计算材料学ppt课件
计算材料学第一性原理密度泛函理论分子动力学md课件

-如果 和 是体系的两个可能状态,对于某测量量A,测得的值是 a1, a2
也是这个体系可能的状态 对于A的测量结果计可算能材料是学a第1一, 性也原可理密能度是泛函a理2,论而分子且动测力学得m的d 相应几率是确定的。
薛定谔方程
• 波函数怎么随着时间变化,各种具体情况下怎么找出相应的波函数?
这个方程为1926年薛定谔提出的一个假说。但是,正确性已经得到了验证。
自由粒子的能量为常数,其解当定态,通解为:
因此自由粒子有着平面波的形式
计算材料学第一性原理密度泛函理论分子动力学md
简单例子二:一维无限深势阱(1)
• 势函数 • 薛定谔方程将可以写成:
在
的区域内的通解是:
利用边界条件:
得:
计算材料学第一性原理密度泛函理论分子动力学md
Hale Waihona Puke 简单例子二:一维无限深势阱(1)
解:A=0, cos =0, B=0, sin =0,
能级(能量本征值) :
波函数:
(n 为奇数)
(n 为偶数)
分立能级!!! n= 1, 2,3, 。。。
计算材料学第一性原理密度泛函理论分子动力学md
简单例子三:库仑场(中心力场)中的电子(1)
• 原子核产生的库仑场是一种特殊的中心力场, 如果原子核外只有一个电子:质量为m, 带电 量-e, 取原子核为坐标原点,电子受原子核吸引的势能为:
计算材料学第一性原理密度泛函理论分子动力学md
物质的波粒二象性
• 光具有波动性和粒子性的双重特性 -20世纪初,爱因斯坦(Einstein)提出光子学说解释了光电效应(photoemission) • 物质也具有波粒二象性。
- 1924年,法国科学家L.de Broglie认为:既然光具有二象性,则电子等微观粒子 也可有波动性 - 1927年,Davisson和Germer应用Ni晶体进行的电子衍射实验证实了de Broglie的 假设:电子具有波动性。将一束电子流经一定电压加速后通过金属单晶体,像单 色光通过小圆孔一样发生衍射现象,在感光底片的屏幕上,得到一系列明暗相间 的衍射环(图9-1)
第2讲 计算材料学简介

算科学最底层的层次就是量子力学层次,它也是其他更高层次
的发现等。
2.2 计算材料学的工作流程
1、具体问题阶段
对具体问题进行分析研究时, 要抓住问题的主要矛盾和矛盾的主 要方面,进行各种必要的近似,建 立物理模型。
具体问题 理论模型 数学模型
2、数学模型阶段
数学建模是利用数学语言模拟 物理模型。把物理模型抽象、简化 为某种数学结构是数学模型的基本 特征。
对接技术就是用于连接各个层次的技术,即如何将较低
层次的计算结果用于较高层次的计算。
1、混合方法(hybrid QM/ MM method) 2、密度泛函与分子动力学模拟方法的结合 3、有限元与分子动力学模拟方法的结合 4、有限元与量子力学方法方法的结合
量子力学层次 计 算 材 料 学
统计力学层次
介观层次 宏观层次
中国国家自然科学基金委员会
https:///portal/proj_search.asp
973重大基础研究计划 863高技术研究计划 自然科学基金重大基础研究 材料微观结构设计与性能预测研究专题
2.1 计算材料学与理论和实验的关系
计算材料学的定义:
计算材料学是以计算机及计算机技术为工具和 手段,运用计算数学的方法,从微观层次来解决复 杂材料问题的一门应用科学。计算材料学为复杂体 系规律、性质的研究提供了重要手段,对材料学的
梁,也是模型与实验的桥梁,因此常常称其为“计算机实验”。
计算材料科学课件11.1 计算材料科学简介

第一性原理方法
• 计算表面吉布斯自由能、研究表面吸附机理、表面化学反 应过程、界面力学性质,薄膜生长机理、自组装等。
α-Al2O3/FeAl氢渗透阻挡层中氢的能量和扩散 Reference: Int. J. Hydrogen Energy 38, 7550 (2013)
计算软件
• Quantum ESPRESSO: /
• Siesta: http://departments.icmab.es/leem/siesta/
• Materials Studio
参考书目
• 计算材料科学基础 张跃 谷景华 等 北京航空航天大 学出版社
• Density Functional Theory David S. SHOLL
参考书目
材料学计算的方法
• 量子力学方法 • 分子动力学方法 • Monte Carlo 方法 • 有限元分析方法
量子力学方法
量子力学第一性原理方法可以无需任何实验数据,完全从 材料组成原子的种类以及排列方式出发计算材料性能。该 方法可以研究能量学和电子层次的问题。
分子动力学方法
分子动力学方法通过简化原子间相互作用,可以计算的体 系比量子力学方法能够研究的体系大得多,特别是可以研 究温度、压力等环境因素的影响和动力学问题。
材料学研究对象的空间尺度不断缩小。 材料应用环境的日益复杂化 仅依靠实验室的实验来进行材料研究已经难以满足现代新
材料研究和发展的要求
材料学计算的优越性
计算机模拟技术可以根据有关的基本理论,在计算机虚拟 环境下从纳观、微观、介观和宏观的不同尺度对材料进行 多层次研究,也可以模拟超高温、超高压等极端环境下的 材料服役性能,模拟材料在服役条件下的性能演变规律、 失效机理,进而实现材料服役性能的改善和材料设计。
计算材料学概述之蒙特卡洛方法详解课件

组合优化方法
针对组合优化问题,通过随机搜索和迭代优 化求解。
分子动力学模拟中的蒙特卡洛方法
01
分子动力学模拟是一种基于物理 模型的模拟方法,通过蒙特卡洛 方法可以模拟分子间的相互作用 和运动轨迹。
02
蒙特卡洛方法在分子动力学模拟 中主要用于求解势能面和分子运 动轨迹,通过随机抽样和迭代优 化实现分子运动状态的模拟。
重要性
随着科技的发展,计算材料学已成为 材料科学研究中不可或缺的工具,有 助于加速新材料的发现和优化现有材 料的性能。
计算材料学的主要研究方法
分子动力学模拟
01
基于原子或分子的动力学行为,模拟材料的微观结构和动态性
质。
蒙特卡洛方法
02
通过随机抽样和概率统计方法研究材料的宏观性质和相变行为
。
密度泛函理论
蒙特卡洛方法可以与分子动力学模拟结合,实现更精确的原子尺 度模拟。
元胞自动机
蒙特卡洛方法可以与元胞自动机结合,模拟复杂系统的演化过程。
有限元分析
蒙特卡洛方法可以与有限元分析结合,实现更高效的数值计算。
蒙特卡洛方法在材料设计中的应用前景
新材料发现
蒙特卡洛方法可用于预测新材料性能,加速新材料发现和开发进 程。
总结词
通过蒙特卡洛方法模拟复合材料的界面行为,包括界面润湿性、粘附力和传质过程等。
详细描述
利用蒙特卡洛方法模拟复合材料的界面行为,分析不同组分间的相互作用和界面结构, 预测材料的界面润湿性、粘附力和传质过程等性能,为复合材料的制备和应用提供理论
依据和技术支持。
蒙特卡洛方法的发
05
展趋势与展望
蒙特卡洛方法的未来发展方向
计算统计量
根据模型和抽样结 果,计算所需的统 计量或系统参数。
计算材料学ppt课件

• 将多电子问题变为了单电子问题,但是没 有考虑电子的交换反对称性 。为了研究电 子的交换反对称性的影响,采用Slater行 列式来求能量,经过合适的变换,得到了 如式所示方程:
' 2 * ' ' 2 | ( r ) | ( r ) ( r ' ' i ) ' i ' i V ( r ) dr ( r ) dr E ( r ) i ii ' ' ' ' | r r | | r r | i ( i ) i ( i ), ||
• 为了更加准确地描述多电子系统, Hohenberg P和Kohn W提出了两个基本 的定理: • (1) 定理1:不计自旋的全同费密子系统的 基态能量是粒子数密度函数的唯一泛函; • (2) 定理2:能量泛函在粒子数不变条件下 对正确的粒子数密度函数取极小值,并等 于基态能量。
• 定理1的主旨思想是粒子数密度函数是一个 决定系统基态物理性质的基本变量;定理2 的要点是在粒子数不变条件下能量泛函对 密度函数的变分就得到系统基态的能量。 密度泛函理论的理论基础是这两条基本定 理,其基本的思想是原子、分子和固体的 基态物理性质可以用粒子密度函数来表示。
• Kohn- Sham方程中的交换关联势近似为 式
密度为 (r)
E [ ] d V [ ( r )] ( ( r ) [ ( r )]) d ( r )
xc xc xc
xc[(r) :均匀无相互作用电子气的交换-关联密
度,在实际的计算过程中,通常把交换关联密度分成两部分:交换项和关联项。
1 f
4 /3
22 1
1 /3
计算材料学

计算材料学(Computational Materials Science),是材料科学与计算机科学的交叉学科,是一门正在快速发展的新兴学科,是关于材料组成、结构、性能、服役性能的计算机模拟与设计的学科,是材料科学研究里的“计算机实验”。
它涉及材料、物理、计算机、数学、化学等多门学科。
计算材料学- 学科介绍计算材料学(Computational Materials Science),是材料科学与计算机科学的交叉学科,是一门正在快速发展的新兴学科,是关于材料组成、结构、性能、服役性能的计算机模拟与设计的学科,是材料科学研究里的“计算机实验”。
它涉及材料、物理、计算机、数学、化学等多门学科。
计算材料学主要包括两个方面的内容:一方面是计算模拟,即从实验数据出发,通过建立数学模型及数值计算,模拟实际过程;另一方面是材料的计算机设计,即直接通过理论模型和计算,预测或设计材料结构与性能。
前者使材料研究不是停留在实验结果和定性的讨论上,而是使特定材料体系的实验结果上升为一般的、定量的理论,后者则使材料的研究与开发更具方向性、前瞻性,有助于原始性创新,可以大大提高研究效率。
因此,计算材料学是连接材料学理论与实验的桥梁。
计算材料学- 研究领域材料的组成、结构、性能、服役性能是材料研究的四大要素,传统的材料研究以实验室研究为主,是一门实验科学。
但是,随着对材料性能的要求不断的提高,材料学研究对象的空间尺度在不断变小,只对微米级的显微结构进行研究不能揭示材料性能的本质,纳米结构、原子像已成为材料研究的内容,对功能材料甚至要研究到电子层次。
因此,材料研究越来越依赖于高端的测试技术,研究难度和成本也越来越高。
另外,服役性能在材料研究中越来越受到重视,服役性能的研究就是要研究材料与服役环境的相互作用及其对材料性能的影响。
随着材料应用环境的日益复杂化,材料服役性能的实验室研究也变得越来越困难。
总之,仅仅依靠实验室的实验来进行材料研究已难以满足现代新材料研究和发展的要求。
计算科学在材料科学中的应用 ppt课件

19
谢谢大家!
PPT课件
20
20
A.L. Parrill, K.B. Lipkowitz, MACHINE LEARNING IN MATERIALS SCIENCE RECENT PROGRESS AND EMERGING APPLICATIONS, in Reviews in Computational Chemistry. 2016, John Wiley & Sons, Inc.
Atom2Vec
PPT课件
17
PPT课件
18
参考文献
G. Pilania, C. Wang, X. Jiang, et al., Accelerating materials property predictions using machine learning [J], Sci. Rep., 2013, 3: 2810.
K. Xia, H. Gao, C. Liu, et al., A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search [J], Science Bulletin, 2018, 63(13): 817-824.
Y. Lederer, C. Toher, K.S. Vecchio, et al., The search for high entropy alloys: a high-throughput abinitio approach [J], Acta Materialia, 2018.
计算材料学导论精品PPT课件

科学计算的可行性
计算机软、硬件条件的飞速发展为科学计算提供了有力 保证。
量子力学,量子化学等基础理论的发展为科学计算奠定 了理论基础。
9
CPU的速度增加:Moore定律
Moore定律:计算机CPU 的速度每1.5年增加一倍。 1946~1957 真空管,第一代 1958~1963 晶体管,第二代 1966~1970集成电路,第三代 1971~ 大规模和超大规模
计算材料学
Computational Materials Science
——材料设计、计算及模拟
2008.10
1
主要内容
计算材料学的起源 计算材料学的方法 计算材料学的应用
2
主要内容
计算材料学的起源 计算材料学的方法 计算材料学的应用
3
计算材料学的起源
1913 Niels Bohr 建立了原子的量子模型。 1920s~1930s 量子力学的建立和发展。 1928 F. Bloch 将量子理论运用于固体。 1927 原子电子结构的Thomas-Fermi理论。 1928-1930 Hatree-Fock方法建立,采用平均场近似求解
集成电路,第四代
10
多核技术 集群技术
11
材料设计
材料设计(Materials by design)一词正在变为现 实,它意味着在材料研制与应用过程中理论的份量不断增 长,研究者今天已经处在应用理论和计算来设计材料的初 期阶段。
——美国国家科学研究委员会(1995)
12
计算材料学的概念
计算材料学是沟通理论与实验、宏观与微观的桥梁。
17
主要内容
计算材料学的起源 计算材料学的方法 计算材料学的应用
18
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 为了更加准确地描述多电子系统, Hohenberg P和Kohn W提出了两个基本 的定理: • (1) 定理1:不计自旋的全同费密子系统的 基态能量是粒子数密度函数的唯一泛函; • (2) 定理2:能量泛函在粒子数不变条件下 对正确的粒子数密度函数取极小值,并等 于基态能量。
• 定理1的主旨思想是粒子数密度函数是一个 决定系统基态物理性质的基本变量;定理2 的要点是在粒子数不变条件下能量泛函对 密度函数的变分就得到系统基态的能量。 密度泛函理论的理论基础是这两条基本定 理,其基本的思想是原子、分子和固体的 基态物理性质可以用粒子密度函数来表示。
• Kohn W和Sham L.J成功地提出了KohnSham方程,用无相互作用的粒子模型代替有相 互作用粒子哈密顿量中的相应项,将有相互作用 粒子的全部复杂性归入交换关联作用泛函。将多 粒子系统的基态求解转化为单粒子系统的等效求 解,解决第一和第二个问题,对于第三个问题, 需要采用局域密度近似来解决。为了求解KohnSham方程,必须构造合适的交换关联能。目前 比较常用的交换关联能主要有以下两种形式:局 域密度近似(LDA)和广义梯度近似(GGA)。
多电子的薛定谔方程
,成功地分开了电子的运动与 原子核的运动
• 哈特利方程
' 2 2 | ( r ) | ' ' i V ( r ) dr' ( r ) E ( r ) i i i ' | r r | i ( i )
此方程以位于r处的单个电子为研究对象, 描述其在晶格势和其他所有电子的平均 势中的运动规律
单电子的哈特利-福克方程, 比哈特利方程多了交换相互作用项。
• 多电子的薛定谔方程可通过哈利特-福克近 似简化为单电子有效方程,如式所示。 •
2 ef f i ii
V ( r ) ( r ) E ( r )
包含了电子与电子的交换相互作用,但自旋 反平行电子间的排斥相互作用没有被考虑, 即还需考虑电子关联相互作用。
计算材料学
第一性原理计算方法
•
第一性原理方法是一种理想的研究方法,物理学家常 称第一性原理方法,化学家常称为“从头算”,但是 本质都是一样的。就是从材料的电子结构出发,应用 量子力学理论,只借助于普朗克常数h、电子的静止 质量m0、电子电量e、光速c和波尔兹曼常数k这五个 基本的物理常量,以及某些合理的近似而进行计算。 这种计算不需要任何其他可调的(经验的或拟合的)参 数就可以如实地求解材料的一些基本物理性能参数。 通过求解多粒子系统总能量的办法来分析体系的电子 结构和原子核构型的关系,从而确定系统的性质 。
局域密度近似
• 局域密度近似最早是由Kohn W和Sham L.J提出来的,这是一种既简单可行而又很 有效的近似,其基本思想是在局域密度近 似中,利用均匀电子气密度函数来获得非 均匀电子气的交换关联泛函。 • 交换关联能可以写为式
E [ ] dr ( r ) [ ( r )] xc xc
• Hohenberg-Kohn定理说明了粒子数密度 是确定多粒子系统基态物理性质的基本变 量以及能量泛函对粒子数密度函数的变分 是确定系统基态的途径。但是仍然存在三 个问题未解决: • (1) 如何确定粒子数密度函数; • (2) 如何确定动能泛函; • (3) 如何确定交换关联能泛函。
• 为了解决这三个问题,Kohn W与 Sham L.J共同合作,提出了Kohn- Sham方程 。
[ ( r )] [ ( r )] [ ( r )]
• Kohn- Sham方程中的交换关联势近似为 式
密度为 (r)
E [ ] d V [ ( r )] ( ( r ) [ ( r )]) d ( r )
xc xc xc
xc[(r) :均匀无相互作用电子气的交换-关联密
度,在实际的计算过程中,通常把交换关联密度分成两部分:交换项和关联项。
• 波恩(Born M)和奥本海默(Oppenheimer J.E) 提出了绝热近似 单粒子算 双粒子算符
符
1' 1 2 V ( r ) H H E ' r i i ii i ' ' 2 | r r '| i i , i i , i i i
• 将多电子问题变为了单电子问题,但是没 有考虑电子的交换反对称性 。为了研究电 子的交换反对称性的影响,采用Slater行 列式来求能量,经过合适的变换,得到了 如式所示方程:
' 2 * ' ' 2 | ( r ) | ( r ) ( r ' ' i ) ' i ' i V ( r ) dr ( r ) dr E ( r ) i ii ' ' ' ' | r r | | r r | i ( i ) i ( i ), ||
绝热近似
• 波恩(Born M)和奥本海默(Oppenheimer J.E) 提出了绝热近似,根据这种近似,可 以将原子核运动和电子的运动分开。通过 绝热近似,可以获得多电子的薛定谔方程
H ( r , R ) E ( r , R )
H
H H H H e N e N
电子作 用项 原子核 作用项 电子和原子核 相互作用项
V [ ( r )] ( r ) E ( r )
2 KS i
N
i iHale Waihona Puke (r) | r) | i(
i 1
N
2
V [ ( r )] v ( r ) V [ ( r )] V [ ( r )] KS coul xc
* 2 T [ ] dr ( r )( ) r ) i s i( i 1