微生物的营养知识总结
第五章微生物的营养与培养基介绍

营养物质:能够满足机体生长、繁殖和完成各种 生理活动所需要的物质.
营 养:微生物获得和利用营养物质的过程。
营养物质是微生物生存的物质基础,而营养是微 生物维持和延续其生命形式的一种生理过程。
营养物质按照它们在机体中的生理作用不同,可以将它们区 分成六大类。
第一节 微生物的营养物质
α w=Pw/Pow 式中Pw代表溶液蒸汽压力, POw代表纯水蒸汽压力。
纯水α w为1.00,溶液中溶质越多, α w越小。
微生物一般在α w为0.60~0.99的条件下生长, α w过低时, 微生物生长的迟缓期延长,比生长速率和总生长量减少。 微生物不同,其生长的最适α w不同。
c. 氧化还原电位
第二节
微生物的营养营养类型
第三节 营养物质进入细胞的方式
营养物质能否进入细胞取决于三个方面的因素:
①营养物质本身的性质(相对分子量、质量、溶解性、 电负性等 ②微生物所处的环境(温度、PH等); ③微生物细胞的透过屏障(原生质膜、细胞壁、荚 膜等)。
根据物质运输过程的特点,可将物质的运输方式分为
2.营养协调
培养基中营养物质浓度合适时微生物才能生长良好,营养物 质浓度过低时不能满足微生物正常生长所需,浓度过高时则可能 对微生物生长起抑制作用。 培养基中各营养物质之间的浓度配比也直接影响微生物 的生长繁殖和代谢产物的形成和积累,其中碳氮比(C/N)的 影响较大。 碳氮比指培养基中碳元素与氮元素的物质的量比值,有时也 指培养基中还原糖与粗蛋白之比。
明 胶
作氮源 极易 约25℃ 约20℃ 5%~12%
3.能源 能源:能为微生物的生命活动提供最初能量来源营养 物或辐射能
化学物质 能源谱
{
微生物的好处总结

微生物是一类微小的生物体,包括细菌、真菌、病毒等。
尽管有些微生物会引起疾病,但它们在自然界和人类生活中也扮演着重要的角色,并带来了许多好处。
以下是一些微生物的好处的总结:1.生态平衡:微生物在生态系统中发挥着重要的角色,包括参与分解有机物质、循环元素、维持土壤健康等。
它们在环境中的作用有助于维持生态平衡。
2.食品生产与发酵:微生物在食品生产中起到了重要的作用。
例如,乳酸菌可以将乳糖转化为乳酸,产生酸奶和乳酸发酵食品;酵母菌在面包和啤酒酿造过程中起到发酵作用。
微生物还可以制作黄酒、酱油、豆腐等传统食品,为人类提供多样化的口味和营养。
3.环境净化:微生物在环境净化方面发挥着重要作用。
例如,某些细菌可以分解有机废弃物,清除污水和污染土壤。
同时,微生物还能够降解有毒物质和污染物,从而改善环境质量。
4.药物生产:微生物是许多药物的重要来源。
青霉素、链霉素等许多抗生素都是由微生物生产的。
此外,微生物还可以产生其他药物,如抗癌药物、免疫调节剂等,对人类的健康起到重要作用。
5.解决能源问题:微生物作为生物质能源的利用者和转化者,在能源领域具有巨大潜力。
微生物可以通过发酵产生生物燃料,如生物乙醇、生物甲烷等,为解决能源问题提供可持续的替代方案。
6.生态农业:微生物在农业中的应用也越来越重要。
例如,固氮细菌可以与植物共生,帮助植物吸收大气中的氮,改善土壤质量;微生物肥料可以促进植物生长、提高农作物产量。
这些应用有助于推动可持续和生态友好的农业发展。
这些都是微生物在许多方面为人类和生态系统带来的好处。
尽管微生物也有一些负面影响,但研究和理解微生物的好处有助于我们更好地利用和保护微生物资源,实现可持续发展和人与自然的和谐共生。
第四章 微生物的营养和培养及

第四章 微生物的营养与培养基目的要求:通过本章的课堂教学,使学生了解微生物营养类型的特点及多样性,以及根据不同微生物各自的营养要求,配制相应的培养基对微生物培养的理论知识,为今后对微生物的研究与利用打下基础。
教学内容:1、微生物的6类营养要素2、微生物的营养类型3、营养物质进入细胞的方式单纯扩散(simple diffusion)促进扩散(facilitated diffusion)主动运输(active transport)基团移位(group translocation)4、培养基(media)配制的原则5、培养基的种类重点内容:微生物 营养类型营养物质进入细胞的方式培养基(media)配制的原则及主要培养基类型营养(nutrition):微生物CUN 从外部环境中摄取对其生命活动必须的能量和物质,以满足其生长和繁殖等生理活动的过程。
营养物质(nutrient):那些能够满足机体生长、繁殖和完成各种生理活动所需要的物质称为营养物质。
营养物质是微生物生存的物质基础,而营养是微生物维持和延续其生命形式的一种生理过程。
第一节 微生物的六种营养要素一、微生物细胞的化学组成细胞化学元素组成:主要元素: 包括碳、氢、氧、氮、磷、硫、钾、镁、钙、铁等,碳、氢、氧、氮、磷、硫等微量元素: 包括锌、锰、氯、钼、硒、钴、铜、钨、镍、硼等。
微生物细胞组成:有机物、无机物和水。
有机物:主要包括蛋白质、糖、脂、核酸、维生素以及它们的降解产物和一些代谢产物等物质。
无机物:是指与有机物相结构或单独存在于细胞中的无机盐(inorganic salt)等物质。
水:细胞维持正常生命活动所不可少的,一般可占细胞重量的70%-90%。
二、微生物的营养要素营养物质按照它们在机体中的生理作用不同,可以将它们区分成碳源、氮源、能源、生长因子、无机盐和水。
1、碳源:在微生物生长过程中能满足微生物生长繁殖所需碳元素的营养物质称为碳源。
碳源物质在细胞内经过一系列复杂的化学变化后成为微生物自身的细胞物质(如糖类、脂类、蛋白质等)和代谢产物,同时绝大部分碳源物质在细胞内生化反应过程中还能为机体提供维持生命活动所需的能源,因此碳源物质通常也是能源物质。
微生物的营养类型

引言概述:微生物是一类生存在自然界中的微小生物体,包括细菌、真菌、藻类和原生动物等。
微生物的营养类型是指微生物在生长和代谢过程中依赖的能量来源和碳源,它们可以分为多种类型,包括化石能、光合能和化学能等。
本文将详细讨论微生物的营养类型,以期更好地了解微生物的生态角色和重要性。
正文内容:一、化石能类型1.概述:化石能(或称有机碳源)类型的微生物依赖有机物作为能量来源,分解复杂的有机化合物为无机物,同时释放能量供自身生长繁殖。
2.部分分解微生物:这些微生物通过分解有机物质,如蛋白质、脂肪和多糖,产生能量,如厌氧分解的硫酸盐还原菌和产酸菌。
其中,硫酸盐还原菌利用硫酸盐作为最终电子受体,产生硫化氢。
3.好氧有机物分解微生物:这些微生物依赖于氧气进行有机物分解,如氧化亚勒多酮酸细菌和氨氧化细菌。
4.细胞外酶产生微生物:这些微生物分泌酶,分解外源性有机物质,如玉米皮霉和木霉菌等。
5.真细菌和原核细胞:这些微生物利用化石能类型的微生物作为能量来源,如乳酸菌和大肠杆菌等。
二、光合能类型1.概述:光合能类型的微生物通过光合作用将光能转化为化学能,同时利用二氧化碳作为碳源进行碳固定。
2.光合细菌:这些微生物在光合过程中利用无机物质作为电子捐体,如紫硫细菌和非硫细菌。
3.光合藻类:这些微生物通过光合作用产生氧气和有机物质,如蓝藻和硅藻。
4.绿色硫细菌:这些微生物利用二硫化碳和硫化氢作为电子捐体,产生硫颗粒,并且可以在缺氧环境中进行光合作用。
5.古菌:这些微生物在深海黑液泉等极端环境中进行光合作用,如嗜热古菌和嗜酸古菌。
三、化学能类型1.概述:化学能类型的微生物以无机物质作为能量来源,进行化学反应以产生能量。
2.氨氧化细菌:这些微生物将氨氧化为亚硝酸,产生能量,并在氮循环过程中发挥关键作用。
3.亚硝酸还原菌:这些微生物将亚硝酸还原为氮气,产生能量,并参与全球氮循环。
4.硫化氢氧化细菌:这些微生物将硫化氢氧化为硫酸盐,产生能量,并参与硫循环过程。
(完整版)医学微生物学笔记(总结得真的很好),推荐文档

②化学渗透趋势转运系统;③基团转移。
四、影响细菌生长的环境因素(简答)1、营养物质:水、碳源、氮源、无机盐及生长因子为细菌的代谢及生长繁殖提供必需的原料和充足的能量2、酸碱度(pH):多数病原菌最适pH为7.2--7.6,而结核杆菌最适pH值为6.5--6.8,霍乱弧菌最适pH值为8.4--9.2。
3、温度:病原菌最适温度为37度。
4、气体:O2:根据细菌代谢时对氧气的需要与否分四类:①专性需氧菌:具有完善的呼吸酶系统,需要分子氧作为受氢体以完成需氧呼吸,仅能在有氧环境下生长。
②微需氧菌:在低氧压(5%-6%)生长最好。
③兼性厌氧菌:兼有有氧呼吸和无氧发酵两种功能,在有氧、无氧环境中均能生长,但以有氧时生长较好。
大多数病原菌属于此。
④专性厌氧菌:缺乏完善的呼吸酶系统,只能进行无氧发酵,必须在无氧环境中生长。
CO2:对细菌生长也很重要,大部分细菌在代谢中产生的CO2可满足需要,个别细菌初次分离时需人工供给5-10%CO2。
5、渗透压:五、细菌的生长繁殖1、细菌个体的生长繁殖:繁殖方式----细菌以简单的二分裂方式进行无性繁殖。
繁殖速度----繁殖一代所需时间(代时)约20-30min。
但少数细菌代时较长,如结核分枝杆菌代时为18小时。
2、细菌群体的生长繁殖:迟缓期、对数期、稳定期、衰退期繁殖规律----生长曲线迟缓期:细菌被接种培养基的最初一段时间,主要是适应新环境,同时为分裂繁殖作物质准备,此时细菌体积比较大,含有丰富的酶和中间代谢产物。
对数期:细菌分裂繁殖最快的时期,菌数以几何级数增长,研究细菌的最佳时期。
稳定期:由于营养物质的消耗,代谢产物的堆积,繁殖数与死亡数几乎相等。
活菌数保持稳定。
一些细菌的芽胞、外毒素和抗生素等代谢产物大多在稳定期产生。
衰退期:繁殖变慢,死菌数超过活菌数。
细菌形态发生改变,生理活动趋于停滞。
第三节细菌的新陈代谢和能量转换一、细菌的能量代谢■细菌能量代谢活动中主要涉及ATP形式的化学能。
微生物知识点经典整理

绪论1、巴斯德现象及柯赫法则答:巴斯德贡献:(1)彻底否定了“自然发生说”(曲颈瓶实验)(2)免疫学——预防接种(3)证实发酵是由微生物引起的(4)其他贡献:巴斯德消毒法、家蚕软化病问题的解决、推动了微生物病原学说的发展。
柯赫贡献:(1)证实病害的病原菌学说(2)建立了一系列微生物的研究方法(3)分离到多种传染病的病原菌(4)创立了病原微生物的柯赫法则:一、病原微生物总是在患传染病的动物中发现,不存在于健康个体中;二、可自原寄主获得病原微生物的纯培养;三、纯培养物人工接种健康寄主,必然诱发与原寄主相同的症状;四、必须自人工接种后发病寄主再次分离出同一病原的纯培养。
2、简述微生物学发展史上5个时期的特点和代表人物。
①史前期——朦胧阶段(约8000年前-1676)特点:人们虽然没有看到微生物,但已经不自觉的利用有益微生物、防止有害微生物。
中国古代:②初创期--形态学时期(1676-1861)特点:这一时期微生物学的研究工作主要是对一些微生物进行形态描述。
代表人物——列文虎克:微生物学的先驱者③奠基期--生理学时期(1861-1897)特点:这一时期的主要工作是查找各种病原微生物,把微生物学的研究从形态描述推进到生理学研究的新水平,建立了系列微生物学的分支学科。
代表人物:巴斯德和科赫。
④发展期——生化水平研究阶段特点:微生物学的研究进入分子水平,微生物学家的研究工作从上一时期的查找病原微生物转移到寻找各种有益微生物的代谢产物。
代表人物——E.Büchner生物化学奠基人⑤成熟期——分子生物学水平研究阶段特点:微生物学从一门应用学科发展为前沿基础学科,其研究工作进入分子水平,而微生物因其不同于高等动植物的生物学特性而成为分子生物学研究的主要对象。
在应用研究方面,向着更自觉、更有效和可认为控制的方向发展,与遗传工程、细胞工程和酶工程紧密结合,成为新兴生物工程的主角。
代表人物——J.Watson和F.Crick:分子生物学奠基人3、微生物的五大共性答:体积小,比表面积大;吸收多,转化快;生长旺,繁殖快;适应强,易变异;分布广,种类多。
生物3.10微生物的类群、营养、代谢和生长

微生物的能量代谢
化能自养生物
01
利用化学反应释放的能量来合成有机物质的微生物,如硝化细
菌。
化能异养生物
02
利用有机物质氧化过程中释放的能量来合成有机物质的微生物,
如大肠杆菌。
光能自养生物
03
利用光能来合成有机物质的微生物,如藻类。
微生物的代谢途径
糖酵解途径
葡萄糖在无氧条件下被分解成丙 酮酸,产生少量能量和还原力的 代谢途径,是厌氧微生物的主要 代谢途径。
三羧酸循环
在有氧条件下,线粒体中的乙酰 CoA完全氧化成二氧化碳和水, 并释放能量的代谢途径。
戊糖磷酸途径
葡萄糖经过一系列反应生成五碳 糖和六碳糖的代谢途径,是需氧 生物的主要糖代谢途径之一。
04 微生物的生长
微生物的生长曲线
延迟期
细胞适应生长环境,不进行分 裂,数量基本不变。
对数生长期
细胞快速分裂,数量呈指数增 长。
氧气
好氧微生物需要氧气进行呼吸,厌氧微生物 则在无氧环境下生长。
微生物的生长繁殖方式
无性繁殖
通过二分裂、出芽等方式进行无性繁殖,繁殖速度快。
有性繁殖
通过配子结合形成合子,再发育成新个体,繁殖速度慢。
THANKS FOR WATCHING
感谢您的观看
03 微生物的代谢
分解代谢和合成代谢
分解代谢
微生物通过分解有机物质获取能量和营养物质的过程。这些有机物质可以是糖 类、蛋白质、脂肪等。分解代谢过程中,微生物产生能量并合成新的细胞成分。
合成代谢
微生物利用能量和营养物质合成细胞成分的过程。合成代谢过程中,微生物消 耗能量并产生新的细胞成分,如蛋白质、核酸等。
生物3.10微生物的类群、营养、 代谢和生长
第4章 微生物的营养与培养基

基团移位
基团转移运输特点:(p93)
需要磷酸酶系统进行催化
被运输的物质发生化学变化,被磷酸化 需要能量
4 种运送方式 总结
浓度梯度 单纯扩散 促进扩散 主动运输 高 高 低 低 低 高 能量 不需 不需 需 载体 不需 需 需 动力 浓度差 浓度差 能量
基团移位
低
高
需
需
能量
4种运送营养方式的比较
促进扩散 (p93)
①不消耗能量 ②参与运输的物质本身的分子结构不发生变化
特 点
③不能进行逆浓度运输
④运输速率与膜内外物质的浓度差成正比 ⑤需要载体参与
图4 主动运输示意图
三、主动运输特点
被运送的物质可逆 浓度梯度进入细胞 内 消耗能量,必需有 能量参加。 有膜载体参加,膜 载体发生构型变化 被运送物质不发生 任何变化。
葡萄糖 5g
1g
NH4H2PO4 1g NaCl 5g MgSO4.7H2O 0.2g K2HPO4
H2O 1000ml
2. 营养协调 (p96)
培养基中营养物质浓度合适时微生物才能生长良好,营养物质浓度 过低时不能满足微生物正常生长所需,浓度过高时则可能对微生物生长 起抑制作用。 培养基中各营养物质之间的浓度配比直接影响微生物的生长繁殖 和代谢产物的形成和积累,碳氮比(C/N)的影响较大。 碳氮比:培养基中碳元素与氮元素的物质的量比值,有时也指培养 基中还原糖与粗蛋白之比。
单功能营养物:如辐射能 双功能营养物:NH4+是硝酸细菌的能源和氮源 三功能营养物:如”N.C.H.O”是异养微生物的能源、碳源及氮 源。
第二节 微生物的营养类型
营养类型 碳源 能源 代表菌 蓝细菌 绿硫细菌 藻类 红螺菌科 硝化细菌 硫化细菌 绝大多数细菌 全部真核微生物
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微生物的营养微生物的特点:食谱广、胃口大营养物质:那些能够满足微生物机体生长、繁殖和完成各种生理活动所需的物质营养:微生物获得和利用营养物质的过程营养物质是微生物生存的物质基础,而营养是生物维持和延续其生命形式的一种生理过程。
第一节微生物的营养要求一、微生物细胞的化学组成(一)化学元素(chemical element):大量元素(macro element) :碳、氢、氧、氮、磷、硫、钾、镁、钙、铁(其中前六种占细菌细胞干重的97%)。
微量元素(trace element) : 锌、锰、钠、氯、钼、硒、钴、铜、钨、镍、硼。
微生物、动物、植物之间存在“营养上的统一性”。
组成微生物细胞的各类化学元素的比例常因微生物种类的不同而异,也随菌龄及培养条件不同在一定范围内发生变化。
(二)微生物细胞的化学成分及分析微生物细胞中的各种元素的存在形式:主要以水、有机物、无机物的形式存在于细胞中。
微生物细胞的化学组成的影响因素:微生物种类、菌龄、培养条件。
(三)元素在细胞内存在形式上述元素主要以水、有机物、无机盐的形式存在于细胞中:1、有机物:蛋白质、糖、脂类、核酸、维生素及其降解产物.2、无机物:①参与有机物组成②单独存在于细胞质内以无机盐的形式存在.3、水:约占细胞总重70%~90%,以游离水和结合水两种形式存在游离水:干重法可测得;结合水:不易蒸发、不冻结、也不能渗透,占水总量的17%—28% 。
与其他生物细胞相比•共同成份:•特殊成份:水肽聚糖无机盐胞壁酸蛋白质磷壁酸糖类D-型氨基酸脂类二氨基庚二酸核酸等吡啶二羧酸等化学成分及其分析有机成分:化学方法直接抽提然后定性定量细胞破碎、获得不同的亚显微结构,然后分析无机成分:灰分测定湿重、干重、细胞含水量二、营养物质及其生理功能•碳源(carbon source )•氮源(nitrogen source )•无机盐(mineral salts )•生长因子(growth factor )•水(water )微生物与动植物营养要素的比较(一)、碳源(Carbon source ):定义:凡可被用来构成细胞物质或代谢产物中碳素来源的营养物质。
功能:提供合成细胞物质及代谢物的原料;并为整个生理活动提供所需要能源(异养微生物)。
种类: 无机含碳化合物:如和碳酸盐等。
有机含碳化合物:糖与糖的衍生物(多糖:如淀粉、麸皮、米糠等;饴糖;单糖)脂类醇类有机酸、烃类、芳香族化合物以及各种含氮的化合物。
碳源功能•C素构成细胞及代谢产物的骨架•C素是大多数微生物代谢所需的能量来源碳源种类•无机C源:、碳酸盐,只能被自养微生物利用•有机C源:各种糖类,其次是有机酸、醇类、脂类和烃类化合物微生物的碳源谱(二)氮源(Nitrogen source ):定义:凡用来构成菌体物质或代谢产物中氮素来源的营养源。
种类:无机氮:铵盐、硝酸盐、亚硝酸盐、尿素、氨、N 2 2 等;有机氮:蛋白质及其降解产物(如胨、肽、氨基酸等)、牛肉膏、鱼粉、花生饼粉、黄豆饼粉、玉米浆等功能:①提供合成细胞中含氮物,如蛋白质、核酸,以及含氮代谢物等的原料。
②少数细菌可以铵盐、硝酸盐等氮源为能源。
微生物的氮源谱①许多腐生型细菌、肠道菌、动植物致病菌一般都能利用铵盐或硝酸盐作为氮源。
大肠杆菌、产气杆菌、枯草杆菌、铜绿假单胞菌等都可以利用硫酸铵、硝酸铵作为氮源 ; 放线菌可以利用硝酸钾作为氮源 ; 霉菌可以利用硝酸钠作为氮源等 氮源种类分子态氮:固氮微生物以分子氮为唯一氮源 无机态氮:硝酸盐、铵盐几乎所有微生物能利用 有机态氮:蛋白质及其降解产物a 速效氮源:实验室常用牛肉膏、蛋白质、玉米浆、酵母膏做氮源b 迟效氮源:生产用豆饼、葵花饼、花生饼等。
蛋白氮必须通过水解之后降解成胨、肽、氨基酸等才能被机体利用,这种氮源叫迟效氮源。
无机氮源或以蛋白质降解产物形式存在的有机氮源可以直接被菌体吸收利用,这种氮源叫做速效氮源。
速效氮源,通常有利于机体的生长;迟效氮源,有利于代谢产物的形成。
实验室常用的无机氮源:碳酸铵、硝酸盐、硫酸铵、尿素、蛋白胨、牛肉膏、酵母膏等。
生产上常用的氮源:硝酸盐、铵盐、尿素、氨以及蛋白含量较高的鱼粉、蚕蛹粉、黄豆饼粉、花生饼份、玉米浆等。
营养物质及其生理功能能源:能为微生物生命活动提供能量来源的营养物或辐射能称为能源。
化学能:有机物-化能异养微生物和无机物-化能自养微生物光能化能无机自养型微生物的能源都是一些还原态的无机物,例如NH4+、NO2-、S、H2S、H2和Fe2+等。
能利用这种能源的微生物都是一些原核生物,包括亚硝酸细菌、硝酸细菌、硫化细菌、硫细菌、氢细菌和铁细菌等。
在微生物生长过程中,具体某一种营养物质可同时兼有几种营养要素的功能,如氨基酸即可以作为某些微生物的碳源和氮源,又是能源。
(三)无机盐(inorganic salt)定义:为微生物细胞生长提供碳、氮源以外的多种重要元素(包括大量元素和微量元素)的物质,多以无机盐的形式共给。
大量元素:P、S、K、Mg、Ca、Na、Fe(微生物生长所需浓度在10-3 ~10-4 mol/L)微量元素:Cu、Zn、Mn、Mo、Co(微生物生长所需浓度在10-6 ~10-8 mol/L)一般微生物生长所需要的无机盐有:硫酸盐、磷酸盐、氯化物以及含有钠、钾、镁、铁等金属元素的化合物。
无机盐生理功能构成微生物细胞的组成成分调解微生物细胞的渗透压,pH值和氧化还原电位。
有些无机盐如S、Fe还可做为自养微生物的能源。
构成酶活性基的组成成分,维持E活性。
Mg、Ca、K是多种E的激活剂。
无机元素的来源和功能营养物质及其生理功能微量元素通常没有必要另外加入。
微量元素中许多是重金属元素,过量不能提高机体的代谢活性,反而产生毒害作用,而且单独一种微量元素过量产生的毒害作用更大,因此,微生物生长所需要的微量元素一定要控制在正常的浓度范围内。
(四)生长因素(growth factor)定义:它是一类对微生物正常生活所不可缺少而需要量又不大,但微生物自身不能用简单的碳源或氮源合成,或合成量不足以满足机体生长需要的有机营养物质。
不同微生物需求的生长因子的种类和数量不同。
缺乏合成生长因子能力的微生物称为营养缺陷型微生物主要包括:维生素、氨基酸、碱基维生素有的微生物自己不能合成维生素,需要外加,主要是B族维生素、硫胺素、叶酸、泛酸、核黄素等,如生产味精需加生物素(是B族中的一种即VH)。
氨基酸有些微生物自己不能合成某种AA,必须给予补充,如赖AA发酵所用的黄色短杆菌不能合成环丝AA,为环丝AA缺陷型菌株,在培养基中必须添加含环丝AA的氮源。
如豆饼水解液或毛发水解液等。
各种菌合成AA的能力有很大差别,一般G-菌强于G+,大肠杆菌自己能合成全部AA,沙门氏菌能合成大部分AA ,有的菌合成AA能力极弱,如肠道串珠菌需从外界补充19 种AA。
碱基嘧啶和嘌呤是核酸和辅E的重要组分,是许多微生物必须的生长因素。
有些微生物不仅不能合成嘧啶和嘌呤,而且不能将补充的嘧啶和嘌呤结合在核苷酸上,还必须供给核苷酸,有的菌需补充卟啉或其衍生物,还有的菌需供给(低碳)脂肪酸等。
最早发现的生长因子是维生素,目前已经发现许多维生素都能起生长因子的作用。
维生素大部分是构成酶的辅基或辅酶,需要量很少,但是缺少维生素微生物不能正常生长。
有些微生物缺乏或丧失合成某种或某些氨基酸的酶,所以不能合成生长所必需的氨基酸,这类微生物被称为“氨基酸缺陷型”。
例如:肠膜明串珠菌(leuconostoc mesenteroides )常常需要由外源供给多种氨基酸才能生长。
另外有些微生物生长还需要其它特殊的成分,例如某些乳酸杆菌生长需要核苷;某些酵母菌和真菌生长需要肌醇;某些肺炎球菌生长需要胆碱等。
根据微生物对生长因子的需要存在差异,可分为:1. 野生型( (wild type) ) 又称原养型不需要生长因子而能在基础培养基上生长的菌株2. 营养缺陷型( (auxotroph) )某些菌株发生突变(自然突变或人工诱变)后,失去合成某种(或某些)对该菌株生长必不可少的物质(通常是生长因子如氨基酸、维生素)的能力,必须从外界环境获得该物质才能生长繁殖,这种突变型菌株称为营养缺陷型(auxotroph),相应的野生型菌株称为原养型(prototroph)。
营养缺陷型菌株经常用来进行微生物遗传学方面的研究。
(五)水(water)微生物细胞含水约占细胞鲜重的70-90%,水作用是多方面的。
水的功能水是细胞中生化反应的良好介质;营养物质和代谢产物都必须溶解在水里,才能被吸收或排出体(细胞)外。
水的比热高,能有效的吸收代谢过程中放出的热量,不致使细胞的温度骤然上升。
水能维持细胞的膨压(控制细胞形态)。
水活度的表示方法微生物可利用的水用水活度来表示(Q w),Q w是指在相同的温度和压力下,溶液中水的蒸气压和纯水的蒸气压的比即a n=P 溶液/P纯水微生物生长所需的水活度通常在0.63-0.99之间,细菌水活度较高为0.8,酵母菌次之,耐旱的微生物水活度为0.6,水中溶质越高水活度越低。
◆微生物对水的需要程度(水对微生物生长的影响)常用环境(或基质)中的水活度值(water activity,αw)表示。
所谓αw就是水的有效浓度。
◆定义:水活度为在一定的温度条件下,溶液的蒸汽压(材料上部蒸气相中水浓度)与纯水的蒸汽压(即纯水上部蒸气相中水浓度)之比,即:αw =P/PoP表示溶液的蒸汽压Po表示纯水的蒸汽压◆在αw为0.60~0.99的环境条件均有微生物生长,但对某种微生物而言,它对αw的要求是一定的,微生物对水的需求有相当的变化程度。
即微生物不同,其生长的最适αw亦不同。
几类微生物生长最适αw微生物αw一般细菌0.91酵母菌0.88霉菌0.80噬盐细菌0.70噬盐真菌0.65嗜高渗酵母0.60◆为了表示微生物生长与水的关系,有时也常用相对湿度(RH) 的概念(αw×100= RH);通常也用测定蒸气相中相对湿度的方法得知溶液或物质的水活度微生物的营养类型光能自养型:以光为能源,不依赖任何有机物即可正常生长光能异养型:以光为能源,但生长需要一定的有机营养化能自养型:以无机物的氧化获得能量,生长不依赖有机营物化能异养型:以有机物的氧化获得能量,生长依赖于有机营养微生物营养类型(Ⅰ)微生物的营养类型(Ⅱ)1、光能无机自养型(光能自养型)能以CO 2 为主要唯一或主要碳源;进行光合作用获取生长所需要的能量;以无机物如H2、H2S、S等作为供氢体或电子供体,使CO2还原为细胞物质;例如,藻类及蓝细菌等和植物一样,以水为电子供体(供氢体),进行产氧型的光合作用,合成细胞物质。
而红硫细菌,以H2S为电子供体,产生细胞物质,并伴随硫元素的产生。