平方根(1)

合集下载

平方根北师大版八年级数学上册精品课件PPT1

平方根北师大版八年级数学上册精品课件PPT1
6. 一个正奇数的算术平方根是a,那么与这个正奇 数相邻的下一个正奇数的算术平方根是( C )
A. a+2 B. a2+2 C. D.
第二章第2课 平方根(1)-2020秋北师大版八年级 数学上 册课件
第二章第2课 平方根(1)-2020秋北师大版八年级 数学上 册课件
三级检测练
一级基础巩固练 7. 4的算术平方根是( B ) A. 4 B. 2 C. -2 D. ±2

6、我就经历过许多大大小小的挫折。 大海因 为有了 狂风的 袭击, 才显示 出了它 顽强的 生命力 ,它把 狂风化 成了朵 朵浪花 ,给人 们带来 美丽;
感谢观看,欢迎指导!
第二章第2课 平方根(1)-2020秋北师大版八年级 数学上 册课件
第二章第2课 平方根(1)-2020秋北师大版八年级 数学上 册课件
8. |-9|的算术平方根是( C ) A. 9 B.-9 C. 3 D. ±3
第二章第2课 平方根(1)-2020秋北师大版八年级 数学上 册课件
第二章第2课 平方根(1)-2020秋北师大版八年级 数学上 册课件
第二章 实数
第2课 平方根(1)
新课学习
知识点1.算术平方根 一般地,如果一个正数x的平方等于a,即x2=a, 那么这个正数x就叫做a的算术平方根,记作,读 作“根号a”.
1.(例1)36的算术平方根是( B ) A. ±6 B. 6 C. -6 D. ±18
2. 某数的算术平方根等于它本身,那么这个数一 定是(C )
10. 如果 xy的算术平方根是多少?
,那么
第二章第2课 平方根(1)-2020秋北师大版八年级 数学上 册课件
第二章第2课 平方根(1)-2020秋北师大版八年级 数学上 册课件

平方根(1)

平方根(1)

课堂教学设计日期:2012 年月. 日2第一课时平方根(1)教学过程教学内容教学环节教师活动学生活动教学媒体使用预期效果(批注)一、创设情境,导入新课学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为252dm的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少dm?如果这块画布的面积是212dm?这个问题实际上是已知一个正数的平方,求这个正数的问题?计算正方形的面积必须要知道正方形的边长,根据边长求面积是乘方运算,而根据面积求边长又是什么运算呢?二、师生互动,课堂探究归纳应用新知提出问题:(书P68页的问题)你是怎样算出画框的边长等于5dm的呢?1.归纳:一般地,如果一个正数x的平方等于a,即2x=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为a,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.也就是,在等式2x=a (x≥0)中,规定x =a.2、试一试你能根据等式:212=144说出144的算术平方根是多少吗?并用等式表示出来.3想一想下列式子表示什么意思?求出它们的值吗?4、例1 求下列各数的算术平方根:(1)100;(2)1;(3)6449;(4)0.0001学生思考并交流解法求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如25表示25的算术平方根。

三巩固练习P69练习 1、2四、探究怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?方法1:课本中的方法,方法2:可还有其他方法,鼓励学生探究。

问题:这个大正方形的边长应该是多少呢?46课堂教学设计课题:立方根授课时数: 2日期:2012年月日81012课堂教学设计课题:实数授课时数: 2日期:2012年月日14161820。

[教学研究]1.1平方根(1)

[教学研究]1.1平方根(1)

1.1平方根(1)湖南省新邵县酿溪中学王军旗教学目标:1知识与技能(1)理解数的算术平方根的概念,会用根号表示一个数的平方根.(2)了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根.(3)了解算术平方根的性质.2过程与方法(1)通过概念形成过程的教学,提高学生的思维水平.(2)通过学生进行探索和交流,培养创新意识和合作精神.3情感、态度与价值观(1)让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.(2)训练学生动脑、动口、动手能力.教学重点:理解算术平方根的概念、性质,会用根号表示一个正数的算术平方根.教学难点:理解算术平方根的概念、性质.教学过程:一创设情境,导入新课1 导入本章课题很久以前在古希腊某个地方发生大旱,地里的庄家都干死了,人们找不到水喝,于是大家一起到庙里祈求,神说:我之所以不给你们降水,是因为你们给我做的这个祭坛太小了,如果你们做一个比它大一倍的祭坛放在我面前,我就会给你们降水,大家觉得这个办法好办,于是做了一个新的祭坛放到神那里,这个祭坛的边长是原来的两倍,可是神愈发恼怒,他说:“你们竟敢愚弄我!这个祭坛的体积不是原来的2倍,我要进一步的惩罚你们,”想想,新祭坛的体积是原来的多少倍?要做一个体积是原来2倍的新祭坛,它的边长应该是原来的多少倍?要解决这个问题,我只需要学习---------第一章实数2介绍本章内容这一章我们将学习平方根、立方根、实数、平面直角坐标系四个内容,这些内容都是以后学习代数的基础,希望同学们认真学习。

3 交代本节课的学习任务这节课的我们先学习平方根二合作交流,探究新知1、平方根的定义动脑筋:(1)李老师家装修厨房,铺地砖10.8平方米,用去正方形的地砖120块,你能算出所用地砖的边长是多少米吗?(2)上题中每块地砖的面积是0.09平方米,求得边长是0.3,如果面积改为400、121、144、169,正方形的边长又是多少呢?(3)如果有一个数r的平方等于4,这个数r等于多少呢?把4改为9,16,2549,r等于多少呢?归纳:如果有一个数r,使得2r a,那么我们把这个数r叫作a的一个平方根。

平 方 根 表(一)

平 方 根 表(一)

平方根表(一)一、教学目标1.使学生了解平方根表的构造。

2.使学生会查平方根表求一个数的平方根,并会利用这个表求表外数的平方根。

3.使学生通过一些简单的查表及近似计算,提高类比思维及运算能力。

4.使学生通过利用平方根表求表外数的平方根的近似值的训练,进一步领会转化与化归的思想。

二、教学重点和难点1.使学生了解平方根表的构造,了解通过平方根表所能直接查到的数的平方根的范围。

2.使学生清楚被开方数小数点位置的变化与相应的算术平方根小数点位置的变化的关系,从而通过移动小数点的位置来实现用平方根表查表以外的数的平方根,这既是本节内容的重点,也是本节内容的难点。

三、教学过程由上一节的知识,我们知道,,,我们看到16、9、36的算术平方根为有理数,但我们也发现并非所有的有理数的平方根都是一个有理数,例如2的平方根,我们并不知道什么数的平方等于2,所以对于式子的值,我们只能求得它的任何精确度的近似值,如何求其近似值呢?由上节的内容,我们已经学到了平方与开平方运算是一为逆运算的。

我们看下面的计算:由此我们看到是一个在1.414和1.415之间的数,将上述运算继续下去,便可以得以更为精确的的近似值。

用这咱方法我们可以求得像、等这样式子的近似值,但显然这种方法十分麻烦,在实际解题过程中不易使用。

为了迅速求得一个数的平方根,我们一起来了解一下平方根表的结构,并学习如何利用这个表查得一些数的平方根。

我们先看表的左上角标有“N”,“N”所在的直列中的数是指被开方数的前两位数,“N”所在的横行中的数是被开方数的第三位数,表最右边的数叫做修正值。

表中间最头部分,是所求数的算术平方根,由四位有效数字的数构成它的第四位一般是四舍五入得到的。

由此我们可以清楚《平方根表》查得的平方根也是近似值,但我们在写结果时,仍用等号表示。

这个表中列出了从1.00至99.9的三个数位的数的算述平方根及其修正值,从中可以查到从1.000至99.99有四个有效数字的数的算术平方根的近似值。

平方根1

平方根1

6.1平方根【探索发现】:学校要举行美术作品比赛,扎西很高兴.他想裁出一块面积为25平方分米的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少分米?这个实例中的问题、填表中的问题实际上是一个问题?它们都是已知正方形面积求边长的问题.通过解决这个问题,我们就有了算术平方根的概念. 【知识全解】: 知识点:算术平方根如果一个正数的平方等于a ,那么这个正数叫做a 的算术平方根.为了书写方便,我们把a ,读作“根号a ”.注:1.a 叫作被开方数,被开方数恒为非负数。

2.规定:0的算术平方根是0.请同学们结合算术平方根的概念填空:正数3的平方等于9,我们把正数3叫做9的 . 说说6和36这两个数之间的关系?说说1和1这两个数呢? 【探索发现】: 计算下列各式=22______;=23______;=28______;=224______=-2)2(______;=-2)3(______;=-2)8(______;=-2)24(______总结:1.当0≥a 时,=2a ______;当0<a 时,=2a ______;即=2a ______。

2.若a x =2,则=x ______。

【基础巩固】:1.求下列各数的算术平方根: (1)4964; (2)0.0001. 根号被开方数a2.填空:(1)因为_____2=64,所以64的算术平方根是______,即64=______;(2)因为_____2=0.25,所以0.25的算术平方根是____________;(3)因为_____2=1649,所以1649的算术平方根是____________.3.求下列各式的值:=______;______;______;______;=______;______; (7)2)3(-=______; (8)若2x =3,则x=______.4.根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:_______,_______,_______,_______,_______,_______,_______,_______,_______.5.辨析题:卓玛认为,因为(-4)2=16,所以16的算术平方根是-4.你认为卓玛的看法对吗?为什么?6. 比较50与7的大小。

2.2.1 平方根 (1)2024-2025学年八上册教材配套教学课件+分层练习(北师大版)

2.2.1 平方根 (1)2024-2025学年八上册教材配套教学课件+分层练习(北师大版)

x a
2
(x≥0)
互为
逆运算
x a
读作:根号a
被开方数
a的算术平方根
(a≥0)
例1:求下列各数的算术平方根
(1)900; (2)1;
49
(3)

64
(4)0.04;
解:(1)∵ 302=900,
∴ 900是30的算术平方根,即 900 30
(2)∵ 12=1,
∴ 1是1的算术平方根,即 1 1
3. 中的a可以取任何数吗?
性质:1.正数a的算术平方根是
a
0的算术平方根是0,即 0 0
负数没有算术平方根。
核心知识点二
算术平方根的性质及其实际应用
思考:1. 负数有算术平方根吗?
2. 是什么数?
3. 中的a可以取任何数吗?
性质:2.算术平方根
a 具有双重非负性:
①被开方数a是非负数,即: a 中的a≥0,即当 a<0
(5) .
练一练:1.下列各式是否有意义,为什么?
(1) - 3 (2) −3 (3) ( −

×
8)2
(4)

2.下列各式中,x为何值时有意义?
(1) −
解: 因为-x≥0,
所以x≤0.
(2) 2 + 1
解: 因为x2+1≥0恒成立,
所以x为任何数.
1
92

例: 若|m-1| + + 3=0,求m+n的值.
1
9
16
正方形的
边长/dm2
1
3
4
思考:已知一个正数的平方,如何求这个正数?
概念学习:

13.1平方根(1)

13.1平方根(1)
身边小事
小欧同学准备参加学校举行的美术作品 2 比赛.他想裁出一块面积为 他想裁出一块面积为25 比赛 他想裁出一块面积为 dm 的正方形 画布,画上自己的得意之作参加比赛, 画布,画上自己的得意之作参加比赛,请你 帮他计算一下这块正方形画布的边长应取多 少?
因为
5
2
=25,
5dm
所以这个正方形画布的边长应取
… 0.0625
0.625
6.25
62.5
625
6250
62500 …
… 0.25 0.7906 2.5 7.906 25 79.06 250 … 被开方数的小数点向右每移动2 被开方数的小数点向右每移动2位,它的算术平 向右每移动 方根就向右移动1 被开方数的小数点向左 方根就向右移动1位;被开方数的小数点向左 每移动2 它的算术平方根就向左移动1 每移动2位,它的算术平方根就向左移动1位.
练习 填空: ① 填空:
36
2
7的算术平方根是 7 的算术平方根是______ 的算术平方根是 的算术平方根是_____ 9 的算术平方根是 3
的算术平方根是_____ ② 16 的算术平方根是 2 ③
(−36) 2 = 36 ______ 36 = _____
2
≥ 时 当a___ 0时,
≤ 时 -a a 当a ___0时, (−a)2 = _____ a = _____; 2 互为相反数, ④已知 2 x + 6 和 | y-2 | 互为相反数,则x=____,y=__ - = -3 =__ -16 ⑤ (− 16 )2 术 根 数 _____. ⑥一个自然数的算术平方根是a, 一个自然数的算术平方根是 ,
引言中的问题
引 引 言 言

第三章 实数 考点1 平方根(解析版)

第三章 实数 考点1 平方根(解析版)

第三章实数(解析板)1、平方根知识点梳理平方根(1)定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“”,负的平方根表示为“﹣”.正数a的正的平方根,叫做a的算术平方根,记作.零的算术平方根仍旧是零.平方根的性质平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.同步练习一.选择题(共12小题)1.若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3B.﹣1C.1D.﹣3或1【考点】平方根.【分析】依据平方根的性质列方程求解即可.【解答】解:当2m﹣4=3m﹣1时,m=﹣3,当2m﹣4+3m﹣1=0时,m=1.故选:D.【点评】本题主要考查的是平方根的性质,明确2m﹣4与3m﹣1相等或互为相反数是解题的关键.2.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣5【考点】平方根.【分析】利用平方根的定义得出a,b的值,进而利用ab的符号得出a,b异号,即可得出a﹣b的值.【解答】解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.【点评】此题主要考查了平方根的定义以及有理数的乘法等知识,得出a,b的值是解题关键.3.的平方根是()A.±4B.4C.±2D.+2【考点】平方根;算术平方根.【分析】根据算术平方根的意义,可得16的算术平方根,再根据平方根的意义,可得答案.【解答】解:=4,±=±2,故选:C.【点评】本题考查了平方根,先求算术平方根,再求平方根.4.的平方根是()A.4B.±4C.2D.±2【考点】平方根;算术平方根.【分析】先化简=4,然后求4的平方根.【解答】解:=4,4的平方根是±2.故选:D.【点评】本题考查平方根的求法,关键是知道先化简.5.实数的平方根()A.3B.﹣3C.±3D.±【考点】平方根.【分析】先将原数化简,然后根据平方根的性质即可求出答案.【解答】解:∵=3,∴3的平方根是,故选:D.【点评】本题考查平方根的概念,解题的关键是将原数进行化简,本题属于基础题型.6.4的平方根是()A.16B.2C.±2D.【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2,故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.7.一个正数的平方根为2x+1和x﹣7,则这个正数为()A.5B.10C.25D.±25【考点】平方根.【分析】根据正数平方根互为相反数,可得一个平方根的和为0,根据解方程,可得x 的值,根据平方运算,可得答案.【解答】解;一个正数的平方根为2x+1和x﹣7,∴2x+1+x﹣7=0x=2,2x+1=5(2x+1)2=52=25,故选:C.【点评】本题考查了平方根,先求出平方根,再求出被开方数.8.a﹣1与3﹣2a是某正数的两个平方根,则实数a的值是()A.4B.C.2D.﹣2【考点】平方根.【分析】先利用一个数两个平方根的和为0求解.【解答】解:∵a﹣1与3﹣2a是某正数的两个平方根,∴a﹣1+3﹣2a=0,解得a=2,故选:C.【点评】本题主要考查了平方根,解题的关键是熟记平方根的关系.9.4的平方根是()A.2B.﹣2C.±2D.16【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.一个正数的两个平方根分别是2a﹣1与﹣a+2,则a的值为()A.1B.﹣1C.2D.﹣2【考点】平方根.【分析】由于一个正数的两个平方根应该互为相反数,由此即可列方程解出a.【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,故选:B.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.11.(﹣0.7)2的平方根是()A.﹣0.7B.±0.7C.0.7D.0.49【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根.【解答】解:∵(﹣0.7)2=0.49,又∵(±0.7)2=0.49,∴0.49的平方根是±0.7.故选:B.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.9的平方根为()A.3B.﹣3C.±3D.【考点】平方根.【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个.【解答】解:9的平方根有:=±3.故选:C.【点评】此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.二.填空题(共5小题)13.的平方根是±2.【考点】平方根;算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵=4∴的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14.一个正数的平方根分别是x+1和x﹣5,则x=2.【考点】平方根.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.【点评】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.15.的平方根是±3.【考点】平方根.【分析】根据平方根、算术平方根的定义即可解决问题.【解答】解:∵=9,9的平方根是±3,∴的平方根是±3.故答案为±3.【点评】本题考查算术平方根、平方根的定义,解题的关键是记住平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根,属于基础题,中考常考题型.16.如果的平方根等于±2,那么a=16.【考点】平方根.【分析】首先根据平方根的定义,可以求得的值,再利用算术平方根的定义即可求出a的值.【解答】解:∵(±2)2=4,∴=4,∴a=()2=16.故答案为:16.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.要注意在平方和开方之间的转化.17.4的平方根是±2.【考点】平方根.【分析】根据平方根的定义,求非负数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.三.解答题(共10小题)18.已知2a﹣1的平方根是±3,3a+2b+4的立方根是3,求a+b的平方根.【考点】平方根;立方根.【分析】先根据平方根、立方根的定义得到关于a、b的二元一次方程组,解方程组即可求出a、b的值,进而得到a+b的平方根.【解答】解:由题意,有,解得.∴±==±3.故a+b的平方根为±3.【点评】本题考查了平方根、立方根的定义.如果一个数的平方等于a,这个数就叫做a 的平方根,也叫做a的二次方根.如果一个数x的立方等于a,那么这个数x就叫做a 的立方根.19.若一正数a的两个平方根分别是2m﹣3和5﹣m,求a的值.【考点】平方根.【分析】利用正数的两平方根和为0,进而求出m的值,即可得出答案.【解答】解:∵一正数a的两个平方根分别是2m﹣3和5﹣m,∴2m﹣3+5﹣m=0,解得:m=﹣2,则2m﹣3=﹣7,解得a=49.【点评】此题主要考查了平方根的定义,得出m的值是解题关键.20.一个正数x的两个不同的平方根是3a﹣4和1﹣6a,求a及x的值.【考点】平方根.【分析】由于应该正数的两个平方根互为相反数,据此可列出关于a的方程,求出a的值,进而可求出x的值.【解答】解:由题意,得:3a﹣4+1﹣6a=0,解得a=﹣1;所以正数x的平方根是:7和﹣7,故正数x的值是49.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.21.求x的值(1)16x2﹣49=0(2)24(x﹣1)2﹣6=0【考点】平方根.【分析】(1)先移项,再两边都除以16,继而两边开平方即可得;(2)先移项,再两边都除以24,继而两边开平方,最后解方程即可得.【解答】解:(1)∵16x2﹣49=0,∴16x2=49,∴x2=,则x=±;(2)∵24(x﹣1)2﹣6=0,∴24(x﹣1)2=6,则(x﹣1)2=,∴x﹣1=±,解得:x=或x=.【点评】本题主要考查了平方根,解题的关键是掌握平方根的定义.22.已知1+3a的平方根是±7,2a﹣b﹣5立方根﹣3,c是的整数部分,求a+b+c的平方根.【考点】平方根;立方根;估算无理数的大小.【分析】首先根据平方根与立方根的概念可得a、b的值;接着估出的大小,可得c的值;进而可得a+b+c,根据平方根的求法可得答案.【解答】解:根据题意,可得1+3a=49,2a﹣b﹣5=﹣27;故a=16,b=54;又有10<<11,可得c=10;则a+b+c=16+54+10=80.则80的平方根为±4.【点评】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.23.已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+b+c的平方根.【考点】平方根;立方根;估算无理数的大小.【分析】首先根据平方根与立方根的概念可得2a﹣1与3a+b﹣9的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a+b+c,根据平方根的求法可得答案.【解答】解:根据题意,可得2a﹣1=9,3a+b﹣9=8;故a=5,b=2;又∵2<<3,∴c=2,∴a+b+c=5+2+2=9,∴9的平方根为±3.【点评】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.24.求下列各式中x的值.(1)(x+1)2﹣4=0.(2)3x2+4=﹣20.【考点】平方根.【分析】(1)根据平方根,即可解答;(2)根据平方根,即可解答.【解答】解:(1)(x+1)2﹣4=0,(x+1)2=4,x+1=±2,x=1或x=﹣3.(2)3x2+4=﹣20,3x2=﹣24,x2=﹣8,原方程无解.【点评】本题考查了平方根,解决本题的关键是熟记平方根的定义.25.已知x=1﹣a,y=2a﹣5.(1)已知x的值4,求a的值及x+y+16的平方根;(2)如果一个数的平方根是x和y,求这个数.【考点】平方根;整式的加减.【分析】(1)先列式1﹣a=4,可得a的值,根据y=2a﹣5可得y的值,从而进行计算可得答案;(2)根据一个数的平方根互为相反数,可得a的值,根据平方运算,可得答案.【解答】解:(1)∵x的值4,∴1﹣a=4,a=﹣3,∴y=2a﹣5=2×(﹣3)﹣5=﹣11,∴x+y+16=4﹣11+16=9,即x+y+16的平方根是±3;(2)∵一个数的平方根是x和y,∴1﹣a+(2a﹣5)=0,解得a=4,当a=4时,(1﹣a)2=(1﹣4)2=9,答:这个数是9.【点评】本题考查了平方根和整式的加减,注意一个正数有两个平方根,这两个平方根互为相反数,以防漏掉.26.已知2m+3和4m+9是x的平方根,求x的值.【考点】平方根.【分析】①正数有两个平方根,它们互为相反数,从而得到2m+3+4m+9=0,可求得m 的值;②2m+3=4m+9,可求得m的值.然后利用平方根的定义即可求得x的值.【解答】解:∵2m+3和4m+9是x的平方根,∴2m+3+4m+9=0或2m+3=4m+9,解得:m=﹣2或﹣3,当m=﹣2时,2m+3=﹣1,4m+9=1;当m=﹣3时,2m+3=﹣3.∴x=(±1)2=1或x=(﹣3)2=9.故x的值为1或9.【点评】本题考查了对平方根的定义和性质,明确正数有两个平方根,它们互为相反数是解题的关键.27.已知2m+3和4m+9是一个正数的两个平方根,求m的值和这个正数的平方根.【考点】平方根.【分析】正数有两个平方根,它们互为相反数,从而得到2m+3+4m+9=0,可求得m的值,然后利用平方根的定义即可求得这个正数的平方根.【解答】解:∵2m+3和4m+9是一个正数的两个平方根,∴2m+3+4m+9=0,解得:m=﹣2,当m=﹣2时,2m+3=﹣1,4m+9=1.故m的值为﹣2,这个正数的平方根是±1.【点评】本题考查了平方根,明确正数有两个平方根,它们互为相反数是解题的关键11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档