第四章弯曲内力练习题
弯曲内力习题与答案

弯曲力1. 长l的梁用绳向上吊起,如图所示。
钢绳绑扎处离梁端部的距离为x。
梁由自重引起的最大弯矩|M|max为最小时的x值为:(A) /2l;(B) /6l;(C…) 1)/2l。
l;(D) 1)/22. 多跨静定梁的两种受载情况如图(a)、(b)所示。
下列结论中哪个是正确的?(A) 两者的剪力图相同,弯矩图也相同;(B) 两者的剪力图相同,弯矩图不同;(C) 两者的剪力图不同,弯矩图相同;(D….) 两者的剪力图不同,弯矩图也不同。
3. 图示(a)、(b)两根梁,它们的(A) 剪力图、弯矩图都相同;(B…) 剪力图相同,弯矩图不同;(C) 剪力图不同,弯矩图相同;(D) 剪力图、弯矩图都不同。
4. 图示梁,当力偶M e的位置改变时,有下列结论:(A) 剪力图、弯矩图都改变;(B…) 剪力图不变,只弯矩图改变;(C) 弯矩图不变,只剪力图改变;(D) 剪力图、弯矩图都不变。
5. 图示梁C截面弯矩M C = ;为使M C =0,则M e= ;为使全梁不出现正弯矩,则M e≥。
6. 图示梁,已知F、l、a。
使梁的最大弯矩为最小时,梁端重量P= 。
7. 图示梁受分布力偶作用,其值沿轴线按线性规律分布,则B端支反力为,弯矩图为 次曲线,|M |max 发生在 处。
8. 图示梁,m (x )为沿梁长每单位长度上的力偶矩值,m (x )、q (x )、F S (x )和M (x )之间的微分关系为:S d ();d F x x = d ()d M x x = 。
9. 外伸梁受载如图,欲使AB 中点的弯矩等于零时,需在B 端加多大的集中力偶矩(将大小和方向标在图上)。
10. 简支梁受载如图,欲使A 截面弯矩等于零时,则=e21e /M M 。
1-10题答案:1. C 2. D 3. B 4. B 5. 28e2M ql -;42ql ;22ql 6. ⎪⎭⎫⎝⎛-a l a F 24 7. m 0/2;二;l /28. q (x );F S (x )+ m (x ) 9. 10. 1/211-60题. 作图示梁的剪力图和弯矩图。
力学(弯曲)例题

AB段:由键力图上查得Q=- qa<0,由 知,M图斜率为负值。
BC段:因q<0,由 知,Q图斜率为负值,在Q图上,随着x的增加,剪力由正值变为负值;因为 ,故M图的斜率由正值变为负值,当Q=0时,M取得最大值。
CD段:情况同AB段。
【例3】矩形截面松木梁两端搁在墙上,
承受由梁板传来的荷载作用如图所示。已知梁的间距a=1.2m,两墙的间距为L=5m,楼板承受均布荷载,起面集度为P=3KN/ ,松木的弯曲许用应力[σ]=10MPa。试选择梁的截面尺寸。设 。
(a)
解:此题可以采用下面四种不同方法求解。
解一:利用附录五上简支梁受集中载荷作用的解答。由查表可知,当简支梁上作用集中载荷P时,梁中点的挠度为
令梁在左半跨作用均布载荷,如图a所示,稍作变化即可得中点挠度
=-
解二:利用对称性求解。原题半跨均布载荷可分解为正对称载荷和反对称载荷两种情况的叠加(图b)。
解:梁计算简图如图所示荷载的线集中度为:q=
最大弯矩在跨中截面,其值
1.按正应力强度条件选择截面尺寸
h=1.5b,W =
b≥
取b=150mm,h=1.5b=225mm。
2.该梁为木梁,须校核剪应力强度。在邻近支座的截面上有
Q
矩形截面梁
剪切强度足够。故选定b=150mm,h=225mm。
【例4】简支梁在半个跨度上作用的均布载荷q,如图a所示,试求梁中点的挠度。
(d)(e)
4.对于3-3截面(图d)
∑Y=0Q3=YA-2qa-p=-30kN
∑MC=0M3=2YAa-2qa2-pa=20kN•m
5.对于4-4截面(图e)
∑Y=0Q4=YA-2qa-p=-30kN
最新弯曲的内力与强度计算习题

弯曲的内力与强度计算一、判断题1.如图1示截面上,弯矩M和剪力Q的符号是:M为正,Q为负。
()图12.取不同的坐标系时,弯曲内力的符号情况是M不同,Q相同。
()3、在集中力作用的截面处,Q图有突变,M连续但不光滑。
()4、梁在集中力偶作用截面处,M图有突变,Q图无变化。
()5.梁在某截面处,若剪力Q=0,则该截面的M值一定为零值。
()6.在梁的某一段上,若无荷载作用,则该梁段上的剪力为常数。
()7.梁的内力图通常与横截面面积有关。
()8.应用理论力学中的外力定理,将梁的横向集中力左右平移时,梁的Q 图,M图都不变。
()9.将梁上集中力偶左右平移时,梁的Q图不变,M图变化。
()10.图2所示简支梁跨中截面上的内力为M≠0,Q=0。
()图 2 图 311.梁的剪力图如图3所示,则梁的BC段有均布荷载,AB段没有。
()12.上题中,作用于B处的集中力大小为6KN,方向向上。
()13.右端固定的悬臂梁,长为4m,M图如图示,则在x=2m处,既有集中力又有集中力偶。
()图 4 图 514.上题中,作用在x=2m处的集中力偶大小为6KN·m,转向为顺时针。
()15.图5所示梁中,AB跨间剪力为零。
()16.中性轴是中性层与横截面的交线。
()17.梁任意截面上的剪力,在数值上等于截面一侧所有外力的代数和。
()18.弯矩图表示梁的各横截面上弯矩沿轴线变化的情况,是分析梁的危险截面的依据之一。
()19.梁上某段无荷载作用,即q=0,此段剪力图为平行x的直线;弯矩图也为平行x轴的直线。
()20.梁上某段有均布荷载作用,即q=常数,故剪力图为斜直线;弯矩图为二次抛物线。
()21.极值弯矩一定是梁上最大的弯矩。
()22.最大弯矩Mmax只可能发生在集中力F作用处,因此只需校核此截面强度是否满足梁的强度条件。
()23.截面积相等,抗弯截面模量必相等,截面积不等,抗弯截面模量必不相等。
()24.大多数梁都只进行弯曲正应力强度核算,而不作弯曲剪应力核算,这是因为它们横截面上只有正应力存在。
弯曲内力习题答案

弯曲内力习题答案弯曲内力习题答案弯曲内力是力学中一个重要的概念,它涉及到材料的强度和稳定性。
在学习弯曲内力的过程中,经常会遇到一些习题,需要我们运用所学的知识进行分析和计算。
本文将回答一些常见的弯曲内力习题,帮助读者更好地理解和应用这一概念。
1. 一根长为L的均匀梁,两端固定,中间受到一个集中力F作用,求中点的弯曲内力。
首先,我们可以将梁分为两段,即左段和右段。
由于两端固定,根据梁的受力分析,中点的弯曲内力为零。
因此,我们只需要计算左段和右段的弯曲内力。
对于左段,由于力F作用在右端,我们可以采用力的平衡条件,即F = R,其中R为左段的弯曲内力。
根据梁的弯曲方程,我们可以得到R = FL / 4。
同理,对于右段,由于力F作用在左端,我们同样可以采用力的平衡条件,即F = R',其中R'为右段的弯曲内力。
根据梁的弯曲方程,我们可以得到R' = FL / 4。
因此,中点的弯曲内力为零,左段的弯曲内力为FL / 4,右段的弯曲内力也为FL / 4。
2. 一根悬臂梁,长度为L,悬臂部分受到一个集中力F作用,梁的截面为矩形,高度为h,宽度为b,求截面上的最大弯曲内力。
为了求解这个问题,我们需要先计算悬臂部分的弯矩。
根据力的平衡条件,我们可以得到弯矩M = FL。
接下来,我们需要计算截面上的最大弯曲内力。
根据梁的弯曲方程,我们可以得到最大弯曲内力为Mmax = (bh^2) / 6。
因此,截面上的最大弯曲内力为(Mmax)max = (Fh^2b) / 6。
3. 一根梁,长度为L,梁的截面为圆形,半径为r,受到一个均布载荷q作用,求截面上的最大弯曲内力。
为了求解这个问题,我们需要先计算梁受到的总载荷。
根据均布载荷的定义,总载荷为qL。
接下来,我们需要计算截面上的最大弯曲内力。
根据梁的弯曲方程,我们可以得到最大弯曲内力为Mmax = (πr^3q) / 4。
因此,截面上的最大弯曲内力为(Mmax)max = (πr^3qL) / 4。
习题解答4(弯曲内力)

M2 FS2
M3 FS3
M2 = - F×1 = - 10 kN· m
F C
FS3 = F = 10 kN M3 = 0
P73 40-1(d) a = l
12 3 O(3Fa) F M
A
F A
B
12
C
3
FS1 M1
D FD
Fy = 0
FD = 10 kN
FS1 = - F = - 10 kN
3 qa2 2
FS 图
1 qa2 2
1 M(x) = - qa×(2a- a-x) 2 3 2 = qax - qa 2 BC段: FS(x) = q ×(2a-x) = 2qa - qx 1 M(x) = q×(2a-x)× (2a-x) 2 1 2 = - qx + 2qax - 2qa2 2 1 = - q× ( 2a- x) 2 2
A 1 ql 4 C B A C
B A
C
B
l/ 2
l/ 2
1 ql 2 1 ql FS 图(q) 2
FS 图(M0)
1 ql 4 1 ql2 8 1 ql2 8
FS 图
3 ql 4
1 ql2 32 5 ql2 1 ql2 32 4
1 ql2 8
M图
M 图 ( q)
M 图(M0)
P78 42-2-1 叠加法 (过程)
F M0(Fa) C B A F
A B C A
M0(Fa) C B
a
a
F
F
3Fa
FS 图
2Fa Fa
FS 图(F)
2Fa
FS 图(M0)
Fa
《材料力学》第4章弯曲内力 课后答案

0 ; FS−C
= b F, a+b
M
− C
=
ba a+b
F
FS+C
=
−a a+b
F
,
M
+ C
=
ba a+b
F ; FSB
=
−A a+b
F
,MB
=
0
d解
图(d1), ∑ Fy
=
0,F
=
1 2
ql
,
∑
M
A
= 0,M A
=
− 3 ql 2 8
仿题 a 截面法得
FSA
=
1 2
ql
,MA
=
−
3 8
ql
2
;
FS−C
FS (x) = −F
⎜⎛ 0 < x < l ⎟⎞
⎝
2⎠
M (x) = −Fx ⎜⎛0 ≤ x ≤ l ⎟⎞
⎝
2⎠
FS (x) = F
⎜⎛ l < x < l ⎟⎞
⎝2
⎠
45
M (x) =
FA x +
FB
⎜⎛ ⎝
x
−
l 2
⎟⎞ ⎠
,
FB
= 2F
M (x) = Fx − Fl ⎜⎛ l ≤ x ≤ l ⎟⎞
( ) 解
∑MB
=
0 , FA
⋅l
+
ql 2
×
3l 4
− ql 2
=
0
, FA
=
5 ql 8
↑
( ) ∑ Fy
= 0 , FB
材料力学弯曲内力习题课

qL/2
qL/2
qx 2 MA 2
L L qL L MC q ( x) 2 4 2 2
M A MC
4 x 2 4 Lx L2 0
1 2 x L 2
x 0.207 L
(x为负值无意义)
( -)
x
在梁上行走的小车如图所示,两轮的轮压力均为F,设小 车的车轮距为c,大梁的跨度为l。试求小车行至何位置时, 梁内的弯矩最大?且求出最大弯矩的值。 x F c F
l
某工字型截面梁如图所示,一活动荷载P可以在全梁L上 移动。试问,如何布置中间铰B和可动铰C,才能充分利 用材料抗力。 P A B C D L
等截面杆AB,未受力时长L。将它竖起,上下端固定。当 上下端距离等于原长L时,求在自重作用下,(1)应力表 达式;(2)受拉区的位移表达式。设截面面积为A,材 料比重为γ,拉伸和压缩弹性模量分别为 E+ 和 E-。 A L B
作图示具有中间铰的组合梁的FS、M图。
qa2 qa2 /2
试画出图示有中间铰梁的 剪力图和弯矩图。
FDy qa / 2 FBy 3qa / 2 FAy qa / 2
M A qa 2 / 2
Fs qa/2
( +)AqaDBqC
a
a
a
qa
( +)
qa/2
qa2/2
( -)
M
( -)
qa2/2
材料力学答案4弯曲内力

A
C
B 出剪力图和弯矩图。
x1
x2
解:1.确定约束力
FAy
l
FBy
M /l
M A=0, MB=0
Fs:
Ma / l
M:
FAy=M / l FBy= -M / l
2.写出剪力和弯矩方程
AC FS x1=M / l 0 x1 a
M x1=Mx1 / l 0 x1 a
剪力图和弯矩图
例1
1kN.m
A
C D B 解法2:1.确定约束力
FAY
Fs( kN) 0.89
1.5m
1.5m
2kN
1.5m
FBY
1.11
(+)
FAy=0.89 kN FFy=1.11 kN
(-)
2.确定控制面为A、C 、D、B两侧截面。
3.从A截面左侧开始画
剪力图。
19
剪力图和弯矩图
例1
x 5.确定控制面上的 弯矩值,并将其标在
M-x中。
22
剪力图和弯矩图
例2
q
D 解法2:1.确定约束力
A
B
FAy
9qa/4
4a
a qa FBy
FAy=
9 4
qa
,
FBy=
3 4
qa
Fs (+)
(-) qa
7qa/4
2.确定控制面,即A 、B、D两侧截面。
3.从A截面左测开始画
剪力图。
23
剪力图和弯矩图
Mb / l
CB FS x2 =M / l 0 x2 b
M x2 = Mx2 / l 0 x2 b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 弯曲内力
一、选择题
1、具有中间铰的静定梁如图所示,在列全
梁的剪力和弯矩方程时,分段正确的是( )
A )二段:AC 、CE ;
B )三段:A
C 、C
D 、D
E ; C )四段:AB 、BC 、CD 、DE 。
2、简支梁部分区段受均布载荷作用,如图所示,以下结论错误的是( )
A )AC 段,剪力表达式qa x Q 41)(=
B )A
C 段,弯矩表达式qax x M 41
)(=;
C )CB 段,剪力表达式)(41
)(a x q qa x Q --=;
D )CB 段,弯矩表达式)(2
1
41)(a x q qax x M --=。
3、简支梁受集中力偶作用,如图所示,以下结论错误的是( )
A )AC 段,剪力表达式
l m x Q =
)(; B )AC 段,弯矩表达式x l m
x M =)(;
C )CB 段,剪力表达式l m
x Q =)(;
D )CB 段,弯矩表达式m x l
m
x M +=)(。
4、外伸梁受均布载荷作用,如图所示,以下结论错误的是( )
A )A
B 段,剪力表达式qx x Q -=)(; B )AB
段,弯矩表达式
22
1
)(qx x M -=;
C )BC 段,剪力表达式l qa x Q 2)(2
=;
D )BC 段,弯矩表达式)(2)(2
x l l
qa x M --=。
5、悬臂梁受载荷的情况如图所示,以下结论错的是( )
A )qa Q 3max =;
B )在a x a 43<<处,0=Q ;
C )2
max
6qa M
=; D )在a x 2=处,0=M 。
6、弱梁的载荷和支承情况对称于C 截面,
图示,则下列结论中错误的是( )
A )剪力图、弯矩图均对称,0=c Q ;
B )剪力图对称,弯矩图反对称,
0=c M ;
C )剪力图反对称,弯矩图对称,0=c M ;
D )剪力图反对称,弯矩图对称,0=c Q 。
7、右端固定的悬臂梁,长4m ,其弯矩如图所示,则梁的受载情况是( )
A )在m x 1=,有一个顺钟向的力偶作
用;
B )在m x 1=,有一个逆钟向的力偶作用;
C )在m x 1=,有一个向下的集中力作用;
D )在m x 41<<处,有向下的均布力作用。
8、长4m 的简支梁,其剪力图如图所示,以下结论错误的是( ) A )在m x 40<<处,有向下的均布力q 作用; B )梁上必有集中力偶作用;
C )梁左端有3kN 的向上支反力,右端有1kN 的向上支反力;
D )集中力偶作用点在右支座上。
9、长4m 的简支梁,其弯矩图如图所示,则梁的受载情况是( )
A )在m x 31<<处,有向上的均布力
m kN
q 10=作用,在m x 1=和m x 3=处,各有
向下的集中力kN P 20=作用;
B )在m x 31<<处,有向下的均布力m kN q 10=作用,在m x 1=和
m x 3=处,各有向下的集中力kN P 20=作用;
C )在m x 31<<处,有向下的均布力m kN q 10=作用;
D )在m x 31<<处,有向上的均布力m kN
q 10=作用。
10、悬臂梁的受载情况如图所示,以下结论错误的是( )
A )剪力图在AC 段和C
B 段为斜直线; B )剪力图在A
C 段和CB 段斜直线是平行的;
C )弯矩图在AC 段和CB 段均为二次曲线;
D )在C 截面处,剪力图有突变(剪力值不连续)。
二、判断题
1.梁发生平面弯曲时,梁的轴线必变形成载荷作用平面内的平面曲线。
( )
2.最大弯矩必发生在剪力为零的截面上。
( )
3.两梁的跨度、载荷及支承相同,但材料和横截面积不同,因而两梁的剪力图和弯矩图不同。
( )
4.梁上某一横截面上的剪力值等于截面一侧横向力的代数和,与外力偶无关;其弯矩值等于截面一侧外力对截面形心力矩的代数和,与梁是否具有中间铰无关。
( )
5.当梁中某段0=Q 内,则该段内弯矩为常数。
( )
6.当梁上作用有向下的均布载荷时,q为负值,则梁内剪力也必为负值。
()
7.当梁上作用有向下的均布载荷时,梁的弯曲曲线向上凸,弯矩必为负值。
()。
8.若简支梁仅作一集中力P,则梁的最大剪力满足P
Q
m a x ()
三、剪力和弯矩的描述
1.试求图是各梁指定截面上的剪力和弯矩。
2.列出图示各梁的剪力方程和弯矩方程,并作剪力图和弯矩图。
3.用载荷、剪力和弯矩之间的微分关系,绘出各梁的剪力图和弯矩图。
4.绘出各梁的剪力图和弯矩图。