第四章弯曲内力练习进步

合集下载

材料力学刘鸿文第六版最新课件第四章 弯曲内力

材料力学刘鸿文第六版最新课件第四章 弯曲内力

回顾
第三章 扭 转
§3.1 扭转的概念和实例 §3.2 外力偶矩的计算 扭矩和扭矩图 §3.3 纯剪切(薄壁圆筒扭转问题) §3.4 圆轴扭转时的应力 §3.5 圆轴扭转时的变形 §3.6 圆柱形密圈螺旋弹簧的应力和变形 §3.7 非圆截面扭转的概念 §3.8 薄壁杆件的自由扭转
第四章 弯曲内力
M l
e
(l
x2 )
FA
Me
a
b
A
C
x1
x2
l
FS
+
FB
B
Me lx
(3)根据方程画内力图
FS
(
x1
)
M l
e
FS (x2 )
Me l
M x
FA
Me
a
b
A
C
x1
x2
l
FS
+
M
a l
M
e
+

b l
M
e
FB
B
Me
lx
(3)根据方程画内力图
FS
(
x1
)
M l
e
FS (x2 )
M
(x1)
M l
Me
l e x1
a l F(lx2 )
FA a F
b
A x1
C
x2
l
FS
bF
+l

M
FB (3)根据方程画内力图
B
b
FS (x1) l F
FS
( x2
)
a l
F
x
a l
F
x
FA a F
b

材料力学第四章 弯曲内力

材料力学第四章 弯曲内力

§4-4 剪力、弯矩和荷载集度之间的关系 二、内力图特征
外力 情况
FQ
q(x)=0
q(x)=C<0 C
FQ FQ

F
m C
FQ图
特征
① ②
x


x
F

⑤ ④ ① ② ③
FQ
x x x x x
C ①


x
水平直线
③1 ③3 ③2
向下斜直线
C 处有突变 与F 方向一致

C 处无变化
② ③ ①
M图
特征
M
x
x2
x 72 8 x 88
x 3.6m

x1
dM ( x) FQ ( x)dx
x1
M 2 M1 FQ ( x)dx
x1
M1 0 M 2 72 2 144kN m CB段 F 72kN Q3 FQ4 72 20 8 88kN M3 72 2 160 16kN m M 4 20 2 20 2 1 80kN m
第4章 弯曲内力
例题5
q0 A
1 2 q0l
试作图示悬臂梁的剪力图和弯矩图
q (x) 一次直线
x
解: 1、求x截面荷载集度
B
l
q0 q ( x ) (l x ) l
2、列内力方程
二次曲线
FQ
1 2 6 q0l
三次曲线
M
1 1 q0 FQ ( x) q ( x)(l x) (l x) 2 2 2 l 1 1 M ( x) q( x)(l x) (l x) 2 3 q0 (l x)3 6l

第四章 弯曲内力

第四章  弯曲内力

(3)画剪力图和弯矩图
(a x l )
Pb l
M max Pab l
x
FS max
例5
画出图示梁的FS图和M图。
y
A
RA
(1)先求出约束反力: 解:
a
x
C x
M
b
(2)剪力方程和弯矩方程:
M RA l
M RB l
B
x
l
RB
M l Ma l
AC段: FS M FS1 ( x) RA (0 x a ) l Mx M 1 ( x) R A x (0 x a ) l CB段: M (a x l ) M FS 2 ( x) RA l M M 2 ( x) R A x M xM l (a x l )
0 x3
x
M ( x) P(4 x) 3(4 x) 3 x 4
(3)作剪力和弯矩图;
x
3kN m
dM ( x) 2 2x 0 dx
当 x 1m 时
M | x1m 1kN m
—— 极值点
§4. 5 载荷集度、剪力和弯矩间的关系
图示简支梁,建立如图坐标系。 约定: 分布力q向上为正,向下为负。
M | x 0 0
—— 斜直线 1 2 M | x l ql 2 —— 二次抛物线
x
ql 2 2
FS
max
ql
M
max
ql 2 2
例4
画出图示梁的FS图和M图。
y
(1)先求出约束反力: 解:
a
A
P
C x l
Pb l Pa l
Pab l

第04章弯曲内力06

第04章弯曲内力06

P qa
FS
2
qa
2+
M
qa2
2
q
1 M (x1) 2qax
2a
M
(
x2
)

1 2
qax2

1 2
q(
x2

a)2
x - 3qa
2
x
qa2 2
x1 0 , M 0
x1
a
,M

qa2 2
x2

a
,M

qa2 2
x2
3a
,M

qa2 2
二次抛物线的升降, 开口方向,极值点
q
B
A x1 a
x1a
,
M Pab l
Pab
x
x2a , M l
x2 l , M 0
RA a P
b
RB
A
C
B
(4)内力图特征:
l FS b P
l
在集中力作用的地方, 剪力图有突变,P力向下 FS 图向下变,变化值=P
+
x 值;弯矩图有折角。

a
P
Pab
l
M
l
+
x
[例6]
求梁的内力方程并画出内力图。
P=qa q
m=2qa2
M FS
P=qa q a
m=2qa2
1
1B a
2C
2
[2-2截面]
FS Pqa qaqa 2qa
M
P2a
qa
3 2
a

m
qa2a3qa2 2qa2 2
P=qa q

材料力学习题册答案-第4章 弯曲内力

材料力学习题册答案-第4章 弯曲内力

第四章 梁的弯曲内力一、 判断题1. 若两梁的跨度、承受载荷及支承相同,但材料和横截面面积不同,则两梁的剪力图和弯矩图不一定相同。

( × )2. 最大弯矩必然发生在剪力为零的横截面上。

( × )3. 若在结构对称的梁上作用有反对称载荷,则该梁具有对称的剪力图和反对称的弯矩图。

图 4-1 二、 填空题1.图 4-2 所示为水平梁左段的受力图,则截面 C 上的剪力 SC F =F ,弯矩C M =2Fa 。

2.图 4-3 所示外伸梁 ABC ,承受一可移动载荷 F ,若 F 、l 均为已知,为减小梁的最大弯矩值,则外伸段的合理长度 a= l/3 。

图 4-2 图4-33. 梁段上作用有均布载荷时,剪力图是一条 斜直 线,而弯矩图是一条 抛物 线。

4. 当简支梁只受集中力和集中力偶作用时,则最大剪力必发生在 集中力作用处 。

三、 选择题1. 梁在集中力偶作用的截面处,它的内力图为( C )。

A Fs 图有突变, M 图无变化 ;B Fs 图有突变,M 图有转折 ;C M 图有突变,Fs 图无变化 ;D M 图有突变, Fs 图有转折 。

2. 梁在集中力作用的截面处,它的内力图为( B )。

A Fs 有突变, M 图光滑连续 ;B Fs 有突变, M 图有转折 ;C M 图有突变,凡图光滑连续 ;D M 图有突变, Fs 图有转折 。

3. 在图4-4 所示四种情况中,截面上弯矩 M 为正,剪力 Fs 为负的是( B )。

图 4-44.梁在某一段内作用有向下的分布力时,则在该段内, M 图是一条( A )。

A 上凸曲线; B下凸曲线;C 带有拐点的曲线;D 斜直线。

5.多跨静定梁的两种受载情况分别如图4-5 ( a )、( b )所示,以下结论中( A )是正确的。

力F 靠近铰链。

图4-5A 两者的 Fs 图和 M 图完全相同;B 两者的 Fs 相同对图不同;C 两者的 Fs 图不同, M 图相同;D 两者的Fs图和 M 图均不相同。

四章弯曲内力

四章弯曲内力

§4-4 剪力图和弯矩图
例题5-2
q
悬臂梁受均布载荷作用。
x
l
q
试写出剪力和弯矩方程,并
画出剪力图和弯矩图。
解:任选一截面x ,写出
x
FS
M x
剪力和弯矩 方程
FS x=qx
0 x l
FS x
ql
M x=qx2 / 2 0 x l

依方程画出剪力图和弯矩图

Ma / l

FAy=M / l FBy= -M / l
2.写出剪力和弯矩方程
AC FS x1=M / l 0 x1 a
M x1=Mx1 / l 0 x1 a

Mb / l
CB FS x2 =M / l 0 x2 b
M x2 = Mx2 / l 0 x2 b
d
2M (x) dx2

dFs (x) dx

q(x)
5
目录
26
§4-5 载荷集度、剪力和弯矩间的关系
载荷集度、剪力和弯矩关系:
d 2M (x) dx2

dFs (x) dx

q(x)
1. q=0,Fs=常数, 剪力图为直线; M(x) 为 x 的一次函数,弯矩图为斜直线。
2.q=常数,Fs(x) 为 x 的一次函数,剪力图为斜直线; M(x) 为 x 的二次函数,弯矩图为抛物线。
FSE
FBy

F 3
FAy

5F 3
O
ME
分析右段得到:
FAy
FBy
ME
O
FSE
Fy 0 FSE FBy 0
F
FBy

第四章 弯曲内力

第四章 弯曲内力

§4–1 工程实际中的弯曲问题
2.梁的计算简图 2.梁的计算简图
(3) 载荷简化 ②分布力 q — 均布力 均布力 q(x) — 分布力
③集中力偶、分布力偶 集中力偶、 M — 集中力偶 m — 分布力偶
§4–1 工程实际中的弯曲问题
2.梁的计算简图 2.梁的计算简图
(4) 支座简化
A
① 固定铰支座 2个约束,1个自由度. 个约束, 个自由度. 如:桥梁下的固定支座,止 桥梁下的固定支座, 推滚珠轴承等. 推滚珠轴承等.
第四章 弯曲内力
第四章 弯曲内力
§4–1 工程实际中的弯曲问题 §4–2 剪力和弯矩 §4–3 剪力图和弯矩图 剪力、 §4–4 剪力、弯矩和分布载荷集度间的关系
第四章 弯曲内力
【本章学习目的】
1. 了解平面弯曲的概念 2. 能够列出剪力方程和弯矩方程 掌握剪力、 3. 掌握剪力、弯矩和分布载荷集度间的关系 4. 熟练绘制剪力图和弯矩图
F FA = FB = 2
(2)列内力方程 )
F FS1 = FA = 2 F M1 = FA x1 = x1 2
内力图对称中垂线. 内力图对称中垂线
( 0 < x1 < a ) ( 0 ≤ x1 ≤ a )
M max Fl = 4
FS max
F = 2
§4–3 剪力图和弯矩图 简支梁,受集中力偶M 作用,作内力图. 例4-5 简支梁,受集中力偶 e作用,作内力图 解: (1)求支座反力 )
( 0 < x1 < a ) ( 0 ≤ x1 ≤ a ) ( 0 < x2 < b ) ( 0 ≤ x2 ≤ b )
Fa Fab = M max = l l
(3)根据方程作内力图 FS max )

材料力学课件ppt-4弯曲内力

材料力学课件ppt-4弯曲内力
2.确定控制面 在集中力和集中力偶作用处的两侧截面以及支座反力
内侧截面均为控制面。即A、C、D、E、F、B截面。
目录
29
§4-5 载荷集度、剪力和弯矩间的关系
1kN.m
A
CD E F B
3.建立坐标系
0.89 kN= FAY
FS (kN)
O
0.89
1.5m
2kN
1.5m
1.5m
1.11
(+)
(-)
MA A FAy a
qa/2 Fs
M qa2/2
(-)
(+)
载荷集度、剪力和弯矩间的关系
qa
例题4-8试画出图示有中间
q
铰梁的剪力图和弯矩图。
D
B
C
a
a
FBy
qa
解:1.确定约束力 从铰处将梁截开
qa
(+)
(-)
qa/2 qa2/2
(-)
MA FAy
FDy
q
FDy qa / 2
FDy FBy
FBy 3qa / 2
FSE
FBy
F 3
FAy
5F 3
O
ME
分析右段得到:
FAy
FBy
ME
O
FSE
Fy 0 FSE FBy 0
FBy
FSE
FBy
F 3
Mo 0
3a M E FBy 2 Fa
3Fa ME 2
目录
18
§4-3 剪力和弯矩
FBy
F 3
FAy
5F 3
FAy
FBy
FSE
FAy
2F
截面上的剪力等于截 面任一侧外力的代数和。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 弯曲内力
一、选择题
1、具有中间铰的静定梁如图所示,在列全梁的剪力和弯矩方程时,分段正确的是( )
A )二段:AC 、CE ;
B )三段:A
C 、C
D 、D
E ; C )四段:AB 、BC 、CD 、DE 。

2、简支梁部分区段受均布载荷作用,如图所示,以下结论错误的是( )
A )AC 段,剪力表达式qa x Q 41)(=
B )A
C 段,弯矩表达式qax x M 41
)(=;
C )CB 段,剪力表达式)(41
)(a x q qa x Q --=;
D )CB 段,弯矩表达式)(2
1
41)(a x q qax x M --=。

3、简支梁受集中力偶作用,如图所示,以下结论错误的是( )
A )AC 段,剪力表达式l m x Q =
)(; B )AC 段,弯矩表达式x l m
x M =)(;
C )CB 段,剪力表达式l m
x Q =)(;
D )CB 段,弯矩表达式m x l
m
x M +=)(。

4、外伸梁受均布载荷作用,如图所示,以下结论错误的是( )
A )A
B 段,剪力表达式qx x Q -=)(;
B )AB 段,弯矩表达式22
1
)(qx x M -=;
C )BC 段,剪力表达式l qa x Q 2)(2
=;
D )BC 段,弯矩表达式)(2)(2
x l l
qa x M --=。

5、悬臂梁受载荷的情况如图所示,以下结论错的是( )
A )qa Q 3max =;
B )在a x a 43<<处,0=Q ;
C )2max
6qa M
=;
D )在a x 2=处,0=M 。

6、弱梁的载荷和支承情况对称于C 截面,图示,则下列结论中错误的是( )
A )剪力图、弯矩图均对称,0=c Q ;
B )剪力图对称,弯矩图反对称,0=c M ;
C )剪力图反对称,弯矩图对称,0=c M ;
D )剪力图反对称,弯矩图对称,0=c Q 。

7、右端固定的悬臂梁,长4m ,其弯矩如图所示,则梁的受载情况是( )
A )在m x 1=,有一个顺钟向的力偶作用;
B )在m x 1=,有一个逆钟向的力偶作用;
C )在m x 1=,有一个向下的集中力作用;
D )在m x 41<<处,有向下的均布力作用。

8、长4m 的简支梁,其剪力图如图所示,以下结论错误的是( ) A )在m x 40<<处,有向下的均布力q 作用; B )梁上必有集中力偶作用;
C )梁左端有3kN 的向上支反力,右端有1kN 的向上支反力;
D )集中力偶作用点在右支座上。

9、长4m 的简支梁,其弯矩图如图所示,则梁的受载情况是( )
A )在m x 31<<处,有向上的均布力
m kN
q 10=作用,在m x 1=和m x 3=处,各有
向下的集中力kN P 20=作用;
B )在m x 31<<处,有向下的均布力m kN q 10=作用,在m x 1=和m
x 3=处,各有向下的集中力kN P 20=作用;
C )在m x 31<<处,有向下的均布力m kN q 10=作用;
D )在m x 31<<处,有向上的均布力m kN q 10=作用。

10、悬臂梁的受载情况如图所示,以下结论错误的是( )
A )剪力图在AC 段和C
B 段为斜直线; B )剪力图在A
C 段和CB 段斜直线是平行的;
C)弯矩图在AC段和CB段均为二次曲线;
D)在C截面处,剪力图有突变(剪力值不连续)。

二、判断题
1.梁发生平面弯曲时,梁的轴线必变形成载荷作用平面内的平面曲线。

()2.最大弯矩必发生在剪力为零的截面上。

()3.两梁的跨度、载荷及支承相同,但材料和横截面积不同,因而两梁的剪力图和弯矩图不同。

()4.梁上某一横截面上的剪力值等于截面一侧横向力的代数和,与外力偶无关;其弯矩值等于截面一侧外力对截面形心力矩的代数和,与梁是否具有中间铰无关。

()5.当梁中某段0=
Q内,则该段内弯矩为常数。

()6.当梁上作用有向下的均布载荷时,q为负值,则梁内剪力也必为负值。

()7.当梁上作用有向下的均布载荷时,梁的弯曲曲线向上凸,弯矩必为负值。

()8.若简支梁仅作一集中力P,则梁的最大剪力满足P。

()
Q≤
max
三、剪力和弯矩的描述
1.试求图是各梁指定截面上的剪力和弯矩。

2.列出图示各梁的剪力方程和弯矩方程,并作剪力图和弯矩图。

3.用载荷、剪力和弯矩之间的微分关系,绘出各梁的剪力图和弯矩图。

4.绘出各梁的剪力图和弯矩图。

相关文档
最新文档