化工原理-1章流体流动
化工原理—第一章流体流动

化工原理—第一章流体流动流体流动是化工工程中的重要内容之一,是指在一定的条件下,流体沿特定的路径进行移动的现象。
流体流动在化工工程中有着广泛的应用,例如在管道输送、搅拌、混合、分离等过程中都会涉及到流体的流动。
流体流动的研究内容主要包括流体的运动规律、流体的运动特性以及流体流动对设备和工艺的影响等方面。
在化工原理中,主要关注的是流体的运动规律和运动特性,以便更好地了解流体的性质和行为。
在理解流体流动性质前,首先需要了解流体分子的间隙结构。
一般来说,液体的分子之间距离较小,存在着较强的分子间吸引力,因此液体的分子有较强的凝聚力,可以形成一定的表面张力。
而气体的分子之间距离较大,分子间的相互作用力比较弱,因此气体的分子呈现无规则的运动状态。
流体流动有两种基本形式,即连续流动和非连续流动。
连续流动是指流体在管道或通道内以连续的形式流动,比较常见的有层流和湍流两种形式。
层流是指流体在管道中以层层相叠的方式流动,流速和流向都比较均匀,流线呈现平行或近似平行的形式。
层流特点是流动稳定,流速变化不大,并且流体分子之间相互滑动。
而湍流是指流体在管道中以旋转、交换和混合的方式流动,流速和流向变化较大,流线呈现随机分布的形式。
湍流特点是流动动荡,能量损失较大,并且流体分子之间会发生相互的碰撞。
流体流动的运动规律受到多种因素的影响,其中包括流体的黏度、密度、流速、管道尺寸、摩擦力等。
黏度是流体流动中的一个重要参数,它反映了流体内部分子之间相互作用的强度。
密度是流体流动中的另一个重要参数,它反映了单位体积内流体分子的数量。
流速是指流体单位时间内通过其中一横截面的体积。
流体流动对设备和工艺的影响也十分重要。
例如在管道输送过程中,流体的流速和流体动能的传递与损失会影响到输送效果和能耗;在搅拌过程中,流体的流动对传质和传热起着重要作用;在分离过程中,流体的流动会影响到分离设备的设计和操作。
因此,对流体流动的研究和掌握对于化工工程的设计和操作都具有重要意义。
化工原理第一章 流体流动

例1-10 20℃的水在内径为 50mm的管内流动,流速为 2m/s,是判断管内流体流动的 型态。
三.流体在圆管内的速度分布
(a)层流
(b)湍流
u umax / 2 u 0.82umax
hf
le
d
u2 2
三.管内流体流动的总摩擦阻力损失计算 总摩擦阻力损失 =直管摩擦阻力损失+局部摩擦阻力损失
hf hf 直 hf局
l u2 ( le u2 z u2 )
d2 d 2
2
[
(
l
d
l
e
)
z
]
u2 2
管内流体流动的总摩擦阻力损失计算 直管管长 管件阀件当量长度法
hf
l
制氮气的流量使观察瓶内产生少许气泡。 已知油品的密度为850 kg/m3。并铡得水 银压强计的读数R为150mm,同贮槽内的 液位 h等于多少?
(三)确定液封高度 h p ρg
H 2O
气体 压力 p(表压)
为了安全, 实际安装
水 的管子插入 液面的深度
h 比上式略低
第二节 流体流动中的基本方程式
截面突然变化的局部摩擦损失
突然扩大
突然缩小
A1 / A2 0
z (1 A1 )2
A2
z 0.5(1 A2 )2
A1
当流体从管路流入截面较 大的容器或气体从管路排 到大气中时z1.0
当流体从容器进入管的入 口,是自很大截面突然缩 小到很小的截面z=0.5
局部阻力系数法
hf
z
u2 2
化工原理 第一章 流体的流动现象

/
m3
m0kg0s0
2019/8/3
4、流动形态的判别方法 大量的实验结果表明,流体在直管内流动时:
(1)当Re≤2000时,流动为层流,此区称为层流区; (2)当Re≥4000时,一般出现湍流,此区称为湍流 区; (3)当2000< Re <4000 时,流动可能是层流,也可 能是湍流,与外界干扰有关,该区称为不稳定的过 渡区。
2019/8/3
【例】20℃的水在内径为50mm的管内流动,流速为 2m/s,试分别用SI制和CGS制计算Re数的数值。
注意:在计算Re时,一定要注意各个物理量的单位 必须统一。
【解】(1)用SI制计算:从附录五查得20℃时:
ρ=998.2kg/m3,μ=1.005mPa.s,
已知:管径d=0.05m,流速u=2m/s,
2019/8/3
【剪应力】 【定义】单位面积上的内摩擦力称为剪应力,以τ表 示,单位为Pa。
前式可改变为: du
dy
【结论】 流体层间的内摩擦力或剪应力与法向速度 梯度成正比。
2019/8/3
(6)牛顿型流体非牛顿型流体
【牛顿型流体】剪应力与速度梯度的关系符合牛顿 粘性定律的流体,包括所有气体和大多数液体; 【非牛顿型流体】不符合牛顿粘性定律的流体,如 高分子溶液、胶体溶液及悬浮液等。
2019/8/3
飞机的“隐形杀手”-晴空湍流
1999年10月17日中午一架由昆明飞往香港的南方 航空公司的班机在香港上空突然遇到一股强大气流 ,在5至10秒内飞机急坠2000英尺,导致45人撞向机 舱顶部受伤。导致这场飞行事故的“罪魁祸首” 就 是人称飞机的“隐形杀手”-晴空湍流。
一般来说,飞机在穿越云层或遇到强大气流时, 会出现颠簸。在万里晴空中,有时也会像平静的海 面下藏有汹涌的暗流一样,偶尔会出现强烈的扰动 气流,使飞机产生剧烈颤簸,航空气象专家称这种 来无影去无踪的气流为晴空湍流。
化工原理第一章 流体流动

§1.3 流体流动的基本方程
质量守恒 三大守恒定律 动量守恒 能量守恒
§1.3.1 基本概念
一.稳态流动与非稳态流动 流动参数都不随时间而变化,就称这种流动为稳态流 动。否则就称为非稳态流动。 本课程介绍的均为稳态流动。
§1.3.1 基本概念
二、流速和流量
kg s 质量流量,用WS表示, 流量 3 体积流量,用 V 表示, m s S
=0 的流体
位能 J/kg
动能 静压能 J/kg J/kg
流体出 2 2
实际流体流动时:
2 2 u1 p1 u2 p gz1 we gz2 2 wf 2 2
摩擦损失 J/kg 永远为正
流体入 ------机械能衡算方程(柏努利方程) 1
z2
有效轴功率J/kg
z1 1
二、 液体的密度
液体的密度基本上不随压强而变化,随温度略有改变。 获得方法:(1)纯液体查物性数据手册
(2)液体混合物用公式计算:
液体混合物:
1
m
xwA
A
xwB
B
xwn
n
三、气体的密度
气体是可压缩流体,其值随温度和压强而变,因此 必须标明其状态。当温度不太低,压强不太高,可当作理
想气体处理。
理想气体密度获得方法: (1)查物性数据手册 (2)公式计算: 或
注:下标0表示标准状态。
对于混合气体,也可用平均摩尔质量Mm代替M。
混合气体的密度,在忽略混合前后质量变化条件下, 可用下式估算(以1 m3混合气体为计算基准):
m A x VA B x VB n x Vn
2
2
气体
化工原理第一章流体流动知识点总结

第一章流体流动一、流体静力学:压强,密度,静力学方程二、流体基本方程:流速流量,连续性方程,伯努利方程三、流体流动现象:牛顿粘性定律,雷诺数,速度分布四、摩擦阻力损失:直管,局部,总阻力,当量直径五、流量的测定:测速管,孔板流量计,文丘里流量计六、离心泵:概述,特性曲线,气蚀现象和安装高度8■绝对压力:以绝对真空为基准测得的压力。
■表压/真空度 :以大气压为基准测得的压力。
表 压 = 绝对压力 - 大气压力真空度 = 大气压力 - 绝对压力1.1流体静力学1.流体压力/压强表示方法绝对压力绝对压力绝对真空表压真空度1p 2p 大气压标准大气压:1atm = 1.013×105Pa =760mmHg =10.33m H 2O112.流体的密度Vm =ρ①单组分密度),(T p f =ρ■液体:密度仅随温度变化(极高压力除外),其变化关系可从手册中查得。
■气体:当压力不太高、温度不太低时,可按理想气体状态方程计算注意:手册中查得的气体密度均为一定压力与温度下之值,若条件不同,则需进行换算。
②混合物的密度■ 混合气体:各组分在混合前后质量不变,则有nn 2111m φρφρφρρ+++= RTpM m m=ρnn 2211m y M y M y M M +++= ■混合液体:假设各组分在混合前后体积不变,则有nmn12121w w w ρρρρ=+++①表达式—重力场中对液柱进行受力分析:液柱处于静止时,上述三力的合力为零:■下端面所受总压力 A p P 22=方向向上■上端面所受总压力 A p P 11=方向向下■液柱的重力)(21z z gA G -=ρ方向向下p 0p 2p 1z 1z 2G3.流体静力学基本方程式g z p g z p 2211+=+ρρ能量形式)(2112z z g p p -+=ρ压力形式②讨论:■适用范围:适用于重力场中静止、连续的同种不可压缩性流体;■物理意义:在同一静止流体中,处在不同位置流体的位能和静压能各不相同,但二者可以转换,其总和保持不变。
化工原理第一章

PV P V 0 T T
0
0
0
P
m
P
0
m
0
T0
T
0
T p 0 T p
10
化工生产中常遇到各种气体或液体混合物,在无实测 数据时,可用些近似公式进行估算 7. 液体混合物的密度 m : 假设混合液体为理想溶液, 以1kg混合物为基准,则1kg混合物的体积等于各组分 单独存在时体积之和,
28
(3)若液面上方所受压强p0 变化时,p将随之同步 增减,即液面上方所受压强能以同样大小传递到液 体内部的任一点上(巴斯噶原理)。 (4)若各项除以g,则方程变为
p p0 z1 z2 h g
此式说明,压强差(或压强)的大小可以用一定 高度h的流体柱来表示。
29
(5) 在工程上,也常以下列形式出现:
6
1–1–1 质量力与密度
1. 流体的密度 : 单位体积流体所具有的质量称为 流体的密度,其表示式为 m V 式中 m----- 流体的质量 ,kg; V---- 流体的体积, m3; ----流体的密度, kg /m3 2、流体的比容:单位质量流体所具有的体积 。 单位 m3/kg,在数值上等于密度的倒数
1
第一章 流体流动
2
3
一、流体: 气体和液体具有流动性,且可以几乎毫无 阻力的分割,故统称为流体。
二、流体质点(微团): 由大量分子构成的流体集团(或称流体微 团),其大小与容器或管道的尺寸相比是微不 足道的,但比起分子平均自由程则要大得多。
4
三、流体的连续介质模型:
流体是由许多离散的即彼此间有一定间隙的、 作随机热运动的单个分子构成的。但从工程实际 出发讨论流体流动问题时,常把流体当作无数流 体质点组成的、完全充满所占空间的连续介质, 流体质点之间不存在间隙,因而质点的性质是连 续变化的。
化工原理第一章_流体流动

非标准状态下气体的密度: 混合气体的密度,可用平均摩尔质量Mm代替M。 式中yi ---各组分的摩尔分数(体积分数或压强分数)
比体积
• 单位质量流体的体积称为流体的比体积,用v表示, 单位:m3/kg
• v=V/m=1/ρ
5 流体的压强及其特性
垂直作用于单位面积上的表面力称为流体的静压强,简 称压强。流体的压强具有点特性。工程上习惯上将压强 称之为压力。
R
a
b
0
2. 倒置 U 型管压差计
用于测量液体的压差,指示剂密度 0 小于被测液体密度 , U 型管内位于同 一水平面上的 a、b 两点在相连通的同一 静止流体内,两点处静压强相等
p1 p2 R 0 g
由指示液高度差 R 计算压差
若 >>0
p1 p2 Rg
0
a
b
R
p1 p2
3. 微差压差计
p1 p2 R 01 02 g
对一定的压差 p,R 值的大小与 所用的指示剂密度有关,密度差越小, R 值就越大,读数精度也越高。
p1 p2
02
a
b
01
4. 液封高度
液封在化工生产中被广泛应用:通过液封装置的液柱高度 , 控制器内压力不变或者防止气体泄漏。
为了控制器内气体压力不超过给定的数值,常常使用安全液 封装置(或称水封装置),其目的是确保设备的安全,若气体压 力超过给定值,气体则从液封装置排出。
传递定律(巴斯葛原理):当液面上方有变化时,必 将引起液体内部各点压力发生同样大小的变化。
液面上方的压强大小相等地传遍整个液体。
静力学基本方程式的应用
1.普通 U 型管压差计
U 型管内位于同一水平面上 的 a、b 两点在相连通的同一静 止流体内,两点处静压强相等
化工原理-第1章 流体流动 知识点

可见,欧拉法描述的是空间各点的状态及其与时间的关系。 (3)定态流动(稳定流动,定常流动) 若空间各点的状态不随时间变化,改流动称为定态流动。
ux , u y , uz , p ,……,= f (x, y, z),与 t 无关
(1)连续性假设 在化工原理中是考察液体质点的宏观运动,流体质点是由大量分子组成的流体微团,其尺寸远小于设 备尺寸,但比起分子自由路程却要大的多。这样,可以假定流体是有大量质点组成、彼此间没有间隙、完 全充满所占空间连续介质。流体的物性及运动参数在空间作连续分布,从而可以使用连续函数的数学工具 加以描述。 在绝大多数情况下流体的连续性假设是成立的,只是高真空稀薄气体的情况下连续性假定不成立。 (2)流体运动的描述方法 ① 拉格朗日法 选定一个流体质点,对其跟踪观察,描述其运动参数(位移、数度等)与时间的关 系。可见,拉格朗日法描述的是同一质点在不同时刻的状态。 ② 欧拉法 在固定的空间位置上观察 流体质点的运动情况,直接描述各有关参数在空间各点的分布 情况合随时间的变化,例如对速度 u,可作如下描述:
积流量,须说明它的温度 t 和压强 p
质量流量 qm (Kg/s 或 Kg/h),解题指南用 ms 表示。 qv 与 qm 的关系为: qm =qv ρ 式中:ρ——流体的密度, Kg/m3
气体的ρ亦与温度 t、压强 p 有关,但 t、p 对ρ及 qv 的影响刚好相反,相互抵消,故气体 qm 与 t、p
设单位质量流体上的体积力在 x 方向的分量为 x(N/Kg),则微元所受的体积力在 x 方向的分量为
xρδxδyδz ,该流体处于静止状态,外力之和必等于零、对 x 方向,有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
yi为各物质的摩尔分数,对于理想气体,体积分数与摩尔分数相等。
②混合液体密度计算
假设液体混合物由n种物质组成,混合前后体积
不变,各物质的质量百分比分别为ωi,密度分 别为ρi
n 1 2 混 1 2 n
1
例题1-1 求甲烷在320 K和500 kPa时的密度。
第一节 概述
流体: 指具有流动性的物体,包括液体和气体。
液体:易流动、不可压缩。 气体:易流动、可压缩。 不可压缩流体:流体的体积不随压力及温度变化。
特点:(a) 具有流动性 (b) 受外力作用时内部产生相对运动
流动现象:
① 日常生活中
② 工业生产过程中
煤气
填料塔 孔板流量计
煤气
水封
泵 水池
水
煤 气 洗 涤 塔
组分黏度见---附录9、附录10
1.2.1 流体的压力(Pressure) 一.定义
流体垂直作用于单位面积上的力,称为流体 的压强,工程上一般称压力。
F [N/m2] 或[Pa] P A
式中 P──压力,N/m2即Pa(帕斯卡);
F──垂直作用在面积A上的力,N;
A──作用面积,m2。
工程单位制中,压力的单位是at(工程大气压)或kgf/cm2。 其它常用的压力表示方法还有如下几种: 标准大气压(物理大气压)atm;米水柱 mH2O; 毫米汞柱mmHg; 流体压力特性: (1)流体压力处处与它的作用面垂直,并总是指向流体 的作用面。
液体:T↑,μ↓(T↑,分子间距↑,范德华力↓,内摩擦力↓) 气体:T↑,μ↑(T↑,分子间距有所增大,但对μ影响不大, 但T↑,分子运动速度↑,内摩擦力↑)
压力P 对气体粘度的影响一般不予考虑,只有在极高或极 低的压力下才考虑压力对气体粘度的影响。
(4)运动粘度υ及单位:
= /
CGS制单位:[ cm2/s ]=[St](斯托克斯,简称斯) ,常用 的还有cst(厘斯),1st=100cst SI制单位: [m2/s] 换算:1St=100cSt=1×10-4 m2/s
单位:[ m3/kg ]
3.黏度
(1)流体的粘性
是流体的重要的物理性质
只有在流动时才表现出来 。 粘性流体速度分布:
(2)流体的粘度及单位
黏度:表征流体粘性的物理性质,用符号μ表示。
N / m2 N S kg [ ] p s a 2 SI制: du m / s m ms 国际单位制度 m dy
20
mmHg。
1.2.3 流体静力学基本方程式及应用 流体静力学研究流体静止时其内部压强变化的规律。
流体静力学基本方程式是用于描述静止流体内部的 压力沿着高度变化的数学表达式
一、推导
取: 、A、h、Z1、Z 2
液柱为研究对象
垂直方向上作用于液柱的力有:
重力:G mg A(Z1 Z 2 ) g
【例题1-3】 在兰州操作的苯乙烯精馏塔塔顶的真 空度为620mmHg。在天津操作时,若要求塔内维 持相同的绝对压力,真空表的读数应为多少?兰 州地区的大气压力为640mmHg,天津地区的大气 压力为760mmHg。
解:
兰州:绝压=大气压-真空度 天津:真空度=大气压-绝压
【例题1-4】 装在某设备进口和出口的压强表的 读数分别为4 kgf/cm2和2 kgf/cm2,试求此设备 的进出口之间的压强差,kPa。设当时设备外 的大气压强为1 kgf/cm2。
生产任务
输送流体
选择流速
确定输送管路的直径
输送设备确定
应用流体流动的规律进行分析和计算。
②压力、流速和 流量的测量
第二节 流体静力学(Fluid Statics)
1.2.1 流体的物理性质
1.2.2 流体的压力
1.2.3 流体静力学基本方程式及应用
1.2.1 流体的物理性质
1.密度( Density) (1)定义:单位体积流体所具有的质量, kg/m3
h
p0
③ p0变化某一数值,则 p改变同样大小数值 —压力的可传递性 ④ 静止流体内部,各不同截面上的压力能 和势能两者之和为常数。
p
po
gz1
或
p1 gz2 p2h1
zo z2
1
p1
gz
p
常数
2 z1
p2
重力场中的压力分布
⑤ 静力学方程的几种不同形式
p1 gZ1 p2 gZ2
dyn / m 2 dyn S g P(泊) CGS制: [ ] 2 cm / s cm cm s du 物理单位制度 cm dy
1Pa s 10 P 1000 cP
厘泊
(3)粘度μ的影响因素 :
μ = f ( T、P、物质种类 )
(4)压力具有传递性:液面上方压力变化时,液体
内部各点的压力也将发生相应的变化。P0 P2
p2 p0 gh
二、流体静力学基本方程式的应用
(一)压力的测量(Measuring pressure differences )
1、U形管压差计(U-tube manometer)
组成: U形玻璃管、标尺盘、指示剂 对指示液要求: 与被测流体不互溶;不起化学反应; 指示液密度大于被测流体。 指示液:水、油、四氯化碳或汞
流体力学: 研究流体平衡和运动宏观规律的科学。
流体静力学
流体力学
(流体的状态)
流体动力学
在化工生产中,许多方面都用到流体力学的知识。
连续介质假定:将流体视为由无数质点组成的、彼此间没有
空隙的连续介质。
流体质点:含有大量分子的极小单元或微团,尺寸远小于流 体所处空间的尺寸,但远大于分子自由程。
流体力学的用途 ①流体的输送
解:
压强差=进口绝压-出口绝压 =(P+P进表)- (P+P出表)= P进表- P出表
书P8例题1-2
1.536 ( 1 ) 若当地大气压为 750mmHg , 0.5atm( 表压 ) 则 ______
5 kgf/cm2(绝)= 1.51×10 Pa(绝)=
1130 mmHg(绝)。
( 2 ) 若当 地大气 压 为 720mmHg , 某设 备 上真空 表 读数为 700mmHg,该设备内绝压为
2、斜管压差计
当被测量的流体压力或压差不大时,读数R很小,为了得 到精确的读数,可采用如下的斜管压差计
p1 p2
p1 p2 ( ) gR
R R1 sin
p1
0
Z1 g
p2
Z2 g
zg ——单位质量流体所具有的位能,J/kg;
p
——单位质量流体所具有的静压能,J/kg。
在同一静止流体中,处在不同位置流体的位能
和静压能各不相同,但其总和保持不变 。
(3)在静止的、连续的同种流体内,处于同一水平 面上各点的压力处处相等。压力相等的面称为等压 面。
结果:(1) 85.3kPa ;(2) 83.4kPa ;(3)196.2kPa
二.压力的表示方式 三种表示方式:绝对压力、表压、真空度
绝对压力:以绝对真空(即零大气压)为基准计量 的压力,是流体的真实压力; 表压力: 以当地大气压为基准,比当地大气压高 出的压力,称为表压力。 真空度: 以当地大气压为基准,比当地大气压低 出的压力,称为真空度。
T0=273.15K,P0=101.3kPa(标态下气体的温度和压力) b.理想气体混合物的密度计算:
假设气体混合物由N种物质组成,各物质的体积百
分比分别为xi,密度分别为ρi
m = 1x1 2 x2 ...... n xn
或
pM m m = RT
M m Mi yi
1. 流体存在的广泛性。在化工厂中,管道和设备中 绝大多数物质都是流体 (包括气体、液体或气液 混合物)。
2. 通过研究流体流动规律,可以正确设计管路和合
理选择泵、压缩机、风机等流体输送设备,并且
计算其所需的功率。
3. 流体流动是化工原理各种单元操作的基础,对强 化传热、传质具有重要的实践意义。
第一节 概述
(5)混合物粘度 :
分子不缔合的液体混合物:
lgμ m xi lgμ i
1 i 1 2 i i 2 i i
气体混合物:
μm
yμ M y M
式中:xi-液体混合物中i组分的摩尔分率; yi-气体混合物中i组分的摩尔分率; μi-与混合物相同温度下的i组分的粘度; Mi-气体混合物中i组分的分子质量。
单位:
Pa
J / kg
p1
z1 g
p2
z2 g
位能
单位:
静压能
p1 p2 z1 z2 g g
静压头 位压头
单位:
m
流体静力学基本方程式讨论:
(1)在静止的液体中,液体任一点的压力与液体密 度和其深度有关。液体密度越大,深度越大,则该点 的压力越大。 p p gh (2)物理意义:
指 指 (1)若被测流体是气体,
则上式可简化为 p1 p2 指 gR
(2)若将U形管一端与被测点连接,另一端与大气相 通,此时测得的是流体的表压或真空度。
U管压差计优缺点: a.构造简单,测压方便 b.测压范围窄 c.玻璃管易碎
表压
真空度
p1 pa 指 gR
pa p1 指 gR
(2)流体中任一点压力的大小与所选定的作用面在空间
的方位无关。
记住
1 atm=101.3kPa=1.033 kgf/cm2=760mmHg=10.33mH2O 1 at=98.1kPa=1kgf/cm2=735.6 mmHg =10 mH2O