信息论第三章答案

合集下载

信息论与编码(第3版)第3章部分习题答案

信息论与编码(第3版)第3章部分习题答案

3.1设信源()12345670.20.190.180.170.150.10.01X a a a a a a a P X ⎛⎫⎧⎫=⎨⎬ ⎪⎩⎭⎝⎭ (1) 求信源熵()H X (2) 编二进制香农码(3) 计算平均码长及编码效率。

答:(1)根据信源熵公式()()()()21log 2.6087bit/symbol i i i H X p a p a ==−=∑(2)利用到3个关键公式:①根据()()()100,0i a i k k p a p a p a −===∑计算累加概率;②根据()()*22log 1log ,i i i i p a k p a k N −≤<−∈计算码长;③根据()a i p a 不断地乘m 取整(m 表示编码的进制),依次得到的i k 个整数就是i a 对应的码字根据①②③可得香农编码为(3)平均码长公式为()13.14i i i K p a k ===∑单符号信源L =1,以及二进制m =2, 根据信息率公式()2log bit/symbol m KR K L==编码效率()83.08%H X Rη==3.2对习题3.1的信源编二进制费诺码,计算其编码效率答:将概率从大到小排列,且进制m=2,因此,分成2组(每一组概率必须满足最接近相等)。

根据平均码长公式为()12.74i iiK p a k===∑单符号信源L=1,以及二进制m=2, 根据信息率公式()2log bit/symbolmKR KL==编码效率(信源熵看题3.1)()95.21%H XRη==3.3对习题3.1的信源编二进制赫夫曼码,计算平均码长和编码效率答:将n个信源符号的概率从大到小排列,且进制m=2。

从m个最小概率的“0”各自分配一个“0”和“1”,将其合成1个新的符号,与其余剩余的符号组成具有n-1个符号的新信源。

排列规则和继续分配码元的规则如上,直到分配完所有信源符号。

必须保证两点:(1)当合成后的信源符号与剩余的信源符号概率相等时,将合并后的新符号放在靠前的位置来分配码元【注:“0”位表示在前,“1”表示在后】,这样码长方差更小;(2)读取码字时是从后向前读取,确保码字是即时码。

《信息论与编码》习题解答-第三章

《信息论与编码》习题解答-第三章

第三章 信道容量-习题答案3.1 设二元对称信道的传递矩阵为⎥⎦⎤⎢⎣⎡3/23/13/13/2 (1) 若P(0) = 3/4, P(1) = 1/4,求H(X), H(X/Y), H(Y/X)和I(X;Y); (2) 求该信道的信道容量及其达到信道容量时的输入概率分布;解: 1)symbolbit Y X H X H Y X I symbol bit X Y H Y H X H Y X H X Y H Y H Y X H X H Y X I symbol bit y p Y H x y p x p x y p x p y x p y x p y p x y p x p x y p x p y x p y x p y p symbolbit x y p x y p x p X Y H symbolbit x p X H jj iji j i j i i i / 062.0749.0811.0)/()();(/ 749.0918.0980.0811.0)/()()()/()/()()/()();(/ 980.0)4167.0log 4167.05833.0log 5833.0()()(4167.032413143)/()()/()()()()(5833.031413243)/()()/()()()()(/ 918.0 10log )32lg 324131lg 314131lg 314332lg 3243( )/(log )/()()/(/ 811.0)41log 4143log 43()()(222221212221221211112111222=-==-==+-=+-=-=-==⨯+⨯-=-==⨯+⨯=+=+==⨯+⨯=+=+==⨯⨯+⨯+⨯+⨯-=-==⨯+⨯-=-=∑∑∑∑2)21)(/ 082.010log )32lg 3231lg 31(2log log );(max 222==⨯++=-==i mi x p symbolbit H m Y X I C3.2 解:(1)αα-==1)(,)(21x p x p⎥⎦⎤⎢⎣⎡=4/14/12/102/12/1P ,⎥⎦⎤⎢⎣⎡---=4/)1(4/)1(2/)1(02/12/1)(αααααj i y x P 4/)1()(,4/14/)(,2/1)(321αα-=+==y p y p y p接收端的不确定度:))1(41log()1(41)4141log()4141()2log(21)(αααα---++-=Y H)1log(41)1log(4123αααα---++-= (2))4log()1(41)4log()1(41)2log()1(210)2log(21)2log(21)|(ααααα-+-+-+++=X Y H α2123-= (3))|()();(X Y H Y H Y X I -=);(max )()(Y X C i x p =α,0)(=ααC d d,得到5/3=α 161.0)5/3();max(===C Y X C 3.3∑==⨯++=+=21919.001.0log 01.099.0log 99.02log log )log(j ij ij p p m C0.919*1000=919bit/s 3.4⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=εεεε-10-10001ij p2/1)()(0)(321===a p a p a p 0)(1=b p2/12/1)1(2/100)|()(),()(222=⨯+-⨯+⨯===∑∑εεi ii ii a b p a p b a p b p2/1-12/12/100)|()(),()(333=⨯+⨯+⨯===∑∑)(εεi ii ii a b p a p b a p b p)()|(log)|();(j i j ji j i b p a b p a b p Y a I ∑=0);(1=Y a Iεεεε2log )1(2log )1(0)()|(log)|();(222+--+==∑j j jj b p a b p a b p Y a I )1(2log )1(2log 0)()|(log)|();(333εεεε--++==∑j j jj b p a b p a b p Y a I当0=ε,1=C 当2/1=ε,0=C 3.5两个信道均为准对称DMC 信道设输入符号概率αα-==1)(,)(21a p a p , (1) 对于第一种信道的联合概率的矩阵为:⎥⎦⎤⎢⎣⎡---------)1(2)1)(1()1)((2)()1(αεαεαεεααεαεp p p p⎥⎦⎤⎢⎣⎡---)()1(εαεp p 3.6⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2/1002/12/12/10002/12/10002/12/1P 121log 2121log 214log log )log(41=++=+=∑=ij j ij p p m C3.7解:(1)从已知条件可知:3,2,1,3/1)(==i x p i ,且转移概率⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0109101103103525110321)|(i j x y p ,则联合概率⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡==010330110110115215110161)()|(i i j ij x p x y p p ,因为:),()(∑=ij i j y x p y p ,可计算得到31)(1=y p ,21)(2=y p ,61)(3=y p499.16log 612log 213log 31)(=++=Y H(2)175.1910log 10310log 301310log 101310log10125log 1525log 151310log 1012log 61)|(log )()|(=+++++++=-=∑iji j j i x y p y x p X Y H (3)当接收为2y ,发送为2x 时正确,如果发送为1x 和3x 为错误,各自的概率为: 5/1)|(21=y x p ,5/1)|(22=y x p ,5/3)|(23=y x p 它的错误概率为:5/4)|()|(2321=+=y x p y x p p e(4)从接收端看到的平均错误概率为:===∑∑≠≠ji ij ji j i j e p y x p y p p )|()(收733.010/115/110/310/130/115/2=+++++(5)从发送端看到的平均错误概率为:===∑∑≠≠ji ij ji i j i e p x y p x p p )|()(发733.010/115/110/310/130/115/2=+++++(6)此信道不好,因为信源等概率分布,从转移信道来看,正确发送的概率11y x >-为0.5,有一半失真;22y x >-为0.3,严重失真;33y x >-为0,完全失真。

信息论第三章题解

信息论第三章题解

第三章习题3.2 设一无记忆信源的符号集为{}1,0,已知信源的概率空间为⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡434110P X (1) 求消息符号的平均熵;(2) 由100个符号构成的序列,求每一序列(例如有m 个“0”和)100(m -个“1”构成)的自信息量的表达式;(3) 计算)2(中的熵。

解:(1)此消息符号的平均熵为)(8113.0)43log 4341log 41()(bit X H =+-=(2)设一特定序列含有m 个“0”和)100(m -个“1”,所以mm X p -⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=1004341)(,3log )100(2004341log )(log )(100-+=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=-=-m x p X I mm(4) 由定义13.818113.0100)(100)(100=⨯==X H X H 。

3.3 设离散无记忆信源为 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡17.016.017.018.019.02.0654321a a a a a a P X 求信源的熵,并解释为什么6log )(>X H 不能满足信源的极值性。

解:因为信源是无记忆的,所以6571.2)17.0log 17.016.0log 16.017.0log 17.018.0log 18.019.0log 19.02.0log 2.0()(log )()(=+++++-=-=∑Xi i x p x p X H 而log6 = 2.5850 因为107.161>=∑=i ip,所以此空间不是概率空间,H(X)不存在。

3.7 设有一个信源,它产生0,1序列的消息。

该信源在任意时间而且不论以前发生过什么消息符号,均按6.0)1(,4.0)0(==p p 的概率付出符号。

(1) 试问这个信源是否平稳;(2) 试计算)(lim ),|(),(2132X H X X X H X H N N ∞→及;(3) 试计算符号信源中可能发出的所有并写出44)(X X H 。

(完整版)信息论基础与编码课后题答案(第三章)

(完整版)信息论基础与编码课后题答案(第三章)

3-1 设有一离散无记忆信源,其概率空间为12()0.60.4X x x P x ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,信源发出符号通过一干扰信道,接收符号为12{,}Y y y =,信道传递矩阵为51661344P ⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,求: (1) 信源X 中事件1x 和2x 分别含有的自信息量;(2) 收到消息j y (j =1,2)后,获得的关于i x (i =1,2)的信息量; (3) 信源X 和信宿Y 的信息熵;(4) 信道疑义度(/)H X Y 和噪声熵(/)H Y X ; (5) 接收到消息Y 后获得的平均互信息量(;)I X Y 。

解:(1)12()0.737,() 1.322I x bit I x bit ==(2)11(;)0.474I x y bit =,12(;) 1.263I x y bit =-,21(;) 1.263I x y bit =-,22(;)0.907I x y bit =(3)()(0.6,0.4)0.971/H X H bit symbol ==()(0.6,0.4)0.971/H Y H bit symbol ==(4)()(0.5,0.1,0.1,0.3) 1.685/H XY H bit symbol ==(/) 1.6850.9710.714/H X Y bit symbol =-= (/)0.714/H Y X bit symbol =(5)(;)0.9710.7140.257/I X Y bit symbol =-=3-2 设有扰离散信道的输入端是以等概率出现的A 、B 、C 、D 四个字母。

该信道的正确传输概率为0.5,错误传输概率平均分布在其他三个字母上。

验证在该信道上每个字母传输的平均信息量为0.21比特。

证明:信道传输矩阵为:11112666111162661111662611116662P ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,信源信宿概率分布为:1111()(){,,,}4444P X P Y ==, H(Y/X)=1.79(bit/符号),I(X;Y)=H(Y)- H(Y/X)=2-1.79=0.21(bit/符号)3-3 已知信源X 包含两种消息:12,x x ,且12()() 1/2P x P x ==,信道是有扰的,信宿收到的消息集合Y 包含12,y y 。

第三版信息论答案

第三版信息论答案

【2.1】设有12 枚同值硬币,其中有一枚为假币。

只知道假币的重量与真币的重量不同,但不知究竟是重还是轻。

现用比较天平左右两边轻重的方法来测量。

为了在天平上称出哪一枚是假币,试问至少必须称多少次?解:从信息论的角度看,“12 枚硬币中,某一枚为假币”该事件发生的概率为P 1 ;12“假币的重量比真的轻,或重”该事件发生的概率为P 1 ;2为确定哪一枚是假币,即要消除上述两事件的联合不确定性,由于二者是独立的,因此有I log12 log 2 log 24 比特而用天平称时,有三种可能性:重、轻、相等,三者是等概率的,均为P 1 ,因此天3平每一次消除的不确定性为I log 3 比特因此,必须称的次数为I1log 24I 2 log 32.9 次因此,至少需称3 次。

【延伸】如何测量?分3 堆,每堆4 枚,经过3 次测量能否测出哪一枚为假币。

【2.2】同时扔一对均匀的骰子,当得知“两骰子面朝上点数之和为2”或“面朝上点数之和为8”或“两骰子面朝上点数是3 和4”时,试问这三种情况分别获得多少信息量?解:“两骰子总点数之和为2”有一种可能,即两骰子的点数各为1,由于二者是独立的,因此该种情况发生的概率为P 1 16 61 ,该事件的信息量为:36I log 36 5.17 比特“两骰子总点数之和为8”共有如下可能:2 和6、3 和5、4 和4、5 和3、6 和2,概率为P 1 1 56 6 5 ,因此该事件的信息量为:36I log3652.85 比特“两骰子面朝上点数是3 和4”的可能性有两种:3 和4、4 和3,概率为P 因此该事件的信息量为:1 121 ,6 6 18I log18 4.17 比特【2.3】如果你在不知道今天是星期几的情况下问你的朋友“明天星期几?”则答案中含有多少信息量?如果你在已知今天是星期四的情况下提出同样的问题,则答案中你能获得多少信息量(假设已知星期一至星期日的顺序)?解:如果不知今天星期几时问的话,答案可能有七种可能性,每一种都是等概率的,均为P 1 ,因此此时从答案中获得的信息量为7I log 7 2.807 比特而当已知今天星期几时问同样的问题,其可能性只有一种,即发生的概率为1,此时获得的信息量为0 比特。

信息论与编码技术第三章课后习题答案

信息论与编码技术第三章课后习题答案

Chap3 思考题与习题 参考答案3.1 设有一个信源,它产生0、1 序列的消息。

它在任意时间而且不论以前发生过什么符号,均按P(0)=0.4,P(1)=0.6 的概率发出符号。

(1) 试问这个信源是否平稳的? (2) 试计算H(X 2),H(X 3/X 1X 2)及H ∞。

(3) 试计算H(X 4),并写出X 4 信源中可能有的所有符号。

解:(1)根据题意,此信源在任何时刻发出的符号概率都是相同的,均按p(0)=0.4,p(1)=0.6,即信源发出符号的概率分布与时间平移无关,而且信源发出的序列之间也是彼此无信赖的。

所以这信源是平稳信源。

(2)23123121()2()2(0.4log 0.40.6log 0.6) 1.942(/)(|)()()log ()(0.4log 0.40.6log 0.6)0.971(/)lim (|)()0.971(/)i i iN N N N H X H X bit symbols H X X X H X p x p x bit symbol H H X X X X H X bit symbol ∞−→∞==−×+===−=−+====∑" (3)4()4()4(0.4log 0.40.6log 0.6) 3.884(/)H X H X bit symbols ==−×+=4X 的所有符号:0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 11113.2 在一个二进制的信道中,信源消息集X={0,1}且p(1)=p(0),信宿的消息集Y={0,1},信道传输概率(10)1/p y x ===4,(01)1/p y x ===8。

求:(1) 在接收端收到y=0后,所提供的关于传输消息x 的平均条件互信息I(X ;y=0); (2) 该情况下所能提供的平均互信息量I(X ;Y)。

西电邓家先版信息论与编码第3章课后习题解答

西电邓家先版信息论与编码第3章课后习题解答

3.1 设信源⎥⎦⎤⎢⎣⎡)(x P X =⎥⎦⎤⎢⎣⎡4.06.021x x 通过一干扰信道,接收符号Y=[]21y y ,信道传递概率如图3.33所示。

求:(1) 信源X 中事件x1,和x2分别含有的自信息。

(2) 收到消息yj(j=1,2)后,获得的关于xi(i=1,2)的信息量。

(3) 信源X 和信源Y 的信息熵。

(4) 信道疑义度H (X|Y )和噪声熵H (Y|X )。

(5) 接收到消息Y 后获得的平均互信息。

解:(1)由定义得:I (X1)= -log0.6=0.74bitI (X2)= -log0.4=1.32bit(2)P (y1)= 0.6×5/6+0.4×3/4=0.8 P (y2)= 0.6×1/6+0.4×1/4=0.2I (xi ;xj )= I (xi )-I (xi|yj )=log[P (xi|yj )/p (xi )]= log[P (yj|xi )/p (yj )]则 I (x1;y1)= log[P (y1|x1)/p (y1)]=log5/6/0.8=0.059bit I (x1;y2)= log[P (y2|x2)/p (y2)]=log1/6/0.2=-0.263bit I (x2;y1)= log[P (y1|x2)/p (y1)]=log3/4/0.8=-0.093bit I (x2;y2)= log[P (y2|x2)/p (y2)]=log1/4/0.2=0.322bit(3)由定义显然 H (X )=0.97095bit/符号H (Y )=0.72193bit/符号(4)H (Y|X )=∑P (xy )log[1/P (y|x )]=2211i j ==∑∑p (xi )P (yj|xi )log[1/P (yj|xi )]=0.6·5/6·log6/5+0.6·1/6·log6+0.4·3/4·log4/3+0.4·1/4·log4 =0.7145bit/符号H (X|Y )= H (X )+H (Y|X )-H (Y )=0.9635bit/符号(5) I (X ;Y )= H (X )-H (X|Y )=0.00745 bit/符号图3.1 二元信道1/63/41/45/6x 1y 1y 2x 23.2设8个等概率分布的消息通过传递概率为p 的BSC 进行传送。

信息论基础知到章节答案智慧树2023年广东工业大学

信息论基础知到章节答案智慧树2023年广东工业大学

信息论基础知到章节测试答案智慧树2023年最新广东工业大学第一章测试1.信息论由哪位科学家创立()。

参考答案:香农2.点对点通信模型包含以下哪些部分()。

参考答案:译码器;信源;信宿3.信息就是消息。

()参考答案:错4.连续信源分为,___,___。

参考答案:null5.研究信息论的目的是:提高信息传输的___,___,___、___,达到信息传输的最优化。

参考答案:null第二章测试1.某一单符号离散信源的数学模型为,则其信息熵为()。

参考答案:1比特/符号2.单符号信源具有以下哪些特点()。

参考答案:无记忆;平稳3.熵函数具有以下哪些基本性质()。

参考答案:对称性;连续性;确定性4.信源要含有一定的信息,必须具有随机性。

()参考答案:对5.信息熵表示信源X每发一个符号所提供的平均信息量。

()参考答案:对第三章测试1.以下等式或不等式关系成立的是()。

参考答案:2.单符号离散无记忆的N次扩展信道,有以下哪两种特点()。

参考答案:无预感性;无记忆性3.后向信道矩阵中任·一行之和为1。

()参考答案:对4.信道容量指信道的最大信息传输率。

()参考答案:对5.互信息量等于___与___比值的对数。

参考答案:null1.某信源输出信号的平均功率和均值均被限定,则其输出信号幅值的概率密度函数是以下哪种分布时,信源达到最大差熵值()。

参考答案:高斯分布2.某信源的峰值功率受限,则概率密度满足以下哪个个条件时,差熵达到最大值()。

参考答案:均匀分布3.连续信道的平均互信息不具有以下哪些性质()。

参考答案:连续性4.差熵具有以下哪两个性质()。

参考答案:条件差熵值小于无条件差熵;差熵可为负值5.一维高斯分布连续信源是瞬时功率受限的一类连续平稳信源。

()参考答案:错1.分组码分为()。

参考答案:非奇异码;奇异码2.在输入符号先验等概时,采用以下哪些准则的译码方法可以使平均译码错误概率最小()。

参考答案:最大后验概率准则;最大似然准则3.平均码长可作为衡量信源编码效率的标准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2.设二元对称信道的传的矩阵⎥⎥⎥

⎤⎢⎢⎢⎣⎡32313132。

(1)、若P (0)=43,P(1)=4
1
,求H(X),H(X/Y),H(Y/X)和I(X;Y);
(2)、求该信道的信道容量及其达到信道容量时的输入概率分布。

解:(1)、H(X)=-symbol bit x p i
i /81.0)41
log 4143log 43()(=+⨯-=∑
H(Y/X) =-)/(log )/()(i j i j
i
j
i
x y p x y
p x p ∑∑
=-(
3
2
log 324131log 314131log 314332log 3243⨯+⨯+⨯+⨯) = 0.92bit/symbol
P )/()()/()()()()(21211112111x y p x p x y p x p y x p y x p y +=+=
=3
1
413243⨯+⨯=0.58 同理可得:p(2y )=0.42
H (Y)=-(0.42×log0.42+0.58×log0.58)=0.980bit/symbol
得:H(X/Y)=H(X)-H(Y)+H(Y/X)=0.81-0.98+0.92=0.75bit/symbol
I(X;Y)=H(X)-H(X/Y)=0.81-0.75=0.06bit/symbol
(2)由题:C=maxI(X;Y)=logm-mi H =log2-(3
2
log 3231log 31+)=0.082bit/symbol
因为信道容量达到最大值即X 等概率出现即:p(i x )=21
3.6、有一个二元对称信道,其信道矩阵为⎥


⎢⎣⎡098.02.002.098.0。

设该信源以1500二元符号/每秒的速度传输输入符号。

现有一消息序列共有14000个二元符号,并设P(0)=P(1)=
2
1
,问从消息传输的角度来考虑,10秒钟内能否将这些消息序列无失真的传递完?
解:由题得:
C=max[H(Y)-ni H ]=log2-ni H =1+0.98log0.98+0.02log0.02=0.859bit/symbol
即每输入一个信道符号,接收到的信息量是0.859bit,已知信源输入
1500二元符号/每秒,那么每秒钟的信息量是:
1I =(1500symbol/s )×0.859bit/symbol=1288bit/s
10秒钟传输:2I =101I =12880bit 传送14000个二元符号,P(0)=P(1)= 2
1
则有:3I =14000×(
21log 2
1
×2)=14000bit 得出:2I ﹤3I 即10秒内不能将消息序列无失真传递完
3.11、已知离散信源⎭
⎬⎫
⎩⎨⎧=⎥
⎦⎤⎢⎣⎡4.02.03.01.0)(4321x x x x X P X ,某信道的信道矩阵为⎥

⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡2.04.03.01.02.01.02.05.01.01.02.06.04.01.03.02.0试求: (1)、“输入3x ,输出2y ”的概率; (2)、“输出4y ”的概率;
(3)、“收到3y 的条件下推测输入2x ”的概率。

解:1)、由题得:p(3x 2y )=)/()(323x y p x p =0.2×0.2=0.04
2)、p(4y )=)/()(141x y p x p +p(2x ))/(24x y p +p(3x )p(34/x y )+)/()(444x y p x p
=0.1*0.4+0.3*0.1+0.2*0.2+0.4*0.2=0.04+0.03+0.04+0.08=0.19
3)、)/()()/()()/()()/()()(4343332321313x y p x p x y p x p x y p x p x y p x p y p +++=
=0.1*0.1+0.3*0.1+0.2*0.1+0.4*0.4=0.01+0.03+0.02+0.16=0.22 P(32/y x )=
)()/()(3232y p x y p x p =22
.01
.03.0⨯=0.136
3.14、试求下列各信道矩阵代表的信道的容量:
1)、[]⎥⎥⎥
⎥⎦

⎢⎢⎢
⎢⎣⎡=00
10
10000001
0100p 2)、[]⎥
⎥⎥
⎥⎥⎥
⎥⎥⎦⎤
⎢⎢⎢⎢⎢⎢⎢
⎢⎣⎡=100100010010001001p 3)、[]⎥⎥
⎥⎦
⎤⎢⎢⎢⎣⎡=3.01.02.04.000000000007.03.00000000000
4.03.02.01.0p 解:1)、这个信道是一一对应的无干扰信道:C=logn=log4=2bit/symbol 2)、这是归并性能的无燥信道:C=logm=log3=1.58bit/symbol 3)、扩展性能的无燥信道:C=logn=log3=1.58bit/symbol
3.18、设加性高斯白噪声信道中,信道带宽3KHZ ,又设{(信号功率+噪声功率)/噪声功率}=10dB 。

试计算该信道的最大信息传输速率C t 。

解:C t =Wlog ⎪⎪⎭⎫ ⎝⎛+N X P P 1 N N
X P P P +=10 t C =Wlog ⎪⎪⎭⎫

⎛+N X P P 1=3000*3.322=9966bit /s 3.19、在图片传输中,每帧约有2.25*106个像素。

为了能很好地重现图像,能分16个两段电平,并假设亮度电平等概率分布。

试计算每分钟传送一帧图片所需信道的带宽(信燥功率比为30dB )。

解:H=log 2n=log16=4bit/symbol I=NH=2.25*106*4=9*106bit=10
C t =6010*96
=t I =1.5*105bit/s
C t =W ⎪⎪⎭⎫

⎛+N X P P 1log W=⎪⎪⎭⎫ ⎝
⎛+N X t
P P C 1log =
HZ 15049)
10001(log 10*5.125
=+ 3.20、设电话信号的信息率为 5.6*10
4
bit/s ,在一个噪声功率谱为
N 0=5*106-Hz mW /、限频F 、限输入功率P 的高斯信道中传送,若F=4Hz ,问无差错传输所需的最小功率P 是多少瓦?若,则P 是多少瓦?
解:C t =Wlog ⎪⎪⎭
⎫ ⎝
⎛+01WN
P X 得:P ⎪⎪⎭⎫ ⎝⎛-=120W C X t
WN =4000*5*109-*⎪⎪⎭
⎫ ⎝⎛-12400010*6.54
=0.328 F →∞ C t =
e N P X
20
log P=
W e N C t 429
42010*94.171828
.2log 10*5*10*6.5log -== 通信10-2
201020204067
何丽。

相关文档
最新文档