电力电子课程设计1组逆变器
电力电子课程设计完整版

目录概述电力电子技术课程设计任务书第二章第1章 PWM控制技术简介 (1)第二章器件的选择 (5)第三章三角波发生电路 (8)第四章三相正弦交流电源发生器 (9)第五章比较电路的生成 (11)第六章驱动电路 (12)第七章死区生成电路 (14)第八章电容滤波的三相不可控整流电路 (15)第九章逆变电路 (18)第十章总结 (22)第十一章参考文献 (22)概述PWM控制技术在逆变电路中的应用最为广泛,对逆变的影响也最为深刻.现在大量应用的逆变电路中,绝对大部分都是PWM逆变电路.可以说PWM 控制技术正是有赖于在逆变中的应用,才发展的比较成熟,才确定了他在电力电子技术中的重要地位.而SPWM技术就是其中的一种广泛应用.我们采取电容滤波的三相不可控整流电路获得直流电,成为逆变电路的直流侧,其中在整流电路和逆变电路中间并联有很大的电容,等效为恒压源。
为SPWM的等幅提供了条件。
在该电路中我们用三角波作为载波,三相交流电压作为调试波,采用双极性调制,利用比较器输出三角波和正弦波的焦点信息,该信息成为IGBT驱动电路的输入信号,控制IGBT的导通和关端,根据IGBT 的导通和关断时间的不同做到了输出的矩形波的宽度为不等幅,根据面积相等效应,输出电流为正弦波,即实现调制法控制SPWM逆变。
电力电子技术课程设计任务书一、课程设计的目的通过电力电子计术的课程设计达到以下几个目的:1、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。
2、培养学生综合分析问题、发现问题和解决问题的能力。
3、培养学生运用知识的能力和工程设计的能力。
4、培养学生运用仿真工具的能力和方法。
5、提高学生课程设计报告撰写水平。
二、课程设计的要求1. 自立题目题目:无源三相PWM逆变器控制电路设计注意事项:①学生也可以选择规定题目方向外的其它电力电子装置设计,如开关电源、镇流器、UPS电源等,②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。
《电力电子技术》课后习题及答案05中频感应加热电源的安装与维护习题答案

模块五中频感应加热电源的安装与维护习题答案例5-1在晶闸管两端并联R、C吸收回路的主要作用有哪些?其中电阻R的作用是什么?解:R、C回路的作用是:吸收晶闸管瞬间过电压,限制电流上升率,动态均压作用。
R的作用为:使L、C形成阻尼振荡,不会产生振荡过电压,减小晶闸管的开通电流上升率,降低开通损耗。
例5-2 三相半波可控整流电路,如果三只晶闸管共用一套触发电路,如图5-1所示,每隔120°同时给三只晶闸管送出脉冲,电路能否正常工作?此时电路带电阻性负载时的移相范围是多少?图5-1 例5-2图解:能工作。
因为虽然三个晶闸管同时加触发脉冲,只有阳极电压最高相所接的晶闸管导通,其余两个晶闸管受反压阻断。
但是,移相范围只有120°,达不到150°移相范围要求。
例5-3三相半波可控整流电路带电阻性负载时,如果触发脉冲出现在自然换相点之前15°处,试分析当触发脉冲宽度分别为10°和20°时电路能否正常工作?并画出输出电压波形。
解:当触发脉冲宽度分别为10°,如图5-2所示,当触发脉冲u g1触发U相晶闸管,则U相晶闸管导通。
当u g2触发V相晶闸管时,这时U相电压高于V相电压,所以V相晶闸管不导通,U相晶闸管继续导通。
过了自然换相点后,尽管V相电压高于U相电压,但V相晶闸管的触发脉冲已消失,所以V相晶闸管仍不导通。
U相晶闸管导通到过零点关断。
这样下去,接着导通的是W相晶闸管。
由此可以看出,由于晶闸管间隔导通而出现了输出波形相序混乱现象,这是不允许的。
图5-2 例5-3波形当触发脉冲宽度分别为10°时,输出波形和α=0º时波形一样。
例5-4图5-3为三相全控桥整流电路,试分析在控制角α=60º时发生如下故障的输出电压U d的波形。
(1)熔断器1FU熔断。
(2)熔断器2FU熔断。
(3)熔断器2FU、3FU熔断。
解:(1)熔断器1FU熔断时输出电压波形如图5-3b所示,凡与U相有关的线电压均不导通。
单极性SPWM逆变电路电力电子课设

电力电子技术课程设计单极性SPWM单相桥式逆变电路的设计与仿真院、部:电气信息工程学院学生姓名:李旺指导教师:杨万里职称助教专业:自动化班级:1401班学号:1430740107完成时间:2017.6湖南工学院电力电子技术课程设计课题任务书学院:电气与信息工程学院专业:自动化摘要20世纪80年代以来,信息电子技术和电力电子技术在各自发展的基础上相结合而产生了一代高频化、全控型的电力电子器件,典型代表有门极可关断晶闸管、电力晶体管、电力场效应晶体管和绝缘栅双极型晶体管。
逆变电路是PWM控制技术最为重要的应用场合。
这里在研究单相桥式PWM逆变电路的理论基础上,采用Matlab的可视化仿真工具Simulink建立单相桥式单极性控制方式下PWM逆变电路的仿真模型,通过动态仿真,研究了调制深度、载波度对输出波形的影响。
仿真结果表明建模的正确性,并证明了该模型具有快捷、灵活、方便、直观等一系列特点,从而为电力电子技术教学和研究中提供了一种较好的辅助工具。
关键词:PWM控制技术;逆变电路;单极性SPWM;SimulinkAbstractSince 1980s, the electronic information technology and power electronics technology combined to produce a generation of high frequency phase in their development, full controlled power electronic devices, a typical gate turn off thyristor, power transistor, power MOSFET and insulated gate bipolar transistor.The inverter circuit is one of the most important applications of PWM control technology. Here in the theoretical basis of the single-phase bridge inverter circuit of the PWM, the simulation model of PWM inverter using Matlab visual simulation tool Simulink to establish the single-phase bridge unipolar control mode, through dynamic simulation, studied the modulation depth, the carrier frequency of the output voltage. Influence of load current; and analyzes the harmonic characteristics of output voltage, load current. The simulation results show that the model is correct, and it is proved that the model is fast, flexible, convenient, intuitive and a series of characteristics, so as to power electronic technology teaching Study and research provides an effective tool.Key words:PWM control technology; inverter circuit; SPWM waveform; Simulink目录1绪言 (1)1.1电力电子技术的概况 (1)1.2课程学习情况简介 (1)1.3设计要求及总体方案设计 (2)2主电路设计 (3)2.1主电路原理图及原理分析 (3)2.2器件选择及参数计算 (4)3控制与驱动电路设计 (5)3.1控制电路设计 (5)3.2驱动电路设计 (6)4保护电路设计 (7)4.1过电流保护 (7)4.2过电压保护 (7)5仿真分析 (8)5.1仿真软件介绍 (8)5.2仿真模型的建立 (8)5.3仿真结果分析 (10)6设计总结 (13)参考文献 (14)致谢 (15)附录 (16)1绪言1.1电力电子技术的概括随着电力电子技术的高速发展,逆变电路的应用非常广泛,蓄电池、干电池、太阳能电池等都是直流电源,当我们使用这些电源向交流负载供电时,就需要用到逆变电路了。
单项全桥逆变器课程设计

单项全桥逆变器课程设计一、课程目标知识目标:1. 学生能理解并掌握单项全桥逆变器的基本工作原理及其电路构成。
2. 学生能够解释逆变器中各个元件的作用,并明确逆变器在新能源发电中的应用。
3. 学生能够运用所学知识,分析并计算单项全桥逆变器的主要技术参数。
技能目标:1. 学生能够独立完成单项全桥逆变器电路图的绘制,并进行电路仿真。
2. 学生能够通过实验,观察并分析逆变器工作时电压、电流的变化,培养实际操作能力。
3. 学生能够运用相关软件对单项全桥逆变器进行设计与优化,提高解决实际问题的能力。
情感态度价值观目标:1. 培养学生对电子技术领域的兴趣,激发学生探索新能源技术的热情。
2. 通过小组合作完成课程设计,培养学生团队协作精神,提高沟通与交流能力。
3. 增强学生环保意识,让学生认识到新能源技术对环境保护的重要性。
分析课程性质、学生特点和教学要求,本课程目标旨在使学生掌握单项全桥逆变器的基本知识和技能,同时培养他们的情感态度价值观,为我国新能源技术的发展培养具备实际操作能力和创新精神的优秀人才。
通过本课程的学习,学生将能够达到上述具体的学习成果。
二、教学内容1. 理论知识:- 逆变器的基本概念与分类- 单项全桥逆变器的工作原理- 单项全桥逆变器电路构成及各元件功能- 逆变器在新能源发电中的应用2. 实践操作:- 单项全桥逆变器电路图的绘制- 电路仿真与参数计算- 实验设备的使用与操作- 观察并分析逆变器工作时的电压、电流波形3. 设计与优化:- 逆变器设计原理与方法- 相关软件的使用与操作- 基于实际需求的设计与优化- 小组讨论与成果展示教学内容安排与进度:第一周:逆变器基本概念、分类及工作原理学习第二周:单项全桥逆变器电路构成及各元件功能学习第三周:电路图的绘制与电路仿真实践第四周:实验操作与观察数据分析第五周:逆变器设计与优化方法学习与实践第六周:小组讨论与成果展示教学内容参照课本相应章节,结合课程目标进行科学性和系统性组织,确保学生能够循序渐进地掌握单项全桥逆变器的理论知识、实践操作技能以及设计与优化方法。
单相桥式逆变器课程设计

单相桥式逆变器课程设计一、课程目标知识目标:1. 学生能理解单相桥式逆变器的基本工作原理及其在电力电子技术中的应用;2. 学生能掌握单相桥式逆变器的主电路构成、控制方式及各部分功能;3. 学生能了解单相桥式逆变器在新能源发电、电动汽车等领域的应用。
技能目标:1. 学生能运用所学知识,分析并解决单相桥式逆变器在实际应用中出现的问题;2. 学生能通过实验,掌握单相桥式逆变器的调试方法,提高实际操作能力;3. 学生能运用相关软件,设计简单的单相桥式逆变器控制系统。
情感态度价值观目标:1. 学生通过学习单相桥式逆变器,培养对电力电子技术的研究兴趣,增强科技创新意识;2. 学生在学习过程中,树立团队合作意识,提高沟通与协作能力;3. 学生关注新能源技术的发展,认识到电力电子技术在节能减排中的重要性,增强环保意识。
课程性质:本课程为电子技术专业课程,旨在让学生掌握单相桥式逆变器的工作原理和应用,培养实际操作能力和创新能力。
学生特点:学生具备一定的电子技术基础,对电力电子技术有一定了解,但对单相桥式逆变器的深入学习尚属首次。
教学要求:结合学生特点,注重理论与实践相结合,充分调动学生的主观能动性,培养实际操作能力和创新能力。
在教学过程中,关注学生的个体差异,因材施教,确保课程目标的实现。
二、教学内容1. 单相桥式逆变器的基本原理及电路构成- 逆变器的基本概念和工作原理- 单相桥式逆变器的主电路及其各部分功能- 单相桥式逆变器的控制方式2. 单相桥式逆变器的应用领域- 在新能源发电领域的应用- 在电动汽车领域的应用- 在其他电力电子设备中的应用3. 单相桥式逆变器的设计与调试- 逆变器主电路参数计算与选择- 控制策略及电路设计- 调试方法及注意事项4. 实践操作与案例分析- 实验室实践操作,熟悉逆变器的基本操作和调试方法- 分析实际应用中单相桥式逆变器的问题及解决方案- 设计简单的单相桥式逆变器控制系统教学大纲安排:第一周:逆变器基本原理及电路构成第二周:单相桥式逆变器控制方式第三周:单相桥式逆变器应用领域第四周:单相桥式逆变器设计与调试方法第五周:实践操作与案例分析教学内容与教材关联性:本教学内容紧密围绕教材中关于单相桥式逆变器的内容,结合实际应用,注重理论与实践相结合,提高学生的实际操作能力。
电力电子课程设计报告

电力电子课程设计报告采用双PWM控制的风力发电并网变流器时间:2011年6月目录摘要 (3)第0章绪论 (4)0.1.课程设计要求 (4)0.2.风力发电并网系统简介 (4)0.3.课程设计流程 (5)第1章主电路选型 (6)1.1整流电路选型 (7)1.2后级变换电路选型 (8)第2章主电路有源器件参数计算 (11)2.1主电路开关器件选择 (11)2.1.1智能功率模块 MIG50Q201H 简介 (11)第3章主电路无源器件参数计算 (14)3.1直流电压的确定 (14)3.2交流侧电感的选择 (14)3.3直流侧稳压电容选择 (15)第4章有源电路的驱动、保护原理设计 (16)4.1有源IPM驱动电路设计 (16)4.2IPM 驱动电路设计 (18)4.3保护电路设计 (19)第5章控制、检测电路原理设计 (21)5.1控制电路设计 (21)5.1.1基于TMS320F2812 控制电路的设计 (21)5.1.2TMS320F2812 的主要特点 (22)5.1.3基于TMS320F2812 的控制电路板的设计 (23)5.2信号检测电路设计 (25)5.2.1电网电压相位过零点检测电路 (25)5.2.2直流母线电压检测 (26)5.2.3电流检测电路 (28)第6章散热设计 (30)6.1散热基础设计 (30)6.2IGBT散热计算 (32)第7章仿真 (33)7.1设计技术参数及要求 (33)7.2系统仿真设计 (33)7.3仿真结果 (34)第8章参考文献 (37)摘要随着全球能源危机和环境污染的日益严重,风能和太阳能作为当前最理想的绿色能源越来越受到各国的重视。
但是由于风力发电的波动性和分散性,如果直接并入电网会对电网产生冲击,所以必须使风力发电的输出电压稳定在一定的电压和频率值之后才能并入电网,实现柔性并网。
解决这一问题的核心就是风力发电并网变流器。
在本次课程设计中,我们组设计了双PWM脉宽调制技术控制的并网变流器。
电力电子技术课程设计

电力电子技术课程设计一、教学目标本课程旨在让学生掌握电力电子技术的基本概念、原理和应用,培养学生分析和解决电力电子技术问题的能力。
具体目标如下:1.知识目标:–了解电力电子技术的基本原理和特性;–掌握电力电子器件的工作原理和选用方法;–熟悉电力电子电路的分析和设计方法。
2.技能目标:–能够分析简单的电力电子电路;–能够选用合适的电力电子器件进行电路设计;–能够进行电力电子设备的安装、调试和维护。
3.情感态度价值观目标:–培养学生的创新意识和团队合作精神;–增强学生对电力电子技术领域的兴趣和自信心;–培养学生对电力电子技术应用的的责任感和使命感。
二、教学内容本课程的教学内容主要包括电力电子技术的基本原理、电力电子器件、电力电子电路的分析与设计以及电力电子技术的应用。
具体安排如下:1.电力电子技术的基本原理:–电力电子器件的工作原理;–电力电子电路的特性与分类。
2.电力电子器件:–晶闸管及其驱动电路;–整流器、逆变器及其控制电路。
3.电力电子电路的分析与设计:–电力电子电路的基本分析方法;–电力电子电路的设计原则与步骤。
4.电力电子技术的应用:–电力电子设备的功能与结构;–电力电子技术的应用领域。
三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性。
主要包括:1.讲授法:通过教师的讲解,让学生掌握电力电子技术的基本概念和原理;2.讨论法:通过小组讨论,培养学生分析问题和解决问题的能力;3.案例分析法:通过分析实际案例,让学生了解电力电子技术的应用;4.实验法:通过实验操作,让学生熟悉电力电子器件和电路的工作原理。
四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备。
教材选用《电力电子技术》一书,参考书包括《电力电子器件》和《电力电子电路设计》。
多媒体资料包括教学PPT、视频动画等。
实验设备包括晶闸管、整流器、逆变器等实验装置。
这些资源能够支持教学内容和教学方法的实施,丰富学生的学习体验。
《电力电子技术》课程设计单相桥式逆变课程设计

《电力电子技术》课程设计说明书单相桥式逆变电路院、部:电气与信息工程学院学生姓名:指导教师:职称副教授专业:电气工程及其自动化班级:完成时间:2015年6月1日摘要随着电力电子技术的高速发展,逆变电路的应用非常广泛,蓄电池、干电池、太阳能电池等都是直流电源,当我们使用这些电源向交流负载供电时,就需要逆变电路。
另外,交流电机调速用变频器、不间断电源、感应加热等电力电子装置,其核心部分都是逆变电路。
本设计要做的就是输入100V的直流电压,输出交流电压频率范围在30~60H Z,电压30~50V范围可调。
根据电力电子技术的相关知识,把直流电变成交流电的电路成为逆变电路。
单相桥式逆变电路是一种常见的逆变电路。
采用阻感负载,负载两端的电压即为输出电压。
设计电路中采用IGBT作为开关器件,利用ICL8038芯片产生频率符合要求的信号来控制IGBT的通断,从而得到频率范围在30~60H Z的交流电压。
采用移相调压来调节输出电压的大小。
关键词:直流电压;交流电压;逆变;桥式ABSTRACTWith the rapid development of power electronic technology, the inverter circuit has a very wide range of applications, such as battery, battery, solar battery is a dc power supply, when we use the power supply to the ac load power supply, inverter circuit is needed.In addition, the ac motor speed control by frequency converter, uninterruptible power supply, induction heating power electronic devices, such as its core part is the inverter circuit.This design has to do is enter the dc voltage 100 v, output voltage in 30 ~ 60 hz frequency range, 30 ~ 50 v voltage range is adjustable.According to the power electronic technology knowledge, become the inverter circuit of direct current into alternating current circuit.Single-phase bridge inverter circuit is a common inverter e resistance load, feeling at the ends of the load voltage is the output voltage.In the design of circuit using IGBT as the switch device, using ICL8038 chip conform to the requirements of the frequency signal to control the on-off of IGBT, frequency range is obtained in 30 ~ 60 hz ac voltage.Phase-shifting surge tank is used to adjust the size of the output voltage.Key wordsdc voltage;ac voltage;inverter;bridge目录摘要 (I)ABSTRACT ....................................................................................................................... I I 课程设计任务书 (V)绪论 (1)第1章方案设计 (5)系统框图 (5)主电路框图 (5)主电路原理图 (6)第2章主电路设计 (7)主电路原理图 (7)主电路原理分析 (7)器件的选择 (8)绝缘栅双极晶体管 (8)电力二极管 (8)元件参数 (9)第3章驱动电路的设计 (10)驱动电路原理图设计 (10)驱动电路的种类 (10)驱动电路的作用 (10)驱动电路的选择 (11)第4章控制电路设计 (12)4.1 控制电路的作用 (12)控制电路原理图设计 (12)控制电路原理分析 (13)移相调压的原理 (13)CL8038芯片介绍 (14)ICL0838引脚功能 (14)ICL0838内部结构 (15)第5章保护电路的设计 (17)保护电路的种类 (17)保护电路的作用 (17)保护电路的选择 (18)第6章仿真分析 (19)仿真软件MATLAB (19)仿真电路图 (20)参数设置 (21)仿真效果图 (21)仿真结果分析 (22)第7章设计总结 (23)参考文献 (24)致谢词 (25)附录 (26)课程设计任务书一、课程设计的目的1、加强和巩固所学的知识,加深对理论知识的理解;2、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料;3、培养学生综合分析问题、发现问题和解决问题的能力;4、培养学生综合运用知识的能力和工程设计能力;5、培养学生运用仿真软件的能力和方法;6、培养学生科技写作水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参考文献........................................................................................................................ 7 附录..................................................................................................................理
本设计以 STC15F2K60S2 单片机最小系统板为控制核心,主拓扑结构为三相电压 式桥型逆变电路,采用 MOSFET 半桥驱动电路为主要驱动电路,单输入半桥驱动 芯片采用 IR2104,协调各个模块工作以实现题设功能。电路分为主电路、控制 模 块 、 辅 助 电源 模 块 等 部 分 。主 电 路 采 用 SPWM 逆 变 电 路 ; 控制 模 块 使 用 STC15F2K60S2 单片机的 PWM 输出端口产生控制信号,脉冲宽度调制信号驱动 IR2104 模块产生驱动电平,同时通过其内部数模端口采集电压、电流信号,通 过程序 PID 算法进行控制。本系统通过查表法生成 SPWM 脉冲信号控制内部硬件 PWM 模块,外接驱动电路驱动功率桥,达到逆变的目的,输出经滤波,最后得到 幅频稳定的交流电。
3
通过 VCC 及 D1 进行充电。当输入信号 Hin 开通时,上桥的驱动由 C1 供电。由于 C1 的电压不变,VB 随 VS 的升高而浮动。每个 PWM 周期电路都给 C1 充电,维持 其电压基本保持不变。D1 的作用是当 Q1 关断时为 C1 充电提供正向电流通道, 当 Q1 开通时,阻止电流反向流入控制电压 VCC,D2 的作用是为使上桥能够快速 关断,减少开关损耗,缩短 MOSFET 关断时的不稳定过程,D3 的作用是避免上桥 快速开通时下桥的栅极电压耦合上升(Cdv/dt)而导致上下桥穿通的现象。
3
②
4
1 :单片模块 2 :辅助电源模块 3 :boost 升压模块
1
4 :三相逆变主电路
2
图 3.1 各模块电路板
5
第 4 章 模块电路调试
4.1 连接模块与 spwm 波
图 4.1 模块连接
图 4.2 spwm 波
4.2 调试条件及方案
测试仪器: 双踪示波器。 测试方法: 将双通道示波器的两个探针接在单片机输出 PWM 的引脚;记录波形数 据:改变单片机输出 SPWM 的频率,返回第一步操作,直到调出 50HZ 的 SPWM 波 测试完。测试结果:因为三相的板子有 3 个输出端,得到的 SPWM 波形如图所示。
2.2 外围电路原理分析
2.2.1 升压电路的选择 同步整流升压式 DC /DC 电路通过施加同步驱动电压,可以使电路有效地工 作。该电路可以满足开关电源低功耗、高效率、小型化的需要。考虑到题目对效 率有较高的要求,因此选此作为升压电路。
图 2.2
BOOST 电路
2
2.2.2 单片机的选型 采用 STC15F2K60S2 单片机作为主控制器控制外围电路进行 PWM 信号生成、 数值运算、键盘输入和 LED 控制,有片内 PWM/PCA 控制器,可捕获外部缓冲产生 PWM,有片内 AD,分辨率 10 位,8 通道。适合用于生成 PWM 波形,控制逆变器。 由于此方案简洁、灵活、可扩展性好,能完全达到设计要求,故采用。 2.2.3 辅助电源的设计 采用 7815 芯片 和 7805 芯片来驱动电路, 及相关电容参数, 达到产生+12v, +5v 的直流电压,分别为主电路的驱动电路供电,单片供电。
1
第 2 章 电路设计与分析
2.1 主电路原理分析
2.1.1 MOSFET 半桥驱动电路原理
图 2.1 MOSFET 半桥电路
上图为本文采用的三相电压型逆变电路, 也可以看成是三个半桥逆变电路组 成,电路的基本工作方式为 180 度导电型,各相依次差 120 度。MOSFET 导通 顺序为 Q1Q5→Q1Q6→Q2Q6→Q2Q4→Q3Q4→Q3Q5。系统通过调节上桥 MOSFET 的 PWM 占空比来实现速度调节。 2.1.2 逆变器提高效率的方法 逆变器的效率也就是其输入输出功率之比, 即逆变器效率为输出功率比上输 入功率。 逆变器的效率提升技术研究主要集中结构和器件等方面的硬件改进主要 分为开关器件损耗、 变压器的损耗、 电抗器的损耗。 因本次设计的电压幅值较低, 没有涉及到变压器电路,因此本电路中只考虑开关器件与电抗器的损耗。
本科生课程设计
题目 三相电压式桥型逆变电路
学生姓名 指导教师 所在学院 专业(系) 班级(级)
习宇尘
电气工程及其自动化 2015 级
完成日期 2017 年 12 月 27 日
目
录
第 1 章 绪论.................................................................................................................. 1 1.1 课题原理......................................................................................................... 1 第 2 章 电路设计与分析.............................................................................................. 2 2.1 主电路原理分析........................................................................................... 2 2.1.1 MOSFET 半桥驱动电路原理.............................................................. 2 2.1.2 逆变器提高效率的方法...................................................................... 2 2.2 外围电路原理分析....................................................................................... 2 2.2.1 升压电路的选择................................................................................... 2 2.2.2 单片机的选型....................................................................................... 3 2.2.3 辅助电源的设计................................................................................... 3 2.3 电路与程序设计............................................................................................. 3 2.3.1 逆变器主回路...................................................................................... 3 2.3.2 控制及驱动电路................................................................................... 3 2.3.3 控制程序.............................................................................................. 4 第 3 章 模块电路制作.................................................................................................. 5 3.1 模块电路板..................................................................................................... 5 第 4 章 模块电路调试.................................................................................................. 6 4.1 连接模块与 spwm 波...................................................................................... 6 4.2 4.3 调试条件及方案........................................................................................... 6 调试结果及分析........................................................................................... 6
4.3 调试结果及分析
图 4.3 输出三相波形
通过测试结果可以看出,该逆变器可以输出三相的 50HZ 的正弦波电流。另 外地本系统外接 LCD 显示及按键,控制、观察系统工作模式与状态。
6
参考文献
[1] 谈扬宁, 朱兆优, 王海涛.基于 STC15xx 单片机控制的正弦波逆变电源[J]. 电 子元器件应用, 2009 (08). [2] 赵建武.三相 SPWM 逆变电源仿真设计[J]. 辽宁工程技术大学学报(自然科学 版),2008,(03).. [3]《电力电子技术》王兆安,刘进军主编 机械工业出版社 2009,(05) [4] 袁佳歆,潘建兵,饶斌斌,陈柏超,三相逆变器的最小共模电压 PWM 控制, 电工技术学报,2012,(8). [5]《电力电子技术》.廖冬初,聂汉平主编.华中科技大学出版社.2007,(09). [6] 魏伟.正弦波逆变电源的研究现状与发展趋势[J].电气技术, 2008,(11).