中国矿业大学材料导论知识点与习题

合集下载

材料科学导论习题解答

材料科学导论习题解答

材料科学导论习题解答材料科学导论作业第一章材料科学概论1.氧化铝既牢固又坚硬而且耐磨,为什么不用来制造榔头?[答]因为Al2O3的耐震性不佳,且脆性较高,不适合做榔头的材料。

2.将下列材料按金属、陶瓷、聚合物或复合材料进行分类:黄铜、氯化钠、环氧树脂、混凝土、镁合金、玻璃钢、沥青、碳化硅、铅-锡焊料、橡胶、纸杯[答]金属有黄铜、铅-锡焊料、镁合金。

陶瓷有氯化钠、碳化硅。

聚合物有环氧树脂、橡胶、沥青、纸杯。

复合材料有混凝土、玻璃钢。

3.下列用品选材时,哪些力学性能和物理性能具有特别重要性:汽车曲柄轴、电灯泡灯丝、剪刀、汽车挡风玻璃、电视机荧光屏[答]汽车曲柄轴的疲劳寿命最为重要。

电灯泡灯丝的熔点需高,其发光性能要强。

剪刀的刀刃的硬度要强。

汽车挡风玻璃的光的穿透性要强。

电视机荧光屏光学的颜色及其他穿透性各种光学特性极重要。

4. 什么是纳米材料?纳米材料有哪些效应?请举例说明。

[答]μm(10nm)的颗粒称为纳米材料纳米材料有以下效应:⑴小尺寸效应⑵表面效应⑶量子尺寸效应⑷宏观量子隧道效应举例略第二章原子结构1.原子序数为12的Mg有三个同位素:78.70%的Mg原子有12个中子,10.13%的Mg原子有13个中子,11.17%的Mg原子有14个中子,计算Mg的原子量。

[答]M = 0.7870×(12+12)+0.1013×(12+13)+0.1117×(12+14) = 24.3247 g/mol2.试计算原子N壳层内的最大电子数,若K、L、M和N壳层中所有的能级都被填满,试确定该原子的原子序数。

[答]N壳层内最大电子数为2×42 = 32。

但考虑能级交错:N壳层内刚刚达到最大电子数时的电子排布为:1s22s22p63s23p64s23d104p65s24d105p66s24f14,该原子的原子数为70。

(本题目书上原解:N壳层中电子最多有2+6+10+14 = 32个,K、L、M、N壳层中电子共有2+8+18+32 = 60个,故原子序数为60。

作 业 评 讲中国矿业大学材料科学基础课后习题讲解_ppt课件

作 业 评 讲中国矿业大学材料科学基础课后习题讲解_ppt课件

Ld’中:
4.3 2.11 47.8% 6.69 2.11
共晶Fe3C
W%
Fe3CⅡ
W%
2.11 0.77 (1 0.478) 11.8% 6.69 0.77
共析Fe3C
W%
0.77 0.0218 (1 0.478 0.118) 4.53% 6.69 0.0218
Ⅱ的相:α + β ; mα = 12% ;mβ = 88% Ⅱ的室温组织:β初 + ( α + β )共晶 ; mβ初= 75% ;m( α + β )共晶= 25% (3)mβ初= 52% 。 (4)І组织中不出现βⅡ ,会有离异共晶发生;Ⅱ组织中β 初 将减少,呈树枝状,( α + β )共晶 变细,略有增加。
作 业 评 讲中国矿业大学材 料科学基础课后习题讲解
习题1:
1.
(123)
(P51)
(0 1 2)

[1 02]
[211]


[346]
(421)
2018/11/15
2.计算f.c.c{100}、{110}、{111}面间距
d
a a (100) 2 2
a 2 d (110) a 4 4
2018/11/15
习题5:(P209)
0.01mm
2. 稳态扩散问题: J
30mm
已知: 700℃N在Fe中
D700 4 10 7 cm 2 / s
求:单位时间通过铁膜片的 N原子总量。
1000 mol/m3 100 mol/m3
dc Q A J A D 2.54 10 6 mol / s dx 1.53 1018 个N原子 / s

材料化学导论重点

材料化学导论重点

第一章1、冶炼过程的定义、实质、步骤?定义:高温下元素的分离和浓缩过程。

实质:从由氧化物、硫化物构成的矿石以及其他精制原料中分离提取某种有用金属,再经过精炼后制成金属的物理化学过程。

步骤:(1)把矿石粉碎分离,经过筛选获得含有某种金属的高品位精矿,这一过程称为选矿过程;(2)对精矿进行高温物理化学处理,提取某种金属(粗金属)的冶炼过程;(3)去除粗金属中杂质的精炼、提纯过程。

2、说出熔化-凝固、离子交换、电解溶液与析出法精炼工艺原理?熔化-凝固:利用物质的熔点差,通过冷凝或者熔化过程去除杂质,从而获得较高纯度的某一物质。

离子交换:利用物质的选择系数差,通过离子交换过程去除杂质,提取所需的物质。

电解溶解与析出:利用物质的电解电压差,通过电解去除杂质,提取所需的物质。

3、详细分析区域精炼、挥发精炼的工艺原理?利用溶液中析出固体的现象,使其中一种成分浓缩、富聚的方法叫做区域精炼。

如图:*的液相和在温度T*下二元系的固相和液相处于平衡时,系统中溶质浓度C溶质浓度C S*的固相处于平衡且共存。

这时由于C L*> C S*,因此浓度为C L*的液相凝固时,在固-液界面析出浓度为C S*的固相。

这说明凝固过程中存在着溶质浓度升高(或降低)的可能性,从而造成明显的不均匀,即产生偏析。

当偏析系数1或者1时,就可以通过熔化或凝固过程去除杂质(精炼)从而获得较高纯度的某一物质。

4、ΔGθ-T图的应用,为何炼钢时,Si先氧化,C后氧化?杂质氧化去除而精炼金属不被氧化时为何杂质成分平衡线必须处于精炼金属下方,而且越远越好?铁熔化后的初始温度约为1300℃左右,由图可知,在这一温度下SiO2的位置比CO低,因此SiO2比CO稳定,反应初期Si优先氧化。

随着Si的氧化,温度不断升高,C的平衡线和Si的平衡线相交后,CO反而变得稳定,这时才开始被氧化。

利用氧化反应精炼金属时,最理想的结果应该是只把杂质成分氧化掉,而精炼的金属本身不被氧化。

大学材料导论知识点总结

大学材料导论知识点总结

大学材料导论知识点总结一、材料的基本概念1、材料的定义:材料是人类使用的各种原始、半成品和成品物质的统称。

它们通常包括金属、陶瓷、高分子材料、复合材料等,并且广泛应用于工业、建筑、医疗、航天航空等领域。

2、材料的分类:可以根据不同的属性将材料划分为金属材料、非金属材料和复合材料三大类。

金属材料包括铁、铜、铝等金属元素及其合金;非金属材料包括陶瓷、高分子材料等;复合材料是由两种或两种以上不同种类的材料组成的混合材料。

3、材料的性能:材料的性能包括力学性能、物理性能、热学性能、电学性能、化学性能等。

在材料导论中,学生将学习如何通过实验或者理论计算等方法来评价和分析材料的各种性能。

二、材料的结构和性质1、金属材料的结构和性质:金属材料通常以金属原子通过金属键连接而成的结晶结构,具有良好的导电、导热、可塑性和韧性等性质。

在材料导论课程中,学生将学习如何通过晶体学和相变等知识来理解和分析金属材料的结构和性质。

2、非金属材料的结构和性质:非金属材料通常以共价键或者离子键连接而成的分子、离子或原子结构,具有较好的绝缘、耐热、耐腐蚀等性质。

学生将学习如何通过结构化学等知识来理解和分析非金属材料的结构和性质。

3、复合材料的结构和性质:复合材料由两种或两种以上不同种类的材料组成,它具有各种不同种类材料的优点,并且能够弥补各种不同种类材料的缺点。

在材料导论中,学生将学习复合材料的组成、制备方法、结构和性质等知识。

三、材料的应用和研究方法1、材料的应用:材料广泛应用于工业、建筑、医疗、航天航空等领域。

在材料导论课程中,学生将学习各种材料的应用领域、特点以及相关的工程实例。

2、材料的研究方法:为了解释和分析材料的结构与性质,学者们提出了许多研究材料性质的方法。

例如,X射线衍射、透射电镜、扫描电镜等方法可以用来研究材料的结构;拉伸实验、冲击实验、硬度实验等方法可以用来研究材料的力学性能。

在材料导论中,学生将学习这些研究方法的原理、应用和操作技巧。

材料导论复习题与答案

材料导论复习题与答案

材料科学基础复习题2014.12.15 1.结合键根据其结合力的强弱可分为哪两大类?各自分别包括哪些细类?P2一类是结合力较强的主价键(一次键),包括离子键,共价键,金属键;另一类是结合力较弱的次价键(二次键),包括范德华力和氢键。

2.国际上通常用什么来统一标定晶向指数和晶面指数?P9分别以什么表示?国际上用密勒指数(Miller)来标定。

分别以方括号和圆括号表示,即[uvw]和(hkl)。

3.什么叫点阵、晶胞、晶带、配位数、固溶体、孪晶、蠕变、应力松弛、合金、致密度、聚合度、近程结构、远程结构、复合材料、界面。

点阵(空间点阵):为了便于分析研究晶体中质点的排列情况,把它们抽象成规则排列于空间的无数个几何点,这些点可以是原子或分子的中心,也可以是彼此等同的原子群或分子群的中心,但各个点的周围环境必须相同。

这种点的空间排列就称为空间点阵。

P5晶胞:为了说明点阵排列的规律和特点,在点阵中取出一个具有代表性的单元作为点阵的组成单元,称为晶胞。

P5晶带:相交于同一直线的一组晶面组成一个晶带。

(晶带面、晶带轴)P12配位数:晶体结构中任一原子周围最相邻且等距离的原子数。

P21固溶体:固溶体是固体溶液,是溶质原子溶入溶剂中所形成的均匀混合的物质。

P25孪晶:孪生形变后,变形与未变形两部分晶体合称为孪晶。

P84蠕变:蠕变是指在恒温下对高分子材料快速施加较小的恒定外力时,材料的变形随时间而逐渐增大的力学松弛现象。

P279应力松弛:应力松弛是指在恒定温度和形变保持不变的情况下,高分子材料内部的应力随时间增加而逐渐衰减的现象。

P279合金:是指由两种或两种以上的金属与非金属经熔炼、烧结或其他方法组合而成并具有金属特性的物质。

P25致密度:晶体结构中原子体积占总体积的分数。

P21聚合度:将高分子材料的结构单元总数称为聚合度。

P253近程结构:包括构造和构型。

P264远程结构:是指单个高分子链的大小和形态、链的柔顺性及分子在各种环境中所采取的构象。

材料导论复习题

材料导论复习题

材料导论复习题《材料学导论》⽆机⾮⾦属材料、⾦属材料思考题⼀、填空(共10题,每题4分)1、材料按化学组成可分为:⾦属材料、⽆机⾮⾦属材料、有机⾼分⼦材料、复合材料。

2、材料科学与⼯程的四要素是:成份/结构、制造⼯艺(或合成/加⼯)、性能、使⽤性能。

3、陶瓷材料是⼀种多晶多相材料,其相组成通常包括:晶相、玻璃相、⽓孔(或⽓相)。

4、根据有机、⽆机、⾦属材料拉伸应⼒-应变曲线知,三种材料的弹性模量E⼤⼩顺序为:陶瓷材料(或⽆机材料)>⾦属材料>有机⾼分⼦材料。

5、硅酸盐⽔泥熟料的化学组成是Al2O3、Fe2O3、SiO2、CaO。

6、玻璃的结构有很多假说,如微晶学说、凝胶学说、五⾓形对称学说、⾼分⼦学说等等,其中较为公认的晶⼦学说和⽆规则⽹络学说两种。

7、⾦属有80多种,但其常见的晶体结构有三种,分别是⾯⼼⽴⽅、密排六⽅、体⼼⽴⽅。

8、⾦属的强化机制有:形变强化、固溶强化、细晶强化、弥散强化、相变强化。

9、陶瓷材料具有很多优点,例如:低膨胀系数、低导热系数、化学稳定型⾼等,但是陶瓷材料的⼀个重要缺点是:脆性⾼(或韧性低或热稳定性差)。

10、将SiC制成砂轮和各种磨介是利⽤其具有⾼硬度的性质。

11、构成硅酸盐矿物最基本的结构单元是硅氧四⾯体或[SiO4]。

12、普通陶瓷⽣产必不可少的三种原料是:⽯英、长⽯、粘⼟。

13、耐⽕材料是指耐⽕度不低于1580℃(或≮1580℃)的⽆机⾮⾦属材料。

14、硅酸盐⽔泥的⽣产技术可概括为:两磨⼀烧。

15、不定形耐⽕材料因不经成型、不经烧结⽽得名。

16、普通硅酸盐⽔泥主要的四种矿物组成是:硅酸三钙(或C3S)、硅酸⼆钙(或C2S)、铝酸三钙(或C3A)、铁铝酸四钙(或C4AF)。

17、平板玻璃的成型⽅法有:浮法、平板法、垂直引上法。

18、硅酸盐(矿物)材料的基本类型有:岛状、组群状、链状、层状、架状。

它们是根据硅氧四⾯体在空间的不同连接⽅式进⾏分类的。

19、陶瓷材料的烧结技术有:普通烧结(或传统烧结)、热压烧结、反应烧结、热等静压烧结、液相烧结等。

材料化学导论知识点汇总

材料化学导论知识点汇总

1.材料的发展水平(5代):天然材料、烧炼材料、合成材料、可设计材料、智能材料。

2.材料的分类(5类):金属材料、非金属材料、合成材料、复合材料、功能材料。

3.非晶体与晶体的主要区别:非晶体结构具有长程无序、短程有序的特点,并且非晶体所属的状态属于热力学的亚稳定态。

而晶体的原子平衡位置形成一个平移的周期阵列,这种原子的位置显示生长程序。

4.晶体的宏观特征(4点):规则的几何外形、晶面角守恒、有固定熔点、物理性质的各向异性。

5.空间点阵的概念:空间点阵是实际晶体结构的数学抽象,是一种空间几何构图,它突出了晶体结构中微粒排列的周期性这一基本特点。

6.晶体的宏观对称性中心3种最基本的对称元素:转轴、镜面、反演中心;8种基本对称元素:1、2、3、4、6、i、m、4;n度旋转轴:一个晶体如果绕一轴旋转2π/n角度后能复原,则称这个轴为n度旋转轴。

7.晶体点阵缺陷的分类(4种):点缺陷(①肖特基缺陷:原子脱离正常晶格的格点位置移动到晶体表面的正常位置,在原格点上留下空位。

②间隙原子:一个原子从正常表面上的位置挤进完整晶格中的间隙位置。

③夫伦科尔缺陷:原子脱离正常晶体的格点位置而移动到间隙位置,形成空位和间隙原子。

)、线缺陷、面缺陷、体缺陷。

8.位错:①刃位错(是最简单的一种基本类型的位错,是在研究金属的范性中提出的。

它是在滑移面上局部滑移区的边界,且位错的方向与滑移方向垂直;从原子排列的状况来看,就如同垂直于滑移面插紧了一层原子的刃上)②螺位错(是一种基本类型的位错,可看成是局部滑移区的边界,其特点是位错和滑移的方向是相互平行的)。

9.固溶体的概念:合金中那些化学成分和晶体结构完全相同,且界面相互分开又彼此独立存在的均匀组成部分,称为合金相。

合金相又分为固溶相和中间相,其中固溶体又称为混晶,存在着广阔的固溶区范围,同时不符合化合物的定组分定律。

(如果碳原子挤到铁的晶格中去,又不破坏铁所具有的晶体结构,这样的物质成为固溶体)10.奥氏体(不锈钢材料)的概念:组成铁碳合金的铁具有两种晶格结构:910℃以下,为具有体心立方晶格结构的α-铁,而910℃以上为具有面心立方的γ-铁。

大一材料导论知识点

大一材料导论知识点

大一材料导论知识点材料导论是一门介绍材料科学与工程的基础课程,旨在让学生对不同类型的材料及其特性有一个整体的了解。

本文将针对大一材料导论中的几个重要知识点进行介绍,帮助学生更好地理解和学习这门课程。

一、材料的分类与常用材料1. 材料的分类:金属材料、无机非金属材料、有机材料、复合材料等。

2. 常用金属材料:铁、铜、铝、钢等。

常用无机非金属材料:陶瓷、玻璃等。

常用有机材料:塑料、橡胶等。

常用复合材料:纤维增强复合材料、层层复合材料等。

二、常见材料性能与表征方法1. 机械性能:强度、硬度、韧性等。

常用的测试方法有拉伸试验、硬度测试等。

2. 热性能:熔点、热膨胀系数等。

常用的测试方法有差热分析法、热膨胀试验等。

3. 电磁性能:电导率、磁性等。

常用的测试方法有电导率测量、磁性测试等。

4. 光学性能:透光性、折射率等。

常用的测试方法有透光率测量、折射率测试等。

5. 化学性能:腐蚀性、稳定性等。

常用的测试方法有腐蚀试验、稳定性测试等。

三、材料的结构与组织1. 金属材料的结构与组织:晶格结构、晶体缺陷、晶体生长等。

2. 陶瓷材料的结构与组织:晶体结构、非晶态、多孔结构等。

3. 高分子材料的结构与组织:线性结构、支化结构、交联结构等。

4. 复合材料的结构与组织:纤维增强剂、基体材料、界面结构等。

四、材料加工与制备方法1. 金属材料的加工与制备方法:熔铸、轧制、锻造等。

2. 陶瓷材料的加工与制备方法:烧结、热压等。

3. 高分子材料的加工与制备方法:模塑、挤出等。

4. 复合材料的加工与制备方法:层层堆叠、纤维增强等。

五、材料应用领域1. 金属材料的应用领域:机械制造、建筑结构等。

2. 陶瓷材料的应用领域:陶瓷器皿、电子元器件等。

3. 高分子材料的应用领域:塑料制品、橡胶制品等。

4. 复合材料的应用领域:航空航天、汽车制造等。

总结:材料导论是大一学生必修的基础课程,通过学习这门课程,学生将对各种类型的材料有一个整体的了解和认识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章,Electrons in Atoms• The two atomic models are Bohr and wave-mechanical.Whereas the Bohr model assumes electrons to be particles orbiting the nucleus in discrete paths, in wave mechanics we consider them to be wavelike and treat electron position in termsof a probability distribution.• The energies of electrons are quantized—that is, only specific values of energyare allowed.• The four electron quantum numbers are n, l, ml, and ms. Each of these specifiesa distinct electron characteristic.• According to the Pauli exclusion principle, each electron state can accommodateno more than two electrons, which must have opposite spins.Bonding Forces and Energies• Bonding force and bonding energy are related to one another according to Equation 2.4.• Attractive, repulsive, and net energies for two atoms or ions depend on interatomic separation per the schematic plot of Figure 2.8b.• From a plot of interatomic separation versus for ce for two atoms/ions, the equilibrium separation corresponds to the value at zero force.• From a plot of interatomic separation versus potential energy for twoatoms/ions, the bonding energy corresponds to the energy value at the minimumof the curve.Primary Interatomic Bonds• For ionic bonds, electrically charged ions are formed by the transference of valence electrons from one atom type to another. This type of bonding is found inceramic materials.• There is a sharing of valence electrons between adjacent atoms when bonding is covalent. Polymers and some ceramic materials covalently bond.• The percent ionic character (%IC) of a bond between two elements (A and B) depends on their electronegativities (X’s) according to Equation 2.10.• With metallic bonding, the valence electrons form a “sea of electrons” that is uniformly dispersed around the metal ion cores and acts as a form of glue for them.Metallic materials exhibit this type of bonding.Secondary Bonding or van der Waals Bonding• Relatively weak van der Waals bonds result from attractive forces between electric dipoles, which may be induced or permanent.• For hydrogen bonding, highly polar molecules form when hydrogen covalentlybonds to a nonmetallic element such as fluorine.第三章SUMMARYFundamental Concepts• Atoms in crystalline solids are positioned in orderly and repeated patterns thatare in contrast to the random and disordered atomic distribution found in noncrystalline or amorphous materials.Unit Cells• Crystal structures are specified in terms of parallelepiped unit cells, which are characterized by geometry and atom positions within.Metallic Crystal Structures• Most common metals exist in at least one of three relatively simple crystal structures:Face-centered cubic (FCC), which has a cubic unit cell (Figure 3.1).Body-centered cubic (BCC), which also has a cubic unit cell (Figure 3.2). Hexagonal close-packed, which has a unit cell of hexagonal symmetry,[Figure 3.3(a)].• Unit cell edge length (a) and atomic radius (R) are related according toEquation 3.1 for face-centered cubic, andEquation 3.3 for body-centered cubic.• Two features of a crystal structure areCoordination number—the number of nearest-neighbor atoms, andAtomic packing factor—the fraction of solid sphere volume in the unit cell.Density Computations• The theoretical density of a metal () is a function of the number of equivalent atoms per unit cell, the atomic weight, unit cell volume, and Avogadro’s number (Equation 3.5).Polymorphism and Allotropy• Polymorphism is when a specific material can have more than one crystal structure. Allotropy is polymorphism for elemental solids.Crystal Systems• The concept of crystal system is used to classify crystal structures on the basis ofunit cell geometry—that is, unit cell edge lengths and interaxial angles.There are seven crystal systems: cubic, tetragonal, hexagonal, orthorhombic, rhombohedral (trigonal), monoclinic, and triclinic.Polycrystalline Materials• Single crystals are materials in which the atomic order extends uninterrupted over the entirety of the specimen; under some circumstances, single crystals may haveflat faces and regular geometric shapes.• The vast majority of crystalline solids, however, are polycrystalline, being composed of many small crystals or grains having different crystallographic orientations.• A grain boundary is the boundary region separating two grains, wherein there is some atomic mismatch.Anisotropy• Anisotropy is the directionality dependence of properties. For isotropic materials, properties are independent of the direction of measurement.Noncrystalline Solids• Noncrystalline solid materials lack a systematic and regular arrangement of atoms or ions over relatively large distances (on an atomic scale). Sometimes the term amorphous is also used to describe these materials.第四章SUMMARYVacancies and Self-Interstitials• Point defects are those associated with one or two atomic positions; these include vacancies (or vacant lattice sites) and self-interstitials (host atoms that occupy interstitial sites).• The equilibrium number of vacancies depends on temperature according to Equation 4.1.Impurities in Solids• An alloy is a metallic substance that is composed of two or more elements.• A solid solution may form w hen impurity atoms are added to a solid, in which case the original crystal structure is retained and no new phases are formed.• For substitutional solid solutions, impurity atoms substitute for host atoms.• Interstitial solid solutions form for relatively small impurity atoms that occupy interstitial sites among the host atoms.• For substitutional solid solutions, appreciable solubility is possible only when atomic diameters and electronegativities for both atom types are similar, whenboth elements have the same crystal structure, and when the impurity atoms havea valence that is the same as or less than the host material.Specification of Composition• Composition of an alloy may be specified in weight percent (on the basis of mass fraction, Equation 4.3) or atom percent (on the basis of mole or atom fraction, Equation 4.5).• Expressions were provided that allow conversion of weight percent to atom percent (Equation 4.6a) and vice versa (Equation 4.7a).• Computation of average density and ave rage atomic weight for a two-phase alloy are possible using other equations cited in this chapter (Equations 4.10a, 4.10b,4.11a, and 4.11b).Dislocations—Linear Defects• Dislocations are one-dimensional crystalline defects of which there are two pure types: edge and screw.An edge may be thought of in terms of the lattice distortion along the end ofan extra half-plane of atoms.A screw is as a helical planar ramp.For mixed dislocations, components of both pure edge and screw are found.• The magnitude a nd direction of lattice distortion associated with a dislocationare specified by its Burgers vector.• The relative orientations of Burgers vector and dislocation line are (1) perpendicular for edge, (2) parallel for screw, and (3) neither perpendicular nor parallelfor mixed.Interfacial Defects• Within the vicinity of a grain boundary (which is several atomic distances wide),there is some atomic mismatch between two adjacent grains that have different crystallographic orientations.• For a high-angle grain boundary, the angle of misalignment between grains is relatively large; this angle is relatively small for small-angle grain boundaries.• Across a twin boundary, atoms on one side reside in mirror-image positions ofatoms on the other side.Microscopic Techniques• The microstructure of a material consists of defects and structural elements thatare of microscopic dimensions. Microscopy is the observation of microstructureusing some type of microscope.• Both optical and electron microscopes are emp loyed, usually in conjunction with photographic equipment.• Transmissive and reflective modes are possible for each microscope type; preferenceis dictated by the nature of the specimen as well as the structural elementor defect to be examined.• In orde r to observe the grain structure of a polycrystalline material using an optical microscope, the specimen surface must be ground and polished in order toproduce a very smooth and mirrorlike finish. Some type of chemical reagent (or etchant) must then be applied in order to either reveal the grain boundaries orproduce a variety of light reflectance characteristics for the constituent grains.• The two types of electron microscopes are transmission (TEM) and scanning (SEM). For TEM an image is formed from an electron beam that, while passingthrough the specimen, is scattered and/or diffracted.SEM employs an electron beam that raster-scans the specimen surface; animage is produced from back-scattered or reflected electrons.• A scanning probe microscope employs a small and sharp-tipped probe that rasterscans the specimen surface. Out-of-plane deflections of the probe result frominteractions with surface atoms. A computer-generated and three-dimensionalimage of the surface results having nanometer resolution.Grain Size Determination• With the intercept method, used to measure grain size, a series of straight-line segments (all having the same length) are drawn on a photomicrograph. Linelength is divided by the average number of grain intersections on a per-line basis. Average grain diameter is taken as this result divided by the magnification of the photomicrograph.• Comparison of a photomicrograph (taken at a magnification of 100_) with ASTMstandard comparison charts may be used to specify grain size in terms of a grainsize number.• The average number of grains per square inch at a magnification of 100_is relatedto grain size number according to Equation 4.16.第五章第六章SUMMARYBasic Concepts• On a microscopic level, plastic deformation corresponds to the motion of dislocations in response to an externally applied shear stress. An edge dislocationmoves by the successive and repeated breaking of atomic bonds and shifting by interatomic distances of half planes of atoms.• For edge dislocations, dislocation line motion and direction of the applied shear stress are parallel; for screw dislocations these directions are perpendicular.• Dislocation density is the total dislocation length per unit vol ume of material. Its units are per square millimeter.• For an edge dislocation, tensile, compressive, and shear strains exist in thevicinity of the dislocation line. Shear lattice strains only are found for pure screw dislocations.Slip Systems• The mot ion of dislocations in response to an externally applied shear stress is termed slip.• Slip occurs on specific crystallographic planes and within these planes only in certain directions. A slip system represents a slip plane–slip direction combination.• Operable slip systems depend on the crystal structure of the material. The slip plane is that plane that has the densest atomic packing, and the slip direction isthe direction within this plane that is most closely packed with atoms.• The slip system for the FCC crystal structure is {111}81109; for BCC several are possible: {110}81119, {211}81119, and {321}81119.Slip in Single Crystals• Resolved shear stress is the shear stress resulting from an applied tensile stressthat is resolved onto a plane that is neither parallel nor perpendicular to the stress direction. Its value is dependent on the applied stress and orientations of planeand direction according to Equation 7.2.• The critical resolved shear stress is the minimu m resolved shear stress requiredto initiate dislocation motion (or slip) and depends on yield strength and orientation of slip components per Equation 7.4.• For a single crystal that is pulled in tension, small steps form on the surface thatare parallel and loop around the circumference of the specimen.Plastic Deformation of Polycrystalline Materials• For polycrystalline materials, slip occurs within each grain along those slip systems that are most favorably oriented with the applied stress. Furthermore, during deformation, grains change shape and extend in those directions wherein thereis gross plastic deformation.Deformation by Twinning• Under some circumstances, limited plastic deformation may occur in BCC andHCP metals by mechanical twinning. The application of a shear force produces slight atomic displacements such that on one side of a plane (i.e., a twin boundary) atoms are located in mirror-image positions of atoms on the other side. Mechanisms of Strengthening in Metals• The ease with whic h a material is capable of plastic deformation is a function of dislocation mobility—that is, restricting dislocation motion leads to increases hardness and strength.Strengthening by Grain Size Reduction• Grain boundaries are barriers to dislocation motion for two reasons:When crossing a grain boundary, a dislocation’s direction of motion mustchange.There is a discontinuity of slip planes within the vicinity of a grain boundary.• A metal that has small grains will be stronger than one with large g rains because the former has more grain boundary area, and, thus, more barriers to dislocation motion.• For most metals, yield strength depends on average grain diameter according tothe Hall–Petch equation, Equation 7.7.Solid-Solution Strengthening• Th e strength and hardness of a metal increase with increase of concentration of impurity atoms that go into solid solution (both substitutional and interstitial).• Solid-solution strengthening results from lattice strain interactions betweenimpurity atoms and dislocations; these interactions produce a diminishment in dislocation mobility.Strain Hardening• Strain hardening is just the enhancement in strength (and decrease of ductility)of a metal as it is plastically deformed.• Degree of plastic deformati on may be expressed as percent cold work, which depends on original and deformed cross-sectional areas as described byEquation 7.8.• Yield strength, tensile strength, and hardness of a metal increase with increasing percent cold work (Figures 7.19a and 7.19b); ductility diminishes (Figure 7.19c).• During plastic deformation dislocation density increases, the average distance between adjacent dislocations decreases, and—because dislocation–dislocationstrain field interactions, are, on average, repulsive—dislocation mobility becomes more restricted; thus, the metal becomes harder and stronger.Recovery• During recovery:There is some relief of internal strain energy by dislocation motion.Dislocation density decreases, and dislocations assume low-energy configurations. Some material properties revert back to their precold-worked values. Recrystallization• During recrystallization:A new set of strain-free and equiaxed grains form that have relatively low dislocation densities.The metal becomes softer, weaker, and more ductile.• The driving force for recrystallization is the difference in internal energy between strained and recrystallized material.• For a cold-worked metal that experiences recrystallization, as temperature increases (at constant heat-treating time), tensile strength decreases and ductilityincreases (per Figure 7.22).• The recrystallization temperature of a metal alloy is that temperature at which recrystallization reaches completion in one hour.• Two factors that influence the recrystallization temperature are percent cold work and impurity content.Recrystallization temperature diminishes with increasing percent cold work.It rises with increasing concentrations of impurities.• Plastic deformation of a metal above its recrystallization temperature is hot working; deformation below is termed cold working.Grain Growth• Grain growth is the increase in average grain size of polycrystalline materials,which proceeds by grain boundary motion.• The driving force for grain growth is the reduction in total grain boundaryenergy.• The time dependence of grain size is represented by Equation 7.9.第七章SUMMARYIntroduction• Equilibrium phase diagrams are a convenient and concise way of representingthe most stable relationships between phases in alloy systems.Phases• A phase is some portion of a body of material throughout which the physical and chemical characteristics are homogeneous.Microstructure• Three microstructural characteristics that are important for multiphase alloys are The number of phases presentThe relative proportions of the phasesThe manner in which the phases are arranged• Three factors affect the microstructure of an alloy:What alloying elements are presentThe concentrations of these alloying elementsThe heat treatment of the alloyPhase Equilibria• A system at equilibrium is in its most stable state—that is, its phase characteristics do not change over time.Thermodynamically, the condition for phase equilibriumis that the free energy of a system is a minimum for some set combination of temperature, pressure, and composition.• Metastable systems are nonequilibrium ones that persist indefinitely and experience imperceptible changes with time.。

相关文档
最新文档