性多步法等。
常微分方程数值解在物理学、工程学和生物学等领域中有广泛的应用。
3. 偏微分方程数值解偏微分方程数值解研究如何通过数值方法来求解偏微分方程。
(完整版),数值分析笔记期末复习汇总,推荐文档

x
*n )
e(x *1)
f
(x *1,
x *2 ,, xn
x *n
)
e(x *n )
n i 1
f
(x *1, x *2 ,, x *n ) xi
e(x *i )
9、加减乘除运算的误差估计
加法
绝
对 误
e(x1 x2 ) e(x1) e(x2 )
差
绝
对
误 (x1 x2 ) (x1) (x2 )
x1
b
sign(b) 2a
b2 4ac 109
x1
x2
c a
x2
c a x1
109 109
1
求和时从小到大相加,可使和的误差减小。若干数相加,采用绝对值较小者先加的算法,
结果的相对误差限较小
y 54321100 0.4100 0.3100 0.4100 54322
(三) 注意简化计算步骤,减少运算次数,避免误差积累(秦九韶)
则称 r (x*) 为近似值 x*的相
对误差限。 (2)性质:
当|| er (x*) | 较小时,可用下
是有量纲的。 (2)绝对误差限是正的,有无穷
常取
er
( x*)
e( x*) x*
式计算
绝对误差是误差的绝对值? 多个【则比 * 大的任意正数均
(错)
是绝对误差
限】
r
( x*)
(x*) | x |
取
x2* =3.14
作为 π 的近似值,则 | e2
| 0.00159
1 102 :三个有效数字 2
取
x3* =3.1416 作为 π 的近似值,则 | e3
| 0.00000734
数值分析期末复习要点总结

故一般取相对误差为
er x*
e x* x*
x x* x*
如果存在正数 r 使得
er x*
ex*
x*
r
则称 r为 x*的相对误差限.
(1-4)
4
绝对误差、相对误差和有效数字
有效数字
如果近似值 x* 的误差限是 1 10n 则称x*
2
准确到小数点后第n位,并从第一个非零数字到 这一位的所有数字均称为有效数字.
若
e(x* ) x x*
(1-2)
通常称 为近似值 x* 的绝对误差限,简称误差限.
定义2 设 x* 为准确值 x 的近似值,称绝对误差与
准确值之比为近似值 x* 的相对误差,记为 er (x* )
即
er
x*
ex*
x
x
x* x
(1-3) 3 3
绝对误差、相对误差和有效数字
由于在计算过程中准确值 x 总是未知的,
设 z0(x), z1(x), ... , zn(x) 构成 Zn(x) 的一组基,则插值多项式 P(x) = a0z0(x) + a1z1(x) + ···+ anzn(x)
通过基函数来构造插值多项式的方法就称为基函数插值法
基函数法基本步骤
① 寻找合适的基函数
② 确定插值多项式在这组基下的表示系数
数值分析
期末复习要点总结
1
第一章 误差
一. 误差的来源: 1.模型误差 2.观测误差 3.截断误差 4.舍入误差
二. 绝对误差、相对误差和有效数字
2
第一章 误差
2
绝对误差、相对误差和有效数字
定义1 设 x* 为准确值x的一个近似值,称
数值分析主要知识点

第三章
非线性方程的数值解法
二分法的思想以及其中对分次数的计算;
不动点迭代法、迭代格式的收敛性判定方法、
误差估计式;
Newton迭代法及其收敛性; 割线法迭代格式;
迭代加速方法。
第四章
线性方程组的直接解法
Gauss消去法与列主元素Gauss消去法; 三角分解(LU)法; 平方根方法(Cholesky分解); 向量与矩阵范数; 条件数与病态方程组求解。
第五章
曲线拟合与最小二乘问题
拟合与插值的异同点、矛盾方程组的最小二乘解; 满秩分解、法方程组、可化为线性拟合的非线性拟合;
(极小)最小二乘解的存在唯一性、广义逆与极小
最小二乘解;
GS与MGS正交化与最小二乘解;
Householder正交化与最小二乘解。
第六章代法与Gauss-Seidel迭代法及其收敛性;
SOR迭代法及其收敛的必要条件、最佳松弛因子; 解非线性方程组的Newton迭代法与拟Newton思想。
第七章
最优化方法与共轭梯度法
与方程组等价的变分问题、线性寻查(线搜索)法;
最速下降法; 解线性方程组的共轭梯度法。
写、不得打印、不得复印,纸上签有姓名和学号;
可以携带计算器(考试期间不允许互借)。
《数值分析》复习主要知识点 第一章
绪论 基本概念:误差的分类(截断误差、舍入误差)、 绝对误差和相对误差、有效数字;
数值稳定性; 误差分析的原则:1)尽量避免相近的数相减,2)
尽量避免绝对值小的数做除数,3)防止大数吃小数, 4)先化简再计算,5)选用数值稳定的算法;
浮点数系统特征(四个整数表征)。
第八章
数值微分与数值积分
数值分析的所有知识点总结

数值分析的所有知识点总结一、数值分析的基本概念1.1 数值分析的定义和作用数值分析是研究利用计算机对数学问题进行数值计算的一门学科。
它旨在发展和分析数值计算方法,以解决实际问题中出现的数学模型。
数值分析的主要作用在于加快科学研究和工程设计的速度,提高计算精度和可靠性,以及发现新的科学规律和工程技术。
1.2 数值计算的基本步骤数值计算通常包括以下基本步骤:建立数学模型、选择适当的数值方法、编写计算程序、进行计算和分析结果。
其中,建立数学模型是数值计算的基础,它将实际问题抽象为数学公式或方程组的形式;选择适当的数值方法是指根据具体问题的特点,选择合适的数值计算方法进行求解;编写计算程序是指将选择的数值方法用计算机程序的形式实现;进行计算和分析结果是指利用计算机进行数值计算,并分析计算结果的准确性和可靠性。
1.3 数值分析的应用范围数值分析广泛应用于科学、工程、经济、金融等领域。
在科学研究中,数值分析常用于数学建模、实验数据处理、科学计算等方面;在工程领域,数值分析常用于工程设计、结构分析、流体力学、传热传质等方面;在经济金融领域,数值分析常用于风险评估、金融工程、市场预测等方面。
二、数值计算方法2.1 插值法插值法是利用已知的离散数据(如实验数据、观测数据)推导出未知的数据值的一种数值计算方法。
常用的插值方法包括拉格朗日插值、牛顿插值、分段插值等。
2.2 数值微分与数值积分数值微分是指利用离散数据计算函数的导数值的数值计算方法。
常用的数值微分方法包括差商法、中心差商法等。
数值积分是指利用离散数据计算函数的积分值的数值计算方法。
常用的数值积分方法包括复合梯形法、复合辛普森法等。
2.3 数值线性代数数值线性代数是研究线性代数问题的数值计算方法。
它涉及到线性方程组的求解、线性方程组的特征值和特征向量的计算、矩阵的LU分解、矩阵的QR分解等内容。
2.4 非线性方程求解非线性方程求解是研究非线性方程的数值计算方法。
数值分析考试复习总结

(1)(2)(3) 解⑴(3)对I X卜::::1 ;对XMO,|X|« 1.2x2;(1 x)(1 2x). (2)1 -cosx _ sin2 xx x(1 cosx)si nx1 cosx第一章1误差相对误差和绝对误差得概念例题:当用数值计算方法求解一个实际的物理运动过程时,一般要经历哪几个阶段?在哪些阶段将有哪些误差产生?答:实际问题-数学模型-数值方法-计算结果在这个过程中存在一下几种误差:建立数学模型过程中产生:模型误差参数误差选用数值方法产生:截断误差计算过程产生:舍入误差传播误差6 •设a =0.937关于精确数x有3位有效数字,估计a的相对误差.对于f (x) = .1 —x,估计f(a)对于f(x)的误差和相对误差•解a的相对误差: 由于1 _3l , 、 x — a|E(x) |<x—a<-10 .E r(x)-2XE r(x) <1 2 1 _210 =— 10 .(Th1)2汉18f(a)对于f(x)的误差和相对误差|E⑴冃"―心日^^卜鑒=1。
」| E r(f )^10^ 1-a=4 10‘.□2有效数字基本原则:1两个很接近的数字不做减法:2:不用很小得数做分母(不用很大的数做分子)例题:4 •改变下列表达式使计算结果比较精确:1x1 - COSxX 1 X . X - 1 X )二P 2(x)二 P i (x) f[X o ,X i ,X 2](X-X °)(X- xj第二章拉格朗日插值公式(即公式(1))nP n (X )二' y 」i (X )插值基函数(因子)可简洁表示为I / \ :(X - X j )® n(x)l i (X):j卫(X i - X j ) (X- X i ) n (X i )jT :nn其中:n (X )「「(X - X j ),'nX i = /(\ - X j ).j =0j =0例1 n=1时,线性插值公式 例2 n=2时,抛物插值公式(X -X o )(X -Xj% -X o )(X 2 - Xj牛顿(Newton )插值公式由差商的引入,知(i )过点x o , x i 的一次插值多项式 为P i (x) = f (X o ) C i (x -X o )其中C iL^^fix o ’X i]=P i (x)二 f(X o ) f[X o ,X i ](X-X o )X i _Xo(2)过点x o , x i , x 2的二次插值多项式 为P 2(X )二 P i (x) C 2(X-X o )(X-X i )其中(x - xj R (x) = y o 疋 ------ + y i 汉 (X o —X i )(x _X o )(X i - X o )P 2(x)(X -X i )(X -X 2)(X o -旨)% 讥)y i(X -X o )(X -X 2)(X i -X o )(X i 乜)f(X2) - f (X i) f (X i) - f (X o)C2x2 - x i X i X oX2 _ Xo二 f [X o,X i,X2]二P 2(x)二 P i (x) f[X o ,X i ,X 2](X-X °)(X- xj=f (X 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:
采用复化梯形公式时,余项为
又 故
若 ,则
当对区间 进行等分时,
故有
因此,将区间213等分时可以满足误差要求
采用复化辛普森公式时,余项为
又
若 ,则
当对区间 进行等分时
1.9
3.0
3.9
5.0
距离s(m)
0
10
30
50
80
110
求运动方程。
解:被观测物体的运动距离与运动时间大体为线性函数关系,从而选择线性方程
令
则法方程组为
从而解得
故物体运动方程为
20。已知实验数据如下:
19
25
31
38
44
19.0
32.3
49.0
73.3
97.8
用最小二乘法求形如 的经验公式,并计算均方误差。
解:若 ,则 则
则法方程组为
从而解得
故
均方误差为
第四章数值积分与数值微分
1、确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度。
1) ;
[解]分别取 代入得到:
,即 ,解得
又因为当 时, ;
当 时, ;
从而此求积公式最高具有3次代数精度。
2) ;
[解]分别取 代入得到:
因为C的一、二、三阶顺序主子式分别为1,5,1,所以C能够分解为三角阵的乘积,并且分解是唯一的。
18设 ,计算A的条件数 。
[解]由 可知, ,从而
,
由 ,
,
由 ,
可得 ,从而
。
, ,从而
第六章解线性方程组的迭代法
第七章非线性方程组的数值解法
7.用下列方法求 在 附近的根。根的准确值 ,要求计算结果准确到四位有效数字。
,即 ,
解得 ,
又因为当 时, ;
当 时, ;
从而此求积公式最高具有3次代数精度。
3) ;
[解]分别取 代入得到:
,即 ,
解得 与 ,
又因为当 时, ;
,
从而此求积公式最高具有2次代数精度。
4) 。
[解]分别取 代入得到: ,所以 ,又因为当 时, ,
当 时, ,所以此求积公式最高具有3次代数精度。
(1)牛顿法
(2)弦截法,取
(3)抛物线法,取
[解]1) , ,
, ,迭代停止。
2) , , ,
,迭代停止。
3) ,其中
, ,故
, , , ,
,
, ,
,下略。
第九章常微分方程初值问题数值解法
3用梯形法解初值问题 证明其近似解为
故有
因此,将区间8等分时可以满足误差要求。
第五章解线性方程组的直接方法
14下列矩阵能否分解为 (其中L为单位下三角阵,U为上三角阵)?若能分解,那么分解是否唯一。
, , 。
[解]因为A的一、二、三阶顺序主子式分别为1,0,-10,所以A不能直接分解为三角阵的乘积,但换行后可以。
因为B的一、二、三阶顺序主子式分别为1,0,0,所以B不能分解为三角阵的乘积。
第六章
P192定理9Leabharlann 1条P192例题8第七章
P215不动点和不动点迭代法
P218定理3
P228弦截法
P229定理6
第九章
P280欧拉法与后退欧拉法
P283改进欧拉公式
数值分析课后点题答案
第一章数值分析误差
第二章插值法
第三章函数逼近
所以无解
19。观测物体的直线运动,得出以下数据:
时间t(s)
0
0.9
第三章
P63例题3
(1)最佳平方逼近公式的计算(2)T3(x)的表达式
第四章
P106复合梯形公式
P107复合辛普森求积公式
P108例题3
(1)复合公式及其余项(2)判断一个代数的精确度
第五章
P162定义3向量的范数
P165定理17
P169定义8
(1)左中右矩形公式(2)LU分解(3)谱半径和条件数(4)向量的范数
数值分析课本重点知识点
第一章
P4定义一
P5定义二
P6定理1
P7例题3
P10条件数
(1)绝对误差(限)和相对误差(限)公式(2)有效数字(3)条件数及其公式
第二章
P26定理2(以及余项推导过程)
P36两个典型的埃尔米特插值
(1)拉格朗日插值多项式(包括其直线公式和抛物线公式)(2)插值余项推导及误差分析(估计)(3)两个典型的埃尔米特插值(4)三次样条插值的概念